HIGHER PROLONGATIONS AND DISPERSIVENESS IN DYNAMICAL SYSTEMS

LUO JUAN[†] and LUO ZHIMIN

Department of Mathematics and Physics Wuhan University of Science and Engineering Wuhan, 430073, P. R. China

Education Department Luoding High Vocational Institute Luoding, 527200, P. R. China

Abstract

In this paper, we discuss prolongation and prolongational limit set. Let X be a locally compact metric space, for a point $x \in X$, we get some properties of the higher positive prolongation $D^+_{\alpha}(x)$ and higher positive prolongational limit set $J^+_{\alpha}(x)$. It is shown that if $z \in D^+_{\alpha}(y)$ and $y \in D^+_{\beta}(x)$, then there is an ordinal η such that $z \in D^+_{\eta}(x)$. For a set $M \subset X$, we also discuss two positive prolongations $D^+_{\alpha}(M)$, $D^+_{u}(M)$ and two positive prolongational limit sets $J^+_{\alpha}(M)$, $J^+_{u}(M)$, and get some relations among them. We also obtain some results about the connectedness of prolongation and prolongational limit set, and a theorem of stability. At last, we discuss dispersive concepts and orbit space.

2000 Mathematics Subject Classification: 35xx, 37xx.

Keywords and phrases: prolongation, prolongational limit set, connectedness, stability, dispersiveness.

Supported by the National Science Foundation of China (Grant No. 10461003).

†Corresponding Author

Communicated by Kazuhiro Sakai

Received December 19, 2006; Revised February 2, 2007

© 2007 Pushpa Publishing House

1. Introduction

Let (X, d) be a locally compact metric space with metric d, on which there is a flow $\pi: X \times R \to X$. The image $\pi(x, t)$ of a point (x, t) in $X \times R$ will be written simply as xt. If $M \subset X$, $A \subset R$, then MA is the set $\{xt: x \subset M, t \subset A\}$. For any $x \in X$, the set $\gamma^+(x) = xR^+$ is called the *positive semi-trajectory* through x. For a set $A \subset X$, \overline{A} , ∂A are respectively denote the closure and boundary of A, and we set $K^+(x) = \overline{\gamma^+(x)}$.

For any $x \in X$, the sets $\omega(x) = \{y \in X : \text{there is a sequence } \{t_n\} \text{ in } R$ with $t_n \to +\infty$ and $xt_n \to y\}$, $J^+(x) = \{y \in X : \text{there is a sequence } \{x_n\}$ in X and a sequence $\{t_n\}$ in R^+ such that $x_n \to x$, $t_n \to +\infty$, and $x_nt_n \to y\}$, $D^+(x) = \{y \in X : \text{there is a sequence } \{x_n\} \text{ in } X \text{ and a sequence } \{t_n\} \text{ in } R^+ \text{ such that } x_n \to x \text{ and } x_nt_n \to y\}$ are respectively called the positive limit set, positive prolongational limit set and positive prolongational of x. Note that $\omega(x)$, $\omega(x)$, $\omega(x)$, $\omega(x)$ are closed invariant sets, $\omega(x) = \omega(x)$ are closed and positively invariant set. And $\omega(x) = \omega(x)$, $\omega(x) = \omega(x)$, $\omega(x) = \omega(x)$.

2. Prolongation and Prolongational Limit Set

Let X be a locally compact metric space, 2^X be the set of all subsets of X. First, we introduct two operations \mathcal{D} and δ on the class of maps from X into 2^X .

If $\Gamma: X \to 2^X$, then we define

- (1) $\mathcal{D}\Gamma(x) = \{ \bigcap \overline{\Gamma(U)} : U \in \mathcal{N}(x) \}$, where $\mathcal{N}(x)$ denotes the set of all neighborhoods of x.
- (2) $\delta\Gamma(x) = \bigcup \{\Gamma^n(x) : n = 1, 2, ...\}$, where $\Gamma^1(x) = \Gamma(x)$, $\Gamma^n(x) = \Gamma(\Gamma^{n-1}(x))$, n = 2, 3, ...

