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Abstract 

In this paper, we discuss prolongation and prolongational limit set. Let 
X be a locally compact metric space, for a point ,Xx ∈  we get some 

properties of the higher positive prolongation ( )xD+
α  and higher positive 

prolongational limit set ( ).xJ +
α  It is shown that if ( )yDz +

α∈  and 

( ),xDy +
β∈  then there is an ordinal η such that ( ).xDz +

η∈  For a set 

,XM ⊂  we also discuss two positive prolongations ( ),MD+
α  ( )MDu

+  

and two positive prolongational limit sets ( ),MJ +
α  ( ),MJu

+  and get 

some relations among them. We also obtain some results about the 
connectedness of prolongation and prolongational limit set, and a 
theorem of stability. At last, we discuss dispersive concepts and orbit 
space. 
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1. Introduction 

Let ( )dX ,  be a locally compact metric space with metric d, on which 

there is a flow .: XRX →×π  The image ( )tx,π  of a point ( )tx,  in 

RX ×  will be written simply as xt. If ,XM ⊂  ,RA ⊂  then MA is the 

set { }.,: AtMxxt ⊂⊂  For any ,Xx ∈  the set ( ) ++ =γ xRx  is called 

the positive semi-trajectory through x. For a set ,XA ⊂  ,A  A∂  are 

respectively denote the closure and boundary of A, and we set ( )xK +  

( ).x+γ=  

For any ,Xx ∈  the sets ( ) { :Xyx ∈=ω  there is a sequence { }nt  in R 

with +∞→nt  and },yxtn →  ( ) { :XyxJ ∈=+  there is a sequence { }nx  

in X and a sequence { }nt  in +R  such that ,xxn →  ,+∞→nt  and nntx  

},y→  ( ) { :XyxD ∈=+  there is a sequence { }nx  in X and a sequence 

{ }nt  in +R  such that xxn →  and }ytx nn →  are respectively called the 

positive limit set, positive prolongational limit set and positive 

prolongational of x. Note that ( ),xω  ( ),xα  ( )xJ +  are closed invariant 

sets, ( )xD+  are closed and positively invariant set. And ( ) ( ),xJx +⊂ω  

( ) ( ) ( ),xxJxD +++ γ= ∪  ( ) ( ) ( ).xxxK ωγ= ++ ∪  

2. Prolongation and Prolongational Limit Set 

Let X be a locally compact metric space, X2  be the set of all subsets 
of X. First, we introduct two operations D  and δ on the class of maps 

from X into .2X  

If ,2: XX →Γ  then we define 

(1) ( ) { ( ) ( )},: xUUx ND ∈Γ=Γ ∩  where ( )xN  denotes the set of all 

neighborhoods of x. 

(2) ( ) { ( ) },,2,1: …∪ =Γ=Γδ nxx n  where ( ) ( ),1 xx Γ=Γ  ( ) ( ( )),1 xx nn −ΓΓ=Γ  

.,3,2 …=n  
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It is easy to see the following facts: D  and δ are idempotent 

operators, i.e., ,2 DD =  .2 δ=δ  

A map XX 2: →Γ  is called transitive if .Γ=Γδ  If ( ) ,Γ=Γ xD  then 

a map XX 2: →Γ  is called a cluster map. A map XX 2→:Γ  is called 

a cc −  map provided for any compact set XK ⊂  and ,Kx ∈  one has 

either ( ) ,Kx ⊂Γ  or ( ) .∅≠∂Γ Kx ∩  

Consider the map ( ) XXx 2: →γ+  which defines the positive semi-

trajectory through each point .Xx ∈  We now set ,1
+++ =γ≡δγ DDD  

and call ( )xD+
1  as the first positive prolongation of x. Indeed +

1D  is a 

cluster map as D  is idempotent, but it is not transitive. Therefore, we 

consider the map +δ 1DD  and denote it by +
2D  and call it as the second 

prolongation of x. We define a prolongation ( )xD+
α  for any ordinal 

number α as follows: If α is a successor ordinal, then having defined 

,1
+
−αD  we set .1

+
−α

+
α δ= DD D  If α is not a successor ordinal, then having 

defined +
βD  for every ,α<β  we set { }.: α<βδ= +

β
+
α DD ∪D  It is easy to 

see ( ) ( ).1 xDxD ++ =  ( )xD+
α  are closed cc −  map for any ordinal α. 

