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Abstract

In this paper, by using the fixed points of strict-set-contractions, we
study the existence of at least one or two positive solutions to the

nonlinear four-point boundary value problem
(p(®)¥'®) - q®) )+ al®) (3®) = 6, 0 <t <1,

ay(0) = Bp(0)¥'(0) = m (&), vy(1)+3p(1) (1) = nay(m),

in Banach space E, where 0 is zero element of E, 0<§ n<1,
o, B, y, 820 with ay + ad + By >0, py, ug > 0. As an application, we

also give one example to demonstrate our results.
1. Introduction

In the recent ten years, the theory of ordinary differential equations

in Banach spaces has become a new important branch (see, for instance,
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[2, 5, 6] and references therein). On the other hand, recently, multi-point
boundary value problem for scalar ordinary differential equations have
been studied extensively (see, for example, [7, 8, 10] and references
therein). However, to the author’s knowledge, few papers can be found in
the literature for the existence of positive solutions for multi-point
boundary value problem in Banach space. Very recently, in [9], the first
author studies the existence of positive solutions to the following four-

point boundary value problem
y'(t)+alt)f(yt) =6, 0<t<l,
ay(0) = By'(0) = my(€), (@) +38y'(1) = pey(n),

in Banach space E. So in this paper, we are interested in the existence of
positive solutions of the following nonlinear four-point boundary value
problem (BVP):

(P®)Y(©) - a©)y®)+ ald)f(3(©) =6, 0 <t <1, (1.1)

ay(0) = Bp(0)y'(0) = m1y(€), (1) +3p(1)y'(1) = poy(n),  (1.2)

in Banach space E. For abstract space, it is here worth mentioning, Guo
and Lakshmikantham [4] discuss the multiple solutions of two-point
boundary value problems of ordinary differential equations in Banach

spaces.

The aim of the present paper is to establish some simple criteria for
the existence of at least one or two positive solutions of the BVP (1.1)-
(1.2) in Banach space E. The key tool in our approach is the following
fixed point theorem of strict-set-contractions [1, 11].

Theorem 1.1 [1, 11]. Let K be a cone of the real Banach space X and
K, p=ixeK|r<|x|<R} with R>r >0. Suppose that A: K, p

— K is a strict-set-contraction such that one of the following two

conditions is satisfied:

() Ax £ x,Vx e K, |x||=r and Ax 2 x,Vx e K, |x| = R.
() Ax 2 x,Vx e K, |x|=r and Ax £ x,Vx e K, | x| = R.

Then A has at least one fixed point in K, p.
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The paper is organized as follows. The preliminary lemmas are in
Section 2. In Section 3, we discuss the existence of at least one positive
solution and two positive solutions. Finally, in Section 4, we give one
example to illustrate our results.

Let the real Banach space E with norm || - | be partially ordered by a

cone Pof E, i.e., x < y ifand only if y —x € P, and P* denotes the dual
cone of P. Denote the normal constant of P by N (see [3]), 1.e., 6 < x < y
implies | x | < N| y |l For arbitrary x e C[I, E], evidently, (C[I, E], |-||)
is a Banach space with ||x |, = max, ;| x(t)|. Clearly, @ = {x € C[I, E]|x(t)
>0 for t e I} is a cone of the Banach space C[I, E]. A function
x € C2[I, E] is called a positive solution of BVP (1.1)-(1.2) if it satisfies
(1.1)-(1.2) and x € @, x(¢) = 0.

For a bounded set S in a Banach space, we denote a(s) the

Kuratowski measure of noncompactness (see [2, 5, 6], for further
understanding). In this paper, we denote a(-) the Kuratowski measure of

noncompactness of a bounded set in E and in C[I, E].

From now on, we assume that o, B, y, 3 > 0 with ay + ad + By > 0,
up, g >0, pe C([0,1], (0, ), g eC([0,1],(0)). feC(P,P), f(0)=0,
ce (O, %) be a constant, a € C([0,1], [0, ©)) and there exists ¢, € [c,1 -]

such that a(ty) > 0.