It is easy to see the following facts: \mathcal{D} and δ are idempotent operators, i.e., $\mathcal{D}^2 = \mathcal{D}$, $\delta^2 = \delta$.

A map $\Gamma: X \to 2^X$ is called *transitive* if $\delta\Gamma = \Gamma$. If $\mathcal{D}\Gamma(x) = \Gamma$, then a map $\Gamma: X \to 2^X$ is called a *cluster map*. A map $\Gamma: X \to 2^X$ is called a c-c map provided for any compact set $K \subset X$ and $x \in K$, one has either $\Gamma(x) \subset K$, or $\Gamma(x) \cap \partial K \neq \emptyset$.

Consider the map $\gamma^+(x): X \to 2^X$ which defines the positive semitrajectory through each point $x \in X$. We now set $\mathcal{D} \, \delta \gamma^+ \equiv D \gamma^+ = D_1^+$, and call $D_1^+(x)$ as the *first positive prolongation* of x. Indeed D_1^+ is a cluster map as \mathcal{D} is idempotent, but it is not transitive. Therefore, we consider the map $\mathcal{D} \, \delta D_1^+$ and denote it by D_2^+ and call it as the *second prolongation* of x. We define a prolongation $D_{\alpha}^+(x)$ for any ordinal number α as follows: If α is a successor ordinal, then having defined $D_{\alpha-1}^+$, we set $D_{\alpha}^+ = \mathcal{D} \, \delta D_{\alpha-1}^+$. If α is not a successor ordinal, then having defined D_{β}^+ for every $\beta < \alpha$, we set $D_{\alpha}^+ = \mathcal{D} \cup \{\delta D_{\beta}^+ : \beta < \alpha\}$. It is easy to see $D^+(x) = D_1^+(x)$. $D_{\alpha}^+(x)$ are closed c - c map for any ordinal α .

Proposition 2.1. (1) $D^+_{\alpha}(D^+_{\beta}(x))$ is not equal to $D^+_{\alpha+\beta}(x)$. Specially, $D^+_{\alpha}(D^+_{\beta}(x)) \neq D^+_{\beta}(D^+_{\alpha}(x))$. There $D^+_{\alpha}(M) = \bigcup \{D^+_{\alpha}(x) : x \in M\}$.

Example. Consider a dynamical system defined on the real line. The points of the form $\pm \frac{n}{1+n}$, n=0,1,2,... are equilibrium points, and so are the points -1 and +1. Between any two successive (isolated) equilibrium points p, q, such that p < q, there is a single trajectory which has q as its positive limit point, and p as its negative limit point. There is a single trajectory with -1 as its sole positive limit points, and it has no negative limit point, and there is a single trajectory with +1 as its negative limit point, and it has no positive limit points. Moreover, between any two such successive equilibrium points, say q and q, there are two sequences of equilibrium points, say q and q, q, q.

 $q_{n-1}\cdots \leq q_1 \leq p_1 \leq p_2 \leq \cdots$, $p_n \to p$ and $q_n \to q$. Then direction of motion on a trajectory between any two equilibrium points is again from left to right. If we consider the point P=-1, then $D_1^+(P)=P$, $D_2^+(P)=P$, but $D_3^+(P)=[-1,1]$, $D_4^+(P)=[-1,+\infty)$. Then $D_1^+(D_2^+(P))=P \neq D_3^+(P)$, $D_3^+(D_1^+(P))=D_3^+(P)\neq D_1^+(D_3^+(P))=D_1^+([-1,1])$.

(2) If $z \in D_{\alpha}^+(y)$, $y \in D_{\beta}^+(x)$, then there is an ordinal η such that $z \in D_{\eta}^+(x)$.