Proposition 2.1. (1) ( ( ))xDD +
β

+
α  is not equal to ( ).xD+

β+α  Specially, 

( ( )) ( ( )).xDDxDD +
α

+
β

+
β

+
α ≠  There ( ) { ( ) }.: MxxDMD ∈= +

α
+
α ∪  

Example. Consider a dynamical system defined on the real line. The 

points of the form ,
1 n

n
+

±  …,2,1,0=n  are equilibrium points, and so 

are the points –1 and +1. Between any two successive (isolated) 
equilibrium points p, q, such that ,qp <  there is a single trajectory 

which has q as its positive limit point, and p as its negative limit point. 
There is a single trajectory with –1 as its sole positive limit points, and it 
has no negative limit point, and there is a single trajectory with +1 as its 
negative limit point, and it has no positive limit points. Moreover, 
between any two such successive equilibrium points, say q and p, there 
are two sequences of equilibrium points, say { }np  and { },nq  ≤nq  
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,2111 ≤≤≤≤− ppqqn  ppn →  and .qqn →  Then direction of 

motion on a trajectory between any two equilibrium points is again from 

left to right. If we consider the point ,1−=P  then ( ) ,1 PPD =+ ( ) ,2 PPD =+  

but ( ) [ ],1,13 −=+ PD  ( ) [ ).,14 ∞+−=+ PD  Then ( ( )) ( ),321 PDPPDD +++ ≠=  

( ( )) ( ) ( ( )) [ ]( ).1,1131313 −=≠= ++++++ DPDDPDPDD  

(2) If ( ),yDz +
α∈  ( ),xDy +

β∈  then there is an ordinal η such that 

( ).xDz +
η∈  

Proof. If ( ),yDz +
α∈  ( ),xDy +

β∈  we let { },,max1 βα=−η  then ∈z  

( ),1 yD+
−η  ( ).1 xDy +

−η∈  So 

( ) ( ( )) ( ) ( ) ( ).1
2

1111 xDxDxDxDDyDz +
η

+
−η

+
−η

+
−η

+
−η

+
−η =δ⊂=⊂∈ D   

The first positive prolongational limit set Xx ∈  is defined by ( )xJ +
1  

{ :Xy ∈=  there are sequences { }nx  in X and { }nt  in R such that 

,xxn →  ,+∞→nt  and }.ytx nn →  If α is any ordinal number, and +
βJ  

has been defined for all ,α<β  then we set ( { }).: α<βδ= ++
α JJ ∪D  It is 

easy to see ( ) ( ).1 xJxJ ++ =  

Definition 2.1. Given any non-compact set ,XM ⊂  we define 

(1) ( ) ( ){ },: MxxM ∈ω=ω ∪  ( ) { ( ) },: MxxDMD ∈= +
α

+
α ∪  ( ) =+

α MJ  

{ ( ) }.: MxxJ ∈+
α∪  

(2) ( ) { [ ) },0:, ≥∞+=Λ ttMM ∩  ( ) { ( )[ ) },0,0:,, >δ≥∞+δ=+ ttMSMJu ∩  

( ) { ( )[ ) },0:,0, >δ∞+δ=+ MSMDu ∩  ( ) { ( ) }( ).0,:, >εε<ρ∈=δ MxXxMS  

Property 2.1. Given any non-compact set ,XM ⊂  it is easy to see 

the following facts: 

(1) ( ) ( ) ( ) ( ),MDMJMM uu
++ ⊂⊂Λ⊂ω  ( ) ( ),1 MJMJ u

++ ⊂  ( ) ⊂+ MD1  

( ).MDu
+  

(2) ( ) [ ) ( ).,0 MJMMD +
α

+
α ∞+= ∪  
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If M is compact, then ( ) ( ).1 MDMD u
++ =  However, ( ) ( )MM Λ≠ω  and 

( ) ( ),1 MJMJ u
++ ≠  even if M is compact. 