2. The Preliminary Lemmas

Lemma 2.1 [10]. Let y and ¢ be the solutions of the linear problems

{(p(t)\v’(t))' ~at)v(t) = 0, o
v(0) = B, p(0)y'(0) = o,
and
{(zo(t)m’(t»’ - at)o(t) = 0. 22
o(1) = 8, p(e'(1) = -,
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respectively. Then
(1) v is strictly increasing on [0, 1], and y(t) > 0 on (0, 1];
(i) ¢ is strictly decreasing on [0, 1], and ¢(t) > 0 on [0, 1).

Now, let y and ¢ be the solutions of the linear problems (2.1) and (2.2)
respectively, for convenience sake, we set

o) w() 0(0)  w(0)
= plt) = p(0) , tel0,1]
e o) v) ? ¢'(0)  '(0)
_ “my(€) - o)
p—pgw(n)  —pge(n) |
Gt 5) = %{(p(t)\u(s), 0<s<t<l,
o(s)y(t), 0<t<s<1,
= min ol o) w(o) = min Ay
o = min{25, ] an = min{ae 52}
Az - {GSI}lSi{l—GW(t)’ cﬁlglﬁi{l—cq)(t)’ 1}’ AS - max{l, " ¢ "C’ ” v ”C}’

A% A A
:_3.{1+ Hikap(n)As 2 HinaW(E)As

A
LT, —A —A

. ui(p —paw(n))Ag . o(p - ulcp(é))/\s,}
A “A ’

A1) = = wanaoto) [ G& 61 + 1ot - o) [ Gl e |
and
1 1 1
B(h) - —K[muzw(@jo Gl h(s)ds + (o~ mav() [ G s)h(s)ds},

where h e C[I, E].

Lemma 2.2. Let A # 0. Then for h € C[I, E], the problem

(p()y'(?) —q@)y(0)+ () =6, 0 <t <1, 2.3)
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ay(0) = Bp(0)y(0) = p1¥(8), (1) + 8p(1)y'(1) = pay(n), (2.4)

has a unique solution
y(t) = I: G(t, s)h(s)ds + A(h)y(t) + B(h)o(?).

Proof. The proof of this lemma is easy, so we omit it. O
Lemma 2.3. Let A # 0. Then
0<G(t s)<G(s,s), t,sel, (2.5)
and
G(t, s) > AyG(s, s), telo,1-0], sel. (2.6)

Proof. The inequality (2.5) is obvious. In following, we are going to
verify the inequality (2.6). Indeed, when ¢ € [5, 1 — 6], we have

t
G(t,s):%, 0<s<t<l-o,
Go o) wit) c<t<s<1
w(s)’ =tess

(p(l—G) 0<
, <s<t<l-o,
¢(0)

y(o)
—=, c<t<s<],
y(1)

Ao.

\

[\

This completes the proof. 0
In the rest of the paper, we assume that
(H) p > max{p;(§), paw(n)} > 0 and A < 0.
Lemma 2.4. Let (H) hold. If h € Q, then the unique solution y of the
problem (2.3)-(2.4) satisfies y(t) > 0, t € I, thatis, y € Q.
Proof. In view of G(t,s) >0, A(h)>6, B(h)>0, and Lemma 2.2,

we have y(t) > 0, t € I. 0

Lemma 2.5. Let (H) hold. If h € Q, then the unique solution y of the
problem (2.3)-(2.4) satisfies
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() > Ayy(s), Vtelo,1-0], Vse l

Proof. Since y is the unique solution of the problem (2.3)-(2.4), from
Lemmas 2.2 and 2.3, we have

6) < [ Gl 1))y + AV + B)ols)

1
< J G(Sl, sl)h(sl)dsl + A3(A(h) + B(h)), sel (27)
0
Thus from Lemma 2.3 and (2.7), for any ¢ € [, 1 — 5], we obtain

0) = [l 5)hte1)ds, + AV + BRYol0)

_ j "G5 G, s )h(sy)dsy + A(R)w(E) + B(h)olt)
0 G(s1, 1)

> Ao Gl s )htsr sy + AW(O) + BlR)ol0)