Proof. If $z \in D_{\alpha}^{+}(y)$, $y \in D_{\beta}^{+}(x)$, we let $\eta - 1 = \max\{\alpha, \beta\}$, then $z \in D_{\eta-1}^{+}(y)$, $y \in D_{\eta-1}^{+}(x)$. So

$$z \in D_{\eta-1}^+(y) \subset D_{\eta-1}^+(D_{\eta-1}^+(x)) = D_{\eta-1}^{2+}(x) \subset \mathcal{D} \, \delta D_{\eta-1}^+(x) = D_{\eta}^+(x).$$

The first positive prolongational limit set $x \in X$ is defined by $J_1^+(x) = \{y \in X : \text{ there are sequences } \{x_n\} \text{ in } X \text{ and } \{t_n\} \text{ in } R \text{ such that } x_n \to x, \ t_n \to +\infty, \text{ and } x_nt_n \to y\}.$ If α is any ordinal number, and J_{β}^+ has been defined for all $\beta < \alpha$, then we set $J_{\alpha}^+ = \mathcal{D}(\bigcup \{\delta J^+ : \beta < \alpha\})$. It is easy to see $J^+(x) = J_1^+(x)$.

Definition 2.1. Given any non-compact set $M \subset X$, we define

(1) $\omega(M) = \bigcup \{\omega(x) : x \in M\}, \quad D_{\alpha}^{+}(M) = \bigcup \{D_{\alpha}^{+}(x) : x \in M\}, \quad J_{\alpha}^{+}(M) = \bigcup \{J_{\alpha}^{+}(x) : x \in M\}.$

(2)
$$\Lambda(M) = \bigcap \{\overline{M[t, +\infty) : t \ge 0}\}, \quad J_u^+(M) = \bigcap \{\overline{S(M, \delta)[t, +\infty)} : t \ge 0, \delta > 0\},$$

 $D_u^+(M) = \bigcap \{\overline{S(M, \delta)[0, +\infty)} : \delta > 0\}, \quad S(M, \delta) = \{x \in X : \rho(x, M) < \varepsilon\}(\varepsilon > 0).$

Property 2.1. Given any non-compact set $M \subset X$, it is easy to see the following facts:

$$(1) \quad \omega(M) \subset \Lambda(M) \subset J_u^+(M) \subset D_u^+(M), \quad J_1^+(M) \subset J_u^+(M), \quad D_1^+(M) \subset D_u^+(M).$$

(2)
$$D_{\alpha}^{+}(M) = M[0, +\infty) \cup J_{\alpha}^{+}(M).$$

If M is compact, then $D_1^+(M)=D_u^+(M)$. However, $\omega(M)\neq \Lambda(M)$ and $J_1^+(M)\neq J_u^+(M)$, even if M is compact.

Example. (1) Consider a planar flow defined by the differential equations (in polar coordinates) $\dot{r}=r(1-r),\ \dot{\theta}=1.$ Let $M=\{r:r\leq 1\}.$ Then $\Lambda(M)=M,\ \omega(M)=\{r:r=1\}\cup\{0\}.$

(2) Consider the dynamical system, whose phase portrait is as in Figure 1, let O, P are critical points. Let M be the set \overline{AB} . Then $J_u^+(M)$ is the set \overline{OP} , $J_1^+(M) = \{O\} \cup \{P\}$.

Figure 1

Theorem 2.1. Let X be a locally compact metric space. $\Gamma(M) = \bigcup \{\Gamma(x) : x \in M\}$, where $\Gamma(x)$ is a c-c map. If M is connected and $\Gamma(M)$ is compact, then $\Gamma(M)$ is connected.

Proof. If $\Gamma(M)$ is compact, but not connected, then we can write $\Gamma(M)=M_1\cup M_2$, where M_1 , M_2 are non-empty compact disjoint sets. Since X is locally compact, we can choose compact neighborhoods U_1 , U_2 of M_1 , M_2 respectively such that $U_1\cap U_2\neq\varnothing$. Since $M\subset\Gamma(M)$ and M is connected, we have $M\subset M_1$ or $M\subset M_2$. Let $M\subset M_1$. Then there is an $x\in M\subset M_1\subset U_1$, such that $\Gamma(x)\not\subset U_1$ and $\Gamma(x)\cap\partial U_1=\varnothing$, contradicting the fact that $\Gamma(x)$ is a c-c map. Thus $\Gamma(M)$ is connected.

Corollary 2.1. Let X be a locally compact metric space. If M is connected and $D_{\alpha}^{+}(M)$ is compact, then $D_{\alpha}^{+}(M)$ is connected.