Example. (1) Consider a planar flow defined by the differential 

equations (in polar coordinates) ( ),1 rrr −=  .1=θ  Let { }.1: ≤= rrM  

Then ( ) ,MM =Λ  ( ) { } { }.01: ∪==ω rrM  

(2) Consider the dynamical system, whose phase portrait is as in 

Figure 1, let O, P are critical points. Let M be the set .AB  Then ( )MJu
+  

is the set ,OP  ( ) { } { }.1 POMJ ∪=+  

 
Figure 1 

Theorem 2.1. Let X be a locally compact metric space. ( ) =Γ M  

( ){ },: Mxx ∈Γ∪  where ( )xΓ  is a cc −  map. If M is connected and ( )MΓ  

is compact, then ( )MΓ  is connected. 

Proof. If ( )MΓ  is compact, but not connected, then we can write 

( ) ,21 MMM ∪=Γ  where ,1M  2M  are non-empty compact disjoint sets. 

Since X is locally compact, we can choose compact neighborhoods ,1U  2U  

of ,1M  2M  respectively such that .21 ∅≠UU ∩  Since ( )MM Γ⊂  and 

M is connected, we have 1MM ⊂  or .2MM ⊂  Let .1MM ⊂  Then 

there is an ,11 UMMx ⊂⊂∈  such that ( ) 1Ux ⊄Γ  and ( ) ,1 ∅=∂Γ Ux ∩  

contradicting the fact that ( )xΓ  is a cc −  map. Thus ( )MΓ  is connected. 

Corollary 2.1. Let X be a locally compact metric space. If M is 

connected and ( )MD+
α  is compact, then ( )MD+

α  is connected. 
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Let X be a locally compact metric space, M be a non-empty compact 

subset of X. Then it is easy to see [ ) [ ) ( ).,0,0 MMM Λ∞+=∞+ ∪  

[ )∞+,0M  is compact if and only if ( )MΛ  is a non-empty compact set. 

Lemma 2.1. If M is non-empty and closed, ( )MJu
+  is non-empty and 

compact, then ( )MΛ  is non-empty and compact. If M is not closed, then 

( )MJu
+  is non-empty and compact, ( )MΛ  may be empty. 

Proof. Let ( ).MJy u
+∈  Then there is a { }nx  in X and a sequence 

{ }nt  in ,+R  such that ,+∞→nt  ( ) ,0, →ρ Mxn  .ytx nn →  Since M is 

closed, we will have ,Mxxn ∈→  so ( ) ( ) ( ).11 MJMJxJy u
+++ ⊂⊂∈  And 

( )MJu
+  is compact, so ( )xJ +

1  is compact. And so ( )xω  is non-empty and 

compact. Since ( ) ( ) ( )MMx Λ⊂ω⊂ω  and ( )MΛ  is closed, ( )MΛ  is 

empty and compact. 

Example. Consider a dynamical system whose phase portrait is as in 

Figure 2, and O, P are critical points. Let M be the set { } { }( ).\ BAAB ∪  

Then ( )MJu
+  is the set { },\ PQP  ( ) .∅=Λ M  

 
Figure 2 

Lemma 2.2. Let X be a locally compact metric space, M be a non-

empty compact subset of X. Then ( )MDu
+  is compact if and only if ( )MJu

+  

is non-empty and compact. 

Proof. Since ( )MJu
+  is non-empty and compact, ( )MΛ  is non-empty 

and compact, then [ )∞+,0M  is compact. And M is compact, then ( )MDu
+  

( ) [ ) ( ) [ ) ( ),,0,0 11 MJMMJMMD u
+++ ∞+⊂∞+== ∪∪  and [ ) ∪∞+,0M  
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( ) ( ).MDMJ uu
++ ⊂  So ( ) [ ) ( )MJMMD uu

++ ∞+= ∪,0  is compact. The 

converse is trivial.  

Theorem 2.2. Let X be a locally compact metric space, M be a non-

empty compact and connected subset of X. If ( )MJu
+  is compact, then it is 

connected. 

Proof. Let ( ) ∅≠+ MJu  and ( )MJu
+  be compact but disconnected. 