1 Ag
> Ao Glor. s)h(sy)dsy + 32 Ag(A(R) + B(R)
0 Az

= ) [ Gl s+ Ao(Alh) + 501)|

> A1y(s), sel
This completes the proof. 0

Now from Lemma 2.2, it is easy to see that the BVP (1.1)-(1.2) has a

solution y = y(¢) if and only if y is a solution of the operator equation

() = J: G(t, s)als)f(y(s))ds + A(a() f(y(D)w(E) + Blal) f(y()o(t)

A
= (Ty) (). (2.8)
In the following, the closed balls in spaces E and C[I, E] are denoted
by G, ={x € El|x| <r}(r>0) and B, = {x € C[I, E]||| x ||, <r}(r>0),

respectively.
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Lemma 2.6. Let (H) hold. Suppose that, for any r > 0, fis uniformly

continuous and bounded on P (G, and there exists a constant L, with
0 <L, <[2A, max,_j a(s)] " such that

a(f(D)) < L,a(D), vD < PNT,. (2.9)
Then, for any r > 0, operator T'is a strict-set-contraction on D < P N T,.

Proof. Since f is uniformly continuous and bounded on P N G,, we
see from (2.8) that T is continuous and bounded on @ N B,. Now, let
S < @ N B, be arbitrary given. By virtue of (2.8), it is easy to show that
the functions {Ty|y € S} are uniformly bounded and equicontinuous, and

so by [6],
o(T'(s)) = sup (T'(S@))), (2.10)

where T(S(t)) = {Ty(t)|y € S, t is fixed} =« PN G,, for any t € I. Using

the obvious formula _[; y(t)dt € co{y(t)|t e I} for any y e C[I, E], we find
a(T(S(@)) = OtU: G(t, s)als)f(y(s))ds + A(a() f(y()w() + Bla() f (y(')))q)(t)J
< a(colG(t, s)als)f(¥(s))|s € I, y € S})

» B0V oG, s)as) (s s < 1, v < S)

i 1202 0EOVE) o o6, s)as)(y(s)Is < 1. y < S)

+ 112V o GG, s)a(s) (s))s < 1, y < )

i b2l V0O o 516, yate)f(y(s)Is < 1. 3 < S)

<8 maxals) - allf ()]s < I, y € S
_?-nslgjxas-a y(is))|sel, ye

3
+ BB2S g afs)- a(f (65 < 1, 7 < S))
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3
220 =S e a(s)- alif(5(s)1s < 1. 3 < S))

3
" —“1“2_"&“3 -max a(s)- a({f(y(s)ls € I, y € S))

3
Ll - ttzA\lFf)(ﬂ))As -max a(s) a({f(y(s)ls € I, y < S})

- Ay maxa(s)- o(f(0(s)]s < L y < S)
= Ay - maxa(s) - a(f(B))
sel
< AyL, -maxa(s) - a(B), (2.11)
sel
where B ={y(s)|]sel,yeS}c PNG,. For any given ¢ >0, there
. . n .
exists a partition S = sz 1 S; with
diam(S;) < o(S) + %, j=12 .., n (2.12)

Now, choose y; € S; (j =1, 2, ..., n) and a partition 0 =5 <t < - <t

<+ <ty =1 such that
_ < . — .
||yj(t)— yj(t)" <3 Vi=12.,mttelt,t],i=12 .,m (2.13)

Clearly, B = U:Zl U?:l Bjj, where Bj; = {y(t)|t € [t;_1, t;], y € Sj}. For

any two y(t), ¥(t) € Byj(t, t € [t;_1, t;], ¥, ¥ € Sj), we have, by (2.12) and
(2.13),

|76) = YOI < [5@) = 3;@] + 17, €) = 3; @O + ;) = Y@)]
<Ny =vjlle + 5 +12; = Fle
< 2 - diam(S;) +§ < 20(S) + &,

which implies diam(B;;) < 2a(S) + ¢, and so a(B) < 2a(S) + &. Since ¢ is

arbitrary, we get



NONLINEAR FOUR-POINT BOUNDARY VALUE PROBLEM 201
a(B) < 2a(S). (2.14)
It follows from (2.10), (2.11) and (2.14) that

a(T(S)) < 2A4L, - max a(s)-a(S), VS < @NB,,

and consequently 7'is a strict-set-contraction on S < @ (1 B, because of

2A4L, - max a(s) < 1.
sel

3. Main Theorems

In the following for convenience, for any x € P and ¢ € P*, we set

T Vi3] e @)
1 -

for= B Tl T = B T
o o ) e o 6(f()
0= 3B 0w T B )

and list some conditions:
(C;) For any r >0, f is uniformly continuous and bounded on