Let X be a locally compact metric space, M be a non-empty compact subset of X. Then it is easy to see $\overline{M[0, +\infty)} = M[0, +\infty) \cup \Lambda(M)$. $\overline{M[0, +\infty)}$ is compact if and only if $\Lambda(M)$ is a non-empty compact set.

Lemma 2.1. If M is non-empty and closed, $J_u^+(M)$ is non-empty and compact, then $\Lambda(M)$ is non-empty and compact. If M is not closed, then $J_u^+(M)$ is non-empty and compact, $\Lambda(M)$ may be empty.

Proof. Let $y \in J_u^+(M)$. Then there is a $\{x_n\}$ in X and a sequence $\{t_n\}$ in R^+ , such that $t_n \to +\infty$, $\rho(x_n, M) \to 0$, $x_n t_n \to y$. Since M is closed, we will have $x_n \to x \in M$, so $y \in J_1^+(x) \subset J_1^+(M) \subset J_u^+(M)$. And $J_u^+(M)$ is compact, so $J_1^+(x)$ is compact. And so $\omega(x)$ is non-empty and compact. Since $\omega(x) \subset \omega(M) \subset \Lambda(M)$ and $\Lambda(M)$ is closed, $\Lambda(M)$ is empty and compact.

Example. Consider a dynamical system whose phase portrait is as in Figure 2, and O, P are critical points. Let M be the set $\overline{AB} \setminus (\{A\} \cup \{B\})$. Then $J_u^+(M)$ is the set $\overline{QP} \setminus \{P\}$, $\Lambda(M) = \emptyset$.

Lemma 2.2. Let X be a locally compact metric space, M be a non-empty compact subset of X. Then $D_u^+(M)$ is compact if and only if $J_u^+(M)$ is non-empty and compact.

Proof. Since $J_u^+(M)$ is non-empty and compact, $\Lambda(M)$ is non-empty and compact, then $\overline{M[0,+\infty)}$ is compact. And M is compact, then $D_u^+(M) = D_1^+(M) = M[0,+\infty) \cup J_1^+(M) \subset \overline{M[0,+\infty)} \cup J_u^+(M)$, and $\overline{M[0,+\infty)} \cup J_u^+(M)$

 $J_u^+(M) \subset D_u^+(M)$. So $D_u^+(M) = \overline{M[0, +\infty)} \cup J_u^+(M)$ is compact. The converse is trivial.

Theorem 2.2. Let X be a locally compact metric space, M be a non-empty compact and connected subset of X. If $J_u^+(M)$ is compact, then it is connected.

Proof. Let $J_u^+(M) \neq \varnothing$ and $J_u^+(M)$ be compact but disconnected. Then there are two compact non-empty sets P and Q such that $J_u^+(M) = P \cup Q$ and $P \cap Q = \varnothing$. We can see that $\Lambda(M)$ is non-empty and compact, then $\overline{M[0, +\infty)}$ is compact and $\Lambda(M)$ is connected [4, Lemma 4.1]. So $\Lambda(M) \subset P$ or $\Lambda(M) \subset Q$. Let $\Lambda(M) \subset P$. Then $M[0, +\infty) \cup \Lambda(M) \cup P = \overline{M[0, +\infty)} \cup P$ is compact. We assume that $(M[0, +\infty) \cup P) \cap Q \neq \varnothing$, then there is an $x \in M[0, +\infty) \cap Q$, Q must be invariant. This will show that $\Lambda(M) \subset Q$, a contradiction. Since M is compact, $D_u^+(M) = M[0, +\infty) \cup J_u^+(M) = M[0, +\infty) \cup P \cup Q$, $M[0, +\infty) \cup P$ and Q are disjoint compact sets, we have a contradiction to the fact that $D_u^+(M)$ is connected whenever compact. This proves the theorem.

Definition 2.2. A closed invariant set $M \subset X$ is said to be *orbital* stability, if for each point $x \in M$ and $\varepsilon > 0$, there exists a $\delta = \delta(x, \varepsilon) > 0$, such that $d(yt, M) < \varepsilon$ for all t > 0 whenever $d(y, x) < \delta$.

