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Abstract 

In this paper, Homotopy Perturbation Method is applied to solve 
oscillatory problems with high nonlinear terms. The available data from 
the Perturbation Method for the same problem is considered as a good 
basis for comparison between them and the results obtained from the 
Homotopy Perturbation Method. Although the good agreement of the 
data comparison shows the methods are quite equivalent, but because of 
the independency of Homotopy Perturbation Method to the small 
parameter, i.e., the limitation of Perturbation Method, makes it more 
effective than the Perturbation Method.  

1. Introduction 

Basically, in different fields of science, there are few phenomena 

occurring linearly whereas lots of problems result in the nonlinear 
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systems. One of the nonlinear cases may be seen on the oscillatory 

problems because of some nonlinear assumptions for the devices used to 

construct the corresponding system. It is certainly needed to find the 

solution for the equations at hand no matter to be algebraic nor in the 

form of differential equations. Generally, systems of the oscillatory 

problems result in the second form, namely, nonlinear differential 

equations. The first flash that passes through one’s mind is to solve them; 

using traditional analytical methods but if he/she has got previously 

involved to use those methods they might found that those methods are 

quite useless because of the existence of some nonlinear terms. In this 

view, some other approximate methods have been proposed by different 

authors to overcome the corresponding casualities encountered in the 

traditional analytical methods. The famous method which might be the 

pioneer is the Perturbation Method which has been studied by a large 

number of researchers such as Bellman [1], Cole [2] and O’Malley [14] 

who have paid much attention to the mathematical aspects of the subject, 

unfortunately, including loss of the physical verification. Next step was 

made by Nayfeh [13] and Van Dyke [17] to recover this loss in the 

physical verification of the subject but some deficiencies have been 

remained on the method, because, the method was constructed upon the 

existence of a small parameter called perturbation quantity namely, ε. 

The method gets inefficiency when the perturbation quantity approaches 

to the high values. In this regard, nonperturbation methods have arisen 

to solve nonlinear differential equations effectively, e.g., Homotopy 

Perturbation Method called HPM [3, 5-7, 16], Homotopy Analysis Method 

called HAM [10, 11] and the Variational Iteration Method [4, 8, 9, 15]. 

In this paper, to show how HPM works, its application in some 

oscillatory equations is studied and the obtained results are compared 

with those of Perturbation Method. 

2. Homotopy Perturbation Method in  

Nonlinear Oscillators 

To explain the basic idea of the method, let us consider the following 

function: 
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 ( ) ( ),,,2 rgqqqfqq +=ω+  (1) 

with the initial condition of: 

 ( ) ,00 =q  (2) 

and with the periodicity condition of: 

 ( ) ( ),2 tqtq ω=π+ω  (3) 

where, f, g and ω are respectively, the elasticity nonlinear term, the 

external harmonic force and the natural frequency of the system. 

One can now construct the following homotopy using available data: 

 ( ) ( )[ ] [ ],1,0,0,,2 ∈=+−ω+ prgqqqfpqq  (4) 

where, [ ]1,0∈p  is an embedding parameter; when ,0=p  Eq. (4) 

becomes the linearized equation namely, ,02 =ω+ qq  and when it takes 

the unity, it turns out the original equation of (1).  

We consider q as the following: 

 +++= 2
2

10 qppqqq  (5) 

and the best approximation for the solution is: 

 ( ).2
2

10
1

+++=
→

qppqqLimq
p

 (6) 

The convergence criteria are fully discussed in [5, 6]. 

Substituting q from Eq. (5) into Eq. (4) and after some manipulations 

and rearranging the result into a power series on p, we have the basic 

iterative formula including 1+n  equations, (n stands for the number of 

the iteration), which have to be solved simultaneously. The procedure is 
fulfilled just with summing up the 1+n  solutions for the previous 

system of equations. 

3. Implementation of the HPM 

Let us consider a quasi-harmonic system consisting of a mass and 
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nonlinear spring subjected to an external harmonic force [2]. We assume 
that the restoring force in the spring is the sum of linear and cubic terms 
while, the equation of motion can be stated as: 

 [ ( ) ( )] 1,cos322 <<εΩ+β+αω−ε=ω+ tFqqqq  (7) 

in which ω is the natural frequency for ,0=ε  α and β are the given 

parameters, ε. F is the amplitude of the harmonic force and finally, Ω is 

the driving frequency. Eq. (7) is recognized as Duffing equation with 
small harmonic excitation. 

Our interest lies in exploring the circumstance under which Eq. (7) 

admits periodic solution of period .2 Ωπ=T  To this end, we introduce 

some transformations, namely: 

 ,, dtddtdt Ω=φ+τ=Ω  (8) 

where τ is the new time variable and φ is a phase angle yet to be 

determined. Taking foregoing transformations into account makes Eq. (7) 
changes into: 

 [ ( ) ( )],cos3222 φ+τ+β+αω−ε=ω+′′Ω Fqqqq  (9) 

where the prime denotes differentiation with respect to τ. To prevent the 

formation of secular terms, the solution of Eq. (9) must satisfy the 
periodicity condition: 

 ( ) ( ).2 τ=π+τ qq  (10) 

Moreover, for convenience, we choose the initial condition: 

 ( ) .00 =′q  (11) 

Now one can construct the following homotopy: 

 [ ( ( ) ( ))] .0cos3222 =φ+τ+β+αω−ε−ω+′′Ω Fqqpqq  (12) 

In addition, one may consider φ, as the following: 