P G, and there exists a constant L, with 0 < L, < [2A, max,_j a(s)[
such that

a(f(D)) < L,a(D), VD < PNT,.
(Cg) There exists p € P* such that ¢(x)>0 for any x>0 and f} = .
(C3) There exists ¢ € P* such that ¢(x)>0 for any x >0 and £ = .
(C4) There exists ry > 0 such that

n
sup | f(x)] < —3——
xePNGr NA4J a(s)ds
0

Theorem 3.1. Let (H) hold, cone P be normal and condition (C;) be
satisfied. If conditions fy = 0 and (C3) or f,, = 0 and (Cq) are satisfied,
then the BVP (1.1)-(1.2) has at least one positive solution.
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Proof. Set
K ={yeQ|yt)> Ay(s), Vielo,1-0], Vs eI} (3.1)

It is clear that K is a cone of the Banach space C[I, E] and K c Q. By
Lemmas 2.4 and 2.5, we know 7T'(Q) — K, and so

T(K) c K. (3.2)

We first assume that f; = 0 and (Cg) are satisfied. Choose M >

1— -1
(Aljcj GG(S)G(to, S)dsj , by (C3) there exists r; > 0 such that

o(f(x)) = Mi(x), Vx e P, || x| =n. (3.3)
Now for any
er
R > A—l, (34)

we are going to verify that

Ty £y, VyeK,|y|c =R (3.5)

Indeed, if there exists yy € K with |y [, = R such that Ty, < y,.

Then from Lemma 2.5
Yo(t) = Ayo(s), Vielo,1-c], Vsel,
and so
N[ yo@) | = Al y0(s)|, Vt elo,1-0], Vsel,
which implies, by (3.4),

- Ay M
im0 @1= Frllv0 le =5 & > n (3.6)

Then from (2.8), (3.6), (3.3) and Lemma 2.5, we get
050 (t0)) = o(Tyo(to))

= | Gto, $)als)o(/ro(5))ds + AGOHT G0N wlt)

+ B(a()o(f(vo () olto)
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> [ Glo, 9)ale)olo(s))ds

> [ Gl s)ats) o))
1-c

> M| Glto. s)als) - d(yo())ds

> AIMJ:G Glty, s)als)ds - 9(30(to).
This is
000t0) > MM [ Gl s)alo)ds - 4ot @
Again, it is easy to see that

d(¥0(tp)) > 0. (3.8)

In fact, if ¢(yo(tp)) =0, since ygeK, 0=¢(yo(to)) = A1d(yo(s))=0
implies ¢(yp(s)) =0, Vs e I, so we have yy(s)=0 for any s € I, and
consequently |y [0 =0, in contradiction with |y, |, = R. Now, by

1-
virtue of (3.7) and (3.8), we find AlMI cyG(tO, s)a(s)ds <1, which
(¢

- -1
contradicts M > (Al _[ ° a(s)G(ty, s)dsj , and therefore (3.5) is true.
c

On the other hand, since f; =0 and f(6)=06, for any ¢e

1 _1
[0, (NA4IO a(s)dsj J, there exists r, € (0, R) such that

[fx)]<ex], VeeP, |x]<rn. (3.9
We now prove that for any r € (0, rp),
Tyty, VyeK, |y|c=r (3.10)

In fact, if there exists y; € K with | y; || = r such that Ty; > y;, then
from (2.8), we get
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0 < y(t) < Tn()

= I:G(t, s)a(s)f (3 (s)ds + A(a(-) f(n(D)w(e) + B(a() f(31()9()