We recall that a point $x \in X$ is said to be Lyapunov stable in positive direction if for each $\varepsilon > 0$, there exists a $\delta > 0$ such that if $d(x, y) < \delta$ and $t \ge 0$, then $d(xt, yt) < \varepsilon$. It is easy to see that if a dynamical system is positive Lyapunov stable at a point $x \in X$, then $\omega(x) = J^+(x)$.

Theorem 2.3. Let a dynamical system (X, R, π) is positive Lyapunov stable at each point $x \in X$, and $J^+(\omega(x)) = \omega(x)$, $\omega(x) \neq \emptyset$, then $D^+(x)$ is orbital stability.

Proof. Let $y \in \omega(x)$. Then $y \in J^+(y)$. Since $J^+(x)$ is invariant, $\gamma(y) \subset J^+(x) \subset J^+(\omega(x))$. So $D^+(\omega(x)) = \omega(x)R^+ \cup J^+(\omega(x)) = J^+(\omega(x)) = \omega(x)$.

Since the dynamical system is positive Lyapunov stable at each point $x \in X$, $\omega(x) = J^+(x)$. So $D^+(x) = K^+(x)$. Then it is sufficient to prove that $K^+(x)$ is orbital stability whenever $D^+(\omega(x)) = \omega(x)$. We assume that $K^+(x)$ is not orbital stability, then there is a $y \in K^+(x)$, $\varepsilon > 0$, a sequence $\{x_n\} \subset X$ with $x_n \to y$ and $\{t_n\} \subset R^+$ such that $d(x_nt, K^+(x)) < \delta$ $(0 \le t \le t_n)$, $d(x_nt_n, K^+(x)) = \varepsilon$. If $y \in \gamma^+(x)$, then this contradicts to that the dynamical system is positive Lyapunov stable at each point $x \in X$. If $y \in \omega(x)$, then $\varepsilon = d(x_nt_n, K^+(x)) \le d(x_nt_n, \omega(x))$, this contradicts to that $D^+(\omega(x)) = \omega(x)$. Hence $K^+(x)$ is orbital stability.

3. Dispersiveness

This section is devoted to the dynamical systems which are in general lack of recursiveness. There we set the X is a locally compact T_2 space. Let $x \in X$. Then the point x is called positively Poisson unstable if $x \notin \omega(x)$, negatively Poisson unstable if $x \notin \omega(x)$, and Poisson unstable if it is both positively and negatively Poisson unstable. If each $x \in X$ is Poisson unstable, then the dynamical system is said to be Poisson unstable. If for every $x \in X$, $\omega(x) \cup \alpha(x) = \emptyset$, then the dynamical system is said to be divergent. The point x is called wandering whenever $x \notin X$. If every $x \in X$ is wandering, then the dynamical system is said to be completely unstable. If for every pair of points $x, y \in X$ there exist neighborhoods U_x of x and U_y of y such that U_x is not positively recursive with respect to U_y , then the dynamical system is said to be dispersive. This is equal to $J^+(x) = \emptyset$ for each point $x \in X$.

We know that each of the concepts above implies the preceding one. The set of all points $x \in X$ such that $x \in J_{\alpha}^{+}(x)$ will be denoted by R_{α} . And we set $R = \bigcup \{R_{\alpha} : \alpha \text{ an ordinal number}\}$. We see that if the dynamical system is dispersive, then $J_{\alpha}^{+}(x) = \emptyset$ for all $x \in X$, i.e., $R = \emptyset$. And if $R = \emptyset$, then $R_{1} = \emptyset$, this is equal to the dynamical system is completely unstable.

Definition 3.1. Let π be a dynamical system on X. The relation C of being on the same orbit (i.e., xCy iff $x \in \gamma(y)$) is an equivalence relation on X. The set of equivalence classes modulo C will standardly be endowed with the quotient topology, denoted by X/C, and called the *orbit space*. The canonical quotient map $X \to X/C$ will consistently be denoted by $e: X \to X/C$, thus $e(x) = \gamma(x) \in X/C$ for $x \in X$.

We see that the quotient map e is a continuous open surjection, so the orbit space is locally compact, but may not be T_2 .