 .2
2

10 +φ+φ+φ=φ pp  (13) 
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Substituting q and φ respectively, from Eq. (5) and Eq. (13) into Eq. (12) 

and considering second order estimation ( ),0,i.e. 4
4

3
3 === qpqp  we 

will have: 

 

( ) (

[ ( ( ( ) ( ) )

( ))]















=φ+φ+φ+τ+

++β+++αω−ε−

++ω+++
τ

Ω

.0cos

)

2
10

3
2

2
102

2
10

2

2
2

10
2

2
2

102

2
2

ppF

qppqqqppqqp

qppqqqppqq
d

d

 (14) 

Collecting the coefficients of the same orders of p in the previous equation 
leads to the following system of equations which have to be solved 
simultaneously: 

 
( ) ( ) ( )















=βεω+ω+αεω+′′Ω

=φτε−φτε+

βεω+ω+αεω+′′Ω

=ω+′′Ω

.03

0cos)cos(sinsin

0
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0

2
2

2
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2
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FF
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qq

 (15) 

With the initial condition and the periodicity condition of: 

 
( ) ( )

.2,1,0
,2

,0)0(
=







τ=π+τ

=′
i

qq

q

ii

i
 (16) 

According to the initial conditions of Eq. (16), the solution for the first 
equation of (15) takes the form of: 

 ( ) ,cos00 





Ω
ωτ=τ Aq  (17) 

where, 0A  is constant amplitude. The foregoing equation has to satisfy 

the periodicity condition which gives us: 

 .ω=Ω  (18) 

Hereafter, wherever Ω appears, it has to be replaced by ω. After some 

simple trigonometric manipulations the second equation of (15) changes 
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into: 

( ) ( )τ







ω

φε
−β+εα=+′′ cos

cos
4
3

2
03

0011
F

AAqq  

( ) ( ) ( ).3cos
4
1

sin
sin 3

02
0 τεβ+τ







ω

φε
+ A

F
 (19) 

To avoid the resonance condition, the coefficients of ( )τsin  and ( )τcos  

have to be vanished. Consequently, two following branches may be 
considered:
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 (20) 

Considering the first branch of the foregoing equation, the solution of 
Eq. (19) is: 

 ( ) ( ) ( ),3cos
32
1

cos 3
011 τβ+τ=τ AAq  (21) 

where the constant 1A  may be determined via the periodicity condition of 

the third equation of (15). Using the available data from ( ),0 τq  ( )τ1q  and 

the periodicity condition, the third equation of (15) after some simple 
trigonometric manipulations changes into: 

 

( )

( )

( )













=τβε+

τ





 βε+εβ+αβε+

τ





 βε+εβ+εα++′′

.05cos
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3cos
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 (22) 

Again, for the periodicity condition of ( ),2 τq  the coefficients of ( )τsin  

and ( )τcos  have to be vanished. 

This results in: 

 
( )

.
9432

3
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0
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0
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A

A
A

β+α

εβ
−=  (23) 
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Inserting the data at hand into the Eq. (22) results in: 

( ) ( ) ( ) ( )

 ε






 τ+τ+−βτεβ+τ=τ 3

0
422

022 coscos
4
1

16
13

cos
64
1

cos)( AAAq  

( ) ( ) ,cos2418cos
4
3 2

110
2 


τ+−ε






 τ+−α+ AAA  (24) 

where 2A  may be determined for the periodicity condition of .)(3 τq  

It is worth mentioning that higher number of iterations result in the 
more accurate solutions while here considering two iterations, the final 

approximate explicit solution of the problem is ( ),
2

0
∑
=

τ
i

iq  namely: 

( )∑
=

τ=
2

0i
iqq  

( ) ( ) ( )τεβ−ταβε−ταβε= cos
32
9

cos
256

3
cos

64
1

1
2
0

3
0

23
0

2 AAAA  

( ) ( ) ( )τβε+τεβ+τεβ+ 35
0

223
0

32
0 cos

256
1

3cos
32
1

cos
8
3

AAA  

( ) ( )τβε+τβε− 55
0

225
0

22 cos
64
1

cos
1024

13
AA  

( ) ( ) ( ).coscoscos 021 τ+τ+τ+ AAA  (25) 

4. Comparison of the Results of HPM and the  

Perturbation Method 

The available data for Perturbation Method [12] and the results 

obtained by HPM may be compared for different values of ε and τ as is 

shown in Table 1 and in the following figures from 1 to 4. According to 

Table 1 one may see that higher values of ε, lead to the higher noisy data 

i.e., more the value of ε, more the error obtained. 
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Table 1. The data difference between HPM and the  
Perturbation Method 

ε τ Difference, % 

0.01 π 0.091 

0.25 π 2.42 

0.75 π 7.77 

0.01 2π 0.091 

0.25 2π 2.42 

0.75 2π 7.82 

 
(a)                                                                (b) 

Figure 1. Surface of the solutions of Eq. (7) obtained by (a) HPM and (b) 
the Perturbation Method. 

 

Figure 2. The results of HPM and Perturbation Method for .01.0=ε  
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Figure 3. The results of HPM and Perturbation Method for .25.0=ε  

 

Figure 4. The results of HPM and Perturbation Method for .75.0=ε  

5. Conclusions 

In this paper, the equation of forced oscillation of Quasi-harmonic 
system has been solved through Homotopy Perturbation Method (HPM) 
whereas the available solutions from Perturbation Method are as a good 
basis for comparison. According to figures and the Table 1, the results of 
HPM are in excellent agreement with those obtained by the Perturbation 
Method and this means that, HPM is at least a good equivalent and 
substitution for Perturbation Method while HPM is more effective 
because of its independency to the Perturbation quantity. 
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