9 3
< 25 [ (o) fon s + ER22AS o) (5, 5))ds

, Halp —_uzi@»A% [ ) otonas

3
VOIS [ (s) 3 )

L hulp - _leAH;(ﬂ))A% I ;a(s)f(yl(S))dS

1
- As[ als)f((e)ds, Vel
0
Hence, by virtue of (3.9) and the cone P is normal, we have

1101 < N alo)] Fon) s
1
< Neny [ als)] 21(6) s

1
< N8A4J‘ a(s)ds -r, Vitel,
0
and so

1
Il < N8A4.|.0 a(s)ds-r <,

which contradicts with | y; || = . Thus, (3.10) is true.

By Lemma 2.6, T is a strict-set-contraction on K, p ={y € K|r
< yle < R}. Observing (3.2), (3.5), (3.10) and using Theorem 1.1, we see
that 7" has a fixed point on K, p, which is a positive solution of BVP
(1.1)-(1.2).
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Next, in case when f, =0 and (Cy) are satisfied, the proof is
similar. In the same way as establishing (3.5) we can assert from (C,)

that there exists r, > 0 such that for any 0 < r < ry,

Ty £y, VyeK, |y|o=r (3.11)

1 -1
On the other hand, since f, =0, for any ¢ € (O, (NA4.[0 a(s)ds) ],

there exists / > 0 such that

[ fx)]| <elx], VeeP, |x]|=1 (3.12)
Also, by (Cy),
sup || f(x)||=0b < . (3.13)
xePNG;

It follows from (3.12) and (3.13) that
| f(x)] < ¢|x|+b VxeP. (3.14)

bNA, J.; a(s)ds

Taking R > maxin, , we now prove that

1
1- 8NA4.[0 a(s)ds

Tyty, VyekK, |y|c=R. (3.15)

In fact, if there exists y; € K with || y3 [ = R such that Ty > yj,
then from (2.8), we get

0 25(0) < Too(0) = A [ ale)fonle)ds, Vi < 1.

Hence, by virtue of (3.14) and the cone P is normal, we have

220001 < N, [ (o)l Fo(5) s
1
< NAy [ alo)(e] 32(6) | + b)ds

1
< NA4J.O a(s)ds - (e] 3o o +b), Ve,
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and so

1
B NA4IO a(s)ds - (R + b) < R,

which contradicts with | yg |, = R. Thus, (3.15) is true.

By Lemma 2.6, T is a strict-set-contraction on K, p ={y € K|r
<|ylc £ R}. Observing (3.2), (3.11), (3.15) and using Theorem 1.1, we
see that T has a fixed point on K, g, which is a positive solution of BVP
(1.1)-(1.2). 0

Theorem 3.2. Let (H) hold and cone P be normal. Suppose that
conditions (C;)-(C4) are satisfied. Then the BVP (1.1)-(1.2) has at least

two positive solutions y; and yg which satisfy

0<[ylle <m <lule (3.16)

Proof. Taking the same cone K — C[I, E] as in Theorem 3.1. As in

the proof of Theorem 3.1, we can show that

T(K) c K, (3.17)

and we can choose r, R with R > ry > r > 0 such that
Ty £y, VyeK, |y|o =R, (3.18)
Ty £y, VyeK, |y|c=r (3.19)

On the other hand, it is easy to see that
Ty ty, VyeK, |y|c =m0 (3.20)

In fact, if there exists yy € K with |y o =79 such that Ty, >y,
then from (2.8), we get

0 < 300) < Tyolt) = Au [ als)Gopleds, Vi< 1.

Hence, by virtue of (C4) and the cone P is normal, we have

500011 < VA [ als)] Fon(s) I
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1
< NA4J. a(s)ds -
0

X

sup | f(x)]|
ePﬂG,0
<71y, Vit € I,

and so | yg [|o < 7, in contradiction with |y | = 7. Thus, (3.20) is
true.

