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Abstract 

In this paper, we investigate chaos synchronization and anti-
synchronization between two coupled permanent magnet reluctance 
machines (PMSM) exhibiting chaotic behaviour. Nonlinear controllers 
derived from nonlinear control theory are designed for a drive-response 
PMSM system so that the response system synchronizes and anti-
synchronizes with the drive system. Numerical simulations are given to 
illustrate and verify the approach. 

1. Introduction 

Recently, considerable research activities have been devoted by some 



www.p
phm

j.c
om

U. E. VINCENT and A. UCAR 212

researchers to the study of the dynamics of permanent magnet 
synchronous machine (PMSM) [1, 8, 9, 10, 12, 16]. The existing 
mathematical models that describes a PMSM system are multivariable, 
nonlinear and strongly coupled; and therefore exhibits various 
bifurcations and chaotic phenomena. For instance, some bifurcation and 
chaotic behaviours which includes limit-cycle oscillations, subcritical and 
supercritical Hopf bifurcations and different kinds of strange chaotic 
attractors were reported in [9, 10, 12]. In [8], Harb employed back-
stepping nonlinear control and sliding mode control to eliminate the 
chaotic behaviour that could arise during a high speed performance of a 
PMSM system. 

A PMSM is a kind of high-efficient and high-powered motor that is 
widely used in motor drive, various servo systems and household 
applications. It can offer a high-performance drive by utilizing the 
torques due to the magnets and reluctance variation. Thus, the study of 
synchronization phenomena in PMSM systems is of high practical 
importance. Synchronization of chaotic systems has been explored very 
intensively by many researchers in various fields ranging from physics, 
mathematics to engineering. Various forms of synchronization 
phenomenon have been investigated for coupled oscillators. In this paper, 
we investigate complete synchronization and anti-synchronization 
between two PMSM systems using the active control technique. 

The use of active control method for the synchronization of chaotic 
systems was proposed by Bai and Lonngren [2, 3]. The active control has 
since then received considerable attention in the last few years. 
Applications to various systems abound, some of which includes the 
Lorenz, Chen and Lü system [5], nonlinear Bloch equations [19], 
Geophysical system [22], Spatiotemporal dynamical system [6], the so-
called Unified chaotic attractor [20], electronic circuits which model a 
third-order “jerk” equation [4] and most recently in RCL-shunted 
Josephson junction [21]. 

2. System Description 

For simplicity, we consider here a smooth-air-gap PMSM system. In 
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dimensionless units, the system can be described by the following 
normalized nonlinear differential equations: 

duzyxx ++−= 1111  

quzzxyy +γ+−−= 11111  

( ) ,111 LTzyz −−σ=  (1) 

where ,1x  1y  and 1z  are state variables corresponding to the currents 

and motor angular frequency respectively; du  and qu  are the direct- and 

quadrature-axis stator voltage components, respectively, and LT  

represents the external load torque. γ and σ are the system parameters. 

The dynamics of system (1) has been extensively studied by Li et al. [12] 

for a fixed subset of the system parameters ( )LT,, γσ  and for three cases 

of ( ),0=== Lqd Tuu  ( )0,0 ≠== dLq uTu  and the general case 

( ).0≠≠≠ Lqd Tuu  In the first case, the PMSM system is identical to 

the famous Lorenz equation and can be thought of as that, after an 
operating period, the external input are switched off. In this paper, we 
consider the general case exhibiting the chaotic attractor shown in Figure 

1, for the parameters ( 20,46.5 =γ=σ  and ).2.1,1,20 ==−= Lqd Tuu  

3. Synchronization via Active Control 

The most popular synchronization phenomenon is that the difference 
of the states variables of synchronized systems converges to zero and is 
called complete synchronization (CS). This was the original idea of 
synchronization as presented by Pecora and Carroll [15]. Almost all 
research reports on chaotic synchronization are directed to CS. To study 
complete synchronization in coupled PMSM system, let the drive PMSM 
system be given by equation (1) while the response system be given by 

xduzyxx µ+++−= 2222  

yquzzxyy µ++γ+−−= 22222  

( ) ,222 zLTzyz µ+−−σ=  (2) 
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where ( ),tiµ  zyxi ,,=  are control functions to be determined. 

Subtracting (1) from (2) we obtain the error dynamics as 

xxx zyzyee µ+−+−= 1122  

yzyy zxzxeee µ++−γ+−= 1122  

,zzyz eee µ+σ−σ=  (3) 

where .,,,12 zyxiiiei =−=  

We now re-define the control functions, to eliminate terms in (4) 

which cannot be expressed as linear terms in yx ee ,  and ,ze  as follows: 

xx vzyzy ++−=µ 1122  

yy vzxzx +−=µ 1122  

.zz v=µ  (4) 

Substituting (4) into (3), we have 

xxx vee +−=  

yzyy veee +γ+−=  

.zzyz veee +−σ=  (5) 

We choose a constant matrix A  which will control the error dynamics (5) 
such that 
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In (7) the three eigenvalues ,1λ  2λ  and 3λ  must be negative to ensure a 

stable and synchronized identical PMSM systems is achieved. 