Lemma 3.1 [3]. $K(x) = \gamma(x)$ iff X/C is a T_1 space; $D(x) = \gamma(x)$ iff X/C is a T_1 space.

Theorem 3.1. If the dynamical system is divergent, then the orbit space is a T_1 space.

Proof. If the dynamical system is divergent, $\omega(x) \cup \alpha(x) = \emptyset$ for every $x \in X$, then $K(x) = \gamma(x)$, so X/C is a T_1 space.

If the dynamical system is Poisson unstable, then X/C may not be a T_1 space. For example, consider a dynamical system in euclidean (x_1,x_2) -plane. The unit circle contains a rest point p and a trajectory q such that for each point $q \in q$, we have $\omega(x) = \alpha(x) = p$. All trajectories in the interior of the unit circle $(=\{p\} \cup q)$ have the same property as q. All trajectories in the exterior of the unit circle are spiral to the unit circle as $t \to +\infty$, so that for each point q in the exterior of the unit circle we have $\omega(q) = \{p\} \cup q$, and $\alpha(x) = \emptyset$. Notice that if we consider the dynamical system obtained from this one by deleting the rest point p, then this system is Poisson unstable, but for every $q \in X$, $q(q) \neq K(q)$, then the orbit space is not a T_1 space.

Theorem 3.2. If the dynamical system is dispersive, then the orbit space is a T_2 space.

Proof. If the dynamical system is dispersive, $J^+(x) = \emptyset$ for every $x \in X$, then the orbit space is a T_2 space.

If $R=\varnothing$, then X/C may not be a T_2 space. For example, consider the dynamical system defined by the system $\dot{x}=\sin y,\ \dot{y}=\cos^2 y$. The orbit are the curves $x=c+\sec x$, and the lines $y=(2k+1)(\pi/2)$; $(k=0,\pm 1,\ldots)$. Let the dynamical system obtained by restricting to the strip $-(\pi/2) \le y \le \pi/2$. In this case, $R=\varnothing$ and the orbit space is not a T_2 space, but the dynamical system is not dispersive.

Theorem 3.3. Let X be a locally compact T_2 space, if the dynamical system (X, R, π) is Lagrange unstable and is positively Lyapunov stable on the set $M = \{x : J_{\alpha}^+(x) \neq \emptyset\}$ for each ordinal α , then $R = \emptyset$.

Proof. Let $R \neq \emptyset$. Then there exists a $y \in X$ such that $J^+(y) \neq \emptyset$. So $J_{\alpha}^+(y) \neq \emptyset$ for every α . From the condition, we know that the dynamical system is Lyapunov stable at the point y, so $\omega(y) = J^+(y) \neq \emptyset$. Let $z \in \omega(y)$. Then $J^+(y) \subset J^+(z)$ [1, Lemma 6.17]. So $z \in \omega(y) \subset J^+(y)$ $\subset J^+(z)$. Then $z \in M$, $\omega(z) = J^+(z)$. So $\omega(y) \subset \omega(z)$. Since $\omega(z)$ is a closed invariant set, $\omega(z) \subset \omega(y)$, then we have $\omega(z) = \omega(y)$. So $\omega(x)$ is positively minimal [1, Lemma 12.3]. We know that X is locally compact, then $\omega(y)$ is compact [1, Lemma 12.8]. So $\overline{\gamma^+(y)}$ is compact [2, Theorem 3.93]. This contradicts to the fact that the dynamical system is Lagrange unstable. So $X = \emptyset$.

References

- N. P. Bhatia and O. Hájek, Local semi-dynamical systems, Lecture Notes in Math., Vol. 90, Springer, Berlin, New York, 1969.
- [2] N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer-Verlag, Berlin, 1970.
- [3] Wencheng Chen, Almost periodicity in dynamical systems, Science in China, 1995.
- [4] C. Conley, Isolated Invariant Sets and the Morse Index, Amer. Math. Soc., Providence, RI, 1978.
- [5] O. Hájek, Parallelizability revisited, Proc. Amer. Math. Soc. 27 (1971), 77-84.
- [6] L. Markus, Parallel dynamical systems, Topology 8 (1969), 47-57.