By Lemma 2.6, T' is a strict-set-contraction on K, p = {y e K|ry
<|lyle < R}, and alsoon K, ,, =1{y € K|r <|y|c <1y} Now observing
(3.17)-(3.20) and applying Theorem 1.1 to T, KVO’R and 7, Kr,ro’
respectively, we assert that there exists y; € K, p and ys € K, ,, such

that 7% = y; and Ty9 = y9, which are two positive solutions of BVP
(1.1)-(1.2). Finally, (3.20) implies ||y | # 1, || y2] # 7, and so (3.16)
holds. 0

4. One Example

In this section, in order to illustrate our results, we consider an

example.

Example 4.1. Consider the boundary value problem in E = R"
1

(n-dimensional Euclidean space and || x | = (Z?_l xLQJZ )

(0 + x}(0)) - s %0 + al0) iy, 5, s %) =0, O <t <, (A1)

%,(0) = x4(0) = %x(%) Txi)+ 2 = x&) P12 ..n (42

-0
10(n + 1)vn

where af(t) = and

2 .
fi(xg, X9, vy X,) = /X1 + X9, 1=1,2,...,n—2,

foo1(xq, 29, ooy x,) = X, + xlz, folxy, X9, oy ) = \/E + x%
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Set 0= (0,0,.,0) e R", a =B=1, y=8=-, jy =%, py =1, &=L,
9 9 2
n=—t, pt)=1+t, qt) = ——, and f = (i, fo» - f,), then
47 ) 1+t7 15 /125 =+ In)s

1
p(0)=1, p(1)=2, y)=1+t¢, (p(t):m, p =2,

3 5
"1 3 13
3
4

Az =max{l, | ¢o, | v]c} = max{l, 1,2} =2, A= 34 =55+
5

Ay = %%{1 JETIEL | LSRR TSR LI

L Ba(p—weE)As] _ 844
-A 39 °
Taking
P ={x=(x, x9, ., x,) € R"|x; 20,1 =1, 2, ..., n},

then P is a normal cone and normal constant N =1. f:P — P is
continuous, f(0, 0, ..., 0) = 0, and the condition (H) holds. Moreover, in

this case, condition (C;) is automatically satisfied since a(f(D)) is

identical to zero for any D c P N T,. It is clear that P* = P in this case,
so we choose ¢ = (1, 1, ..., 1), and then

b)) Doy L %20 )

o(x) Zn o
i=1""

We now prove that the conditions (Cg) and (Cg) are satisfied. In fact, for

any x € P, x # 0, we have ¢(x) > 0 and

n 2 n
¢(f((x))) _ Zizl (i +x7) S Zi:l\/x_i _ MaXigic V¥
olx n I e - nmaxggic, X;
Zi:l *i Zi:l i '
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1
n 2
1 1 Z 2
== —— > o, |V |x| = x -0
nomaxigicp VX RN [ L J ,

i=1

and

O(f(x) _ Zi=1(“xi i) Zi:l Y maxgge, xf
= > >
¢(x) Sk Sk mision T
=17t i=17"

i=1

1
n 2
1 2
=—-max x; > o, || x|= xi| o o,
n 1<i<n

so the conditions (C9) and (Cg) hold. Finally, we are going to verify that
(Cy4) is satisfied. Indeed,

1 17 1
A4I TN W

Again, taking 1y =1, since G, ={x e R"[|x[ <1}, 0< Z?ﬂ x? <1 and
0<.x; <1(=12..n) for any xe P G,,- Hence (notice N =1,
o =1)

1

n 2
sup | f(x)[ = sup [Z f,zJ <Vn. sup (maxf)
ePNGy, x AN

<i<
x ePNG o1 xePﬂG,U 1<i<n

< x;%%m[f fi] - x;‘a%if@ ' ZJ

i=1 i=1 =1

<(n+DVn <2+ )¥n < ——0
NA4.[0 a(s)ds

b

which implies the condition (C4) holds. Hence, by Theorem 3.2, the BVP

(4.1)-(4.2) has at least two positive solutions x, y € C2[I, R"] such that
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(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

BING LIU and XIAOGUI YAO

n

n
0 < max Zx?(t) <1< ntlealxzy?(t)-
i=1

tel
)
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