To numerically verify the effectiveness of the designed controllers, we 

used the standard fourth-order Runge-Kutta algorithm to solve the drive-

response systems (1) and (2). The parameters of the systems were 

selected such that the system is operated in the chaotic state as shown in 

Fig. 1. That is ,1=qu  ,20−=du  ,2.1=LT  ,20=σ  and .20=γ  The 

initial conditions were taken as ( ) ( ) ( ) ,01.0000 111 −=== zyx ( ) ,4.002 =x  

( ) 3.002 −=y  and ( ) ,2.002 =z  respectively; resulting in the initial errors: 

,39.0=xe  31.0−=ye  and .29.0=ze  The simulation results for yx ee ,  

and ze  are shown in Fig. 2(a). It is evident that the desired 

synchronization is achieved. In Fig. 2(b), we also show the direct 

relationship between the state variables of drive-response system along 

the synchronization manifold (here ,21 xx =  for example). 

4. Anti-synchronization via Active Control 

Anti-synchronization (AS) [7, 11, 13, 14, 23] is a phenomenon in 

which the state variables of the synchronized systems have the same 

absolute values but opposite signs [7, 11, 13, 14, 23]. We say that AS is 

achieved if ,0lim 21 →+∞→ xxt  where 1x  and 2x  are the state 

variables of the systems 1S  and ,2S  respectively. AS phenomenon has 

been observed experimentally in the context of self-synchronization in 

salt-water oscillators [14]. To investigate AS in the PMSM system, we 

define the AS errors for the drive-response system as: 

 .,, 212121 zzeyyexxe zyx +=+=+=  (8) 

Adding (1) and (2) and using the definition (8), we obtain 

( ) ( ) ,22 222 xdzzyxx uezyzeeee µ++−+−+−=  

( ) ( ) ,22 222 yqzzxzyy uzexezeeee µ++−+−+γ+−=  

.2 zLzxz Teee µ+−σ−σ=  (9) 
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Redefining the control inputs as 

( ) ( ) ,22 222 xdzzyx vuezyzee +−−−−−=µ  

( ) ( ) ,22 222 yqzzxy vuzexeze +−−−−−=µ  

,2 zLz vT +=µ  (10) 

equation (9) becomes 

,xxx vee +−=  

,yzyy veee +γ+−=  

,zzxz veee +σ−σ=  (11) 

where ,xv  yv  and zv  are new control inputs. Proceeding as before, we 

choose a constant matrix B such that 

[ ] [ ] ,,,,, T
zyx

T
zyx eeevvv B=  (12) 

where B is a 33 ×  constant matrix chosen as 
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Here, we find that the feedback matrix B required to produce anti-

synchronization is equivalent to the matrix A required to produce 

synchronization, due to the fact that the systems under consideration are 

identical. However, the controllers [ ]Tzyx µµµ ,,  are not equivalent. 

 Selecting the eigenvalues as before (i.e., ),1,1,1 −−−  we simulated the 

systems (1) and (2) using the same parameter settings as in Figure 1, the 

initial AS errors being 31.0,41.0 == yx ee  and ,21.0=ze  respectively. 

In Figure 3(a), we show the asymptotic convergence of the AS errors 

( ).,, zyx eee  Figure 4 shows the temporal behaviour of the state variables 

and finally in Figure 3(b), we have ignored the initial transience and 
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plotted .vs 21 xx  Evidently, Figure 3(b) suggest that anti-synchronization 

is analogous to the phenomenon of inverse synchronization reported in 

[17, 18] wherein two systems can be synchronized on the synchronization 

manifold 21 xx −=  as the error signal ( ) .02121 →+=−−=∆ xxxx  

5. Concluding Remarks 

Conclusively, we have demonstrated in this paper, the 
synchronization behaviour of two identical permanent magnet reluctance 
machines using active control. In particular, we employed the technique 
of active control to achieve AS between two PMSM systems and finally 
show that AS is equivalent to inverse CS. Our numerical simulations also 
confirm the theoretical results. 
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Figure 1. Three-dimensional view of the chaotic attractor of the PMSM 

system for ,46.5=σ  20=γ  and ,20−=du  ,1=qu  .2.1=LT  
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Figure 2. Synchronization dynamics (a) Errors states xe  (red), ye  (blue),  

ze  (green), (b) 1x  vs 2x  with control activated. 
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Figure 3. Anti-synchronization dynamics (a) Error states xe  (red), ye  

(blue),  ze  (green), (b) ( )21 vs xx  showing inverse synchronization with 

control activated. 
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Figure 4. Time evolution of the state variables in the AS state (a) 21, xx  

(b) 21, yy  (c) ., 21 zz  