Then there are two compact non-empty sets P and Q such that ( )MJu
+  

QP ∪=  and .∅=QP ∩  We can see that ( )MΛ  is non-empty and 

compact, then [ )∞+,0M  is compact and ( )MΛ  is connected [4, Lemma 

4.1]. So ( ) PM ⊂Λ  or ( ) .QM ⊂Λ  Let ( ) .PM ⊂Λ  Then [ ) ∪∞+,0M  

( ) [ ) PMPM ∪∪ ∞+=Λ ,0  is compact. We assume that [ )( )PM ∪∞+,0  

,∅≠Q∩  then there is an [ ) ,,0 QMx ∩∞+∈  Q must be invariant. This 

will show that ( ) ,QM ⊂Λ  a contradiction. Since M is compact, ( ) =+ MDu  

[ ) ( ) [ ) [ ) PMQPMMJM u ∪∪∪∪ ∞+∞+=∞+ + ,0,,0,0  and Q are disjoint 

compact sets, we have a contradiction to the fact that ( )MDu
+  is 

connected whenever compact. This proves the theorem. 

Definition 2.2. A closed invariant set XM ⊂  is said to be orbital 
stability, if for each point Mx ∈  and ,0>ε  there exists a ( ) ,0, >εδ=δ x  

such that ( ) ε<Mytd ,  for all 0>t  whenever ( ) ., δ<xyd  

We recall that a point Xx ∈  is said to be Lyapunov stable in positive 

direction if for each ,0>ε  there exists a 0>δ  such that if ( ) δ<yxd ,  

and ,0≥t  then ( ) ., ε<ytxtd  It is easy to see that if a dynamical system 

is positive Lyapunov stable at a point ,Xx ∈  then ( ) ( ).xJx +=ω  

Theorem 2.3. Let a dynamical system ( )π,, RX  is positive Lyapunov 

stable at each point ,Xx ∈  and ( )( ) ( ),xxJ ω=ω+  ( ) ,∅≠ω x  then ( )xD+  

is orbital stability. 

Proof. Let ( ).xy ω∈  Then ( ).yJy +∈  Since ( )xJ +  is invariant, ( )yγ  

( ) ( )( ).xJxJ ω⊂⊂ ++  So ( )( ) ( ) ( )( ) ( )( ) ( ).xxJxJRxxD ω=ω=ωω=ω ++++ ∪  
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Since the dynamical system is positive Lyapunov stable at each point 

,Xx ∈  ( ) ( ).xJx +=ω  So ( ) ( ).xKxD ++ =  Then it is sufficient to prove 

that ( )xK +  is orbital stability whenever ( )( ) ( ).xxD ω=ω+  We assume 

that ( )xK +  is not orbital stability, then there is a ( ),xKy +∈  ,0>ε  a 

sequence { } Xxn ⊂  with yxn →  and { } +⊂ Rtn  such that ( ( ))xKtxd n
+,  

( ),0 ntt ≤≤δ<  ( ( )) ., ε=+ xKtxd nn  If ( ),xy +γ∈  then this contradicts to 

that the dynamical system is positive Lyapunov stable at each point 

.Xx ∈  If ( ),xy ω∈  then ( ( )) ( )( ),,, xtxdxKtxd nnnn ω≤=ε +  this 

contradicts to that ( )( ) ( ).xxD ω=ω+  Hence ( )xK +  is orbital stability. 

3. Dispersiveness 

This section is devoted to the dynamical systems which are in general 
lack of recursiveness. There we set the X is a locally compact 2T  space. 

Let .Xx ∈  Then the point x is called positively Poisson unstable if 

( ),xx ω∉  negatively Poisson unstable if ( ),xx α∉  and Poisson unstable if 

it is both positively and negatively Poisson unstable. If each Xx ∈  is 

Poisson unstable, then the dynamical system is said to be Poisson 
unstable. If for every ,Xx ∈  ( ) ( ) ,∅=αω xx ∪  then the dynamical system 

is said to be divergent. The point x is called wandering whenever .Xx ∉  

If every Xx ∈  is wandering, then the dynamical system is said to be 

completely unstable. If for every pair of points Xyx ∈,  there exist 

neighborhoods xU  of x and yU  of y such that xU  is not positively 

recursive with respect to ,yU  then the dynamical system is said to be 

dispersive. This is equal to ( ) ∅=+ xJ  for each point .Xx ∈  

We know that each of the concepts above implies the preceding one. 

The set of all points Xx ∈  such that ( )xJx +
α∈  will be denoted by .αR  

And we set α= α :{RR ∪  an ordinal number}. We see that if the 

dynamical system is dispersive, then ( ) ∅=+
α xJ  for all ,Xx ∈  i.e., 

.∅=R  And if ,∅=R  then ,1 ∅=R  this is equal to the dynamical 

system is completely unstable. 



www.p
phm

j.c
om

HIGHER PROLONGATIONS AND DISPERSIVENESS … 153

Definition 3.1. Let π be a dynamical system on X. The relation C of 

being on the same orbit (i.e., xCy iff ( ))yx γ∈  is an equivalence relation 

on X. The set of equivalence classes modulo C will standardly be endowed 

with the quotient topology, denoted by ,CX  and called the orbit space. 

The canonical quotient map CXX →  will consistently be denoted by 

,: CXXe →  thus ( ) ( ) CXxxe ∈γ=  for .Xx ∈  

We see that the quotient map e is a continuous open surjection, so the 

orbit space is locally compact, but may not be .2T  

Lemma 3.1 [3]. ( ) ( )xxK γ=  iff CX  is a 1T  space; ( ) ( )xxD γ=  iff 

CX  is a 1T  space. 

Theorem 3.1. If the dynamical system is divergent, then the orbit 

space is a 1T  space. 

Proof. If the dynamical system is divergent, ( ) ( ) ∅=αω xx ∪  for every 

,Xx ∈  then ( ) ( ),xxK γ=  so CX  is a 1T  space. 

If the dynamical system is Poisson unstable, then CX  may not be a 

1T  space. For example, consider a dynamical system in euclidean 

( )21, xx -plane. The unit circle contains a rest point p and a trajectory γ 

such that for each point ,γ∈q  we have ( ) ( ) .pxx =α=ω  All trajectories 

in the interior of the unit circle { }( )γ= ∪p  have the same property as γ. 

All trajectories in the exterior of the unit circle are spiral to the unit 

circle as ,+∞→t  so that for each point q in the exterior of the unit circle 

we have ( ) { } ,γ=ω ∪pq  and ( ) .∅=α x  Notice that if we consider the 

dynamical system obtained from this one by deleting the rest point p, 

then this system is Poisson unstable, but for every ,Xq ∈  ( ) ( ),qKq ≠γ  

then the orbit space is not a 1T  space. 

Theorem 3.2. If the dynamical system is dispersive, then the orbit 

space is a 2T  space. 

Proof. If the dynamical system is dispersive, ( ) ∅=+ xJ  for every 

,Xx ∈  then the orbit space is a 2T  space. 
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If ,∅=R  then CX  may not be a 2T  space. For example, consider 

the dynamical system defined by the system ,sin yx =  .cos2 yy =  The 

orbit are the curves ,sec xcx +=  and the lines ( ) ( );212 π+= ky  

( ).,1,0 …±=k  Let the dynamical system obtained by restricting to the 

strip ( ) .22 π≤≤π− y  In this case, ∅=R  and the orbit space is not a 

2T  space, but the dynamical system is not dispersive. 

Theorem 3.3. Let X be a locally compact 2T  space, if the dynamical 

system ( )π,, RX  is Lagrange unstable and is positively Lyapunov stable 

on the set { ( ) }∅≠= +
α xJxM :  for each ordinal α, then .∅=R  

Proof. Let .∅≠R  Then there exists a Xy ∈  such that ( ) .∅≠+ yJ  

So ( ) ∅≠+
α yJ  for every α. From the condition, we know that the 

dynamical system is Lyapunov stable at the point y, so ( ) ( ) .∅≠=ω + yJy  

Let ( ).yz ω∈  Then ( ) ( )zJyJ ++ ⊂  [1, Lemma 6.17]. So ( ) ( )yJyz +⊂ω∈  

( ).zJ +⊂  Then ,Mz ∈  ( ) ( ).zJz +=ω  So ( ) ( ).zy ω⊂ω  Since ( )zω  is a 

closed invariant set, ( ) ( ),yz ω⊂ω  then we have ( ) ( ).yz ω=ω  So ( )xω  is 

positively minimal [1, Lemma 12.3]. We know that X is locally compact, 

then ( )yω  is compact [1, Lemma 12.8]. So ( )y+γ  is compact [2, Theorem 

3.93]. This contradicts to the fact that the dynamical system is Lagrange 
unstable. So .∅=R  
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