HIGHER PROLONGATIONS AND DISPERSIVENESS IN DYNAMICAL SYSTEMS ### LUO JUAN[†] and LUO ZHIMIN Department of Mathematics and Physics Wuhan University of Science and Engineering Wuhan, 430073, P. R. China Education Department Luoding High Vocational Institute Luoding, 527200, P. R. China #### **Abstract** In this paper, we discuss prolongation and prolongational limit set. Let X be a locally compact metric space, for a point $x \in X$, we get some properties of the higher positive prolongation $D^+_{\alpha}(x)$ and higher positive prolongational limit set $J^+_{\alpha}(x)$. It is shown that if $z \in D^+_{\alpha}(y)$ and $y \in D^+_{\beta}(x)$, then there is an ordinal η such that $z \in D^+_{\eta}(x)$. For a set $M \subset X$, we also discuss two positive prolongations $D^+_{\alpha}(M)$, $D^+_{u}(M)$ and two positive prolongational limit sets $J^+_{\alpha}(M)$, $J^+_{u}(M)$, and get some relations among them. We also obtain some results about the connectedness of prolongation and prolongational limit set, and a theorem of stability. At last, we discuss dispersive concepts and orbit space. 2000 Mathematics Subject Classification: 35xx, 37xx. Keywords and phrases: prolongation, prolongational limit set, connectedness, stability, dispersiveness. Supported by the National Science Foundation of China (Grant No. 10461003). †Corresponding Author Communicated by Kazuhiro Sakai Received December 19, 2006; Revised February 2, 2007 © 2007 Pushpa Publishing House #### 1. Introduction Let (X, d) be a locally compact metric space with metric d, on which there is a flow $\pi: X \times R \to X$. The image $\pi(x, t)$ of a point (x, t) in $X \times R$ will be written simply as xt. If $M \subset X$, $A \subset R$, then MA is the set $\{xt: x \subset M, t \subset A\}$. For any $x \in X$, the set $\gamma^+(x) = xR^+$ is called the *positive semi-trajectory* through x. For a set $A \subset X$, \overline{A} , ∂A are respectively denote the closure and boundary of A, and we set $K^+(x) = \overline{\gamma^+(x)}$. For any $x \in X$, the sets $\omega(x) = \{y \in X : \text{there is a sequence } \{t_n\} \text{ in } R$ with $t_n \to +\infty$ and $xt_n \to y\}$, $J^+(x) = \{y \in X : \text{there is a sequence } \{x_n\}$ in X and a sequence $\{t_n\}$ in R^+ such that $x_n \to x$, $t_n \to +\infty$, and $x_nt_n \to y\}$, $D^+(x) = \{y \in X : \text{there is a sequence } \{x_n\} \text{ in } X \text{ and a sequence } \{t_n\} \text{ in } R^+ \text{ such that } x_n \to x \text{ and } x_nt_n \to y\}$ are respectively called the positive limit set, positive prolongational limit set and positive prolongational of x. Note that $\omega(x)$, $\omega(x)$, $\omega(x)$, $\omega(x)$ are closed invariant sets, $\omega(x) = \omega(x)$ are closed and positively invariant set. And $\omega(x) = \omega(x)$, $\omega(x) = \omega(x)$, $\omega(x) = \omega(x)$. ## 2. Prolongation and Prolongational Limit Set Let X be a locally compact metric space, 2^X be the set of all subsets of X. First, we introduct two operations \mathcal{D} and δ on the class of maps from X into 2^X . If $\Gamma: X \to 2^X$, then we define - (1) $\mathcal{D}\Gamma(x) = \{ \bigcap \overline{\Gamma(U)} : U \in \mathcal{N}(x) \}$, where $\mathcal{N}(x)$ denotes the set of all neighborhoods of x. - (2) $\delta\Gamma(x) = \bigcup \{\Gamma^n(x) : n = 1, 2, ...\}$, where $\Gamma^1(x) = \Gamma(x)$, $\Gamma^n(x) = \Gamma(\Gamma^{n-1}(x))$, n = 2, 3, ... It is easy to see the following facts: \mathcal{D} and δ are idempotent operators, i.e., $\mathcal{D}^2 = \mathcal{D}$, $\delta^2 = \delta$. A map $\Gamma: X \to 2^X$ is called *transitive* if $\delta\Gamma = \Gamma$. If $\mathcal{D}\Gamma(x) = \Gamma$, then a map $\Gamma: X \to 2^X$ is called a *cluster map*. A map $\Gamma: X \to 2^X$ is called a c-c map provided for any compact set $K \subset X$ and $x \in K$, one has either $\Gamma(x) \subset K$, or $\Gamma(x) \cap \partial K \neq \emptyset$. Consider the map $\gamma^+(x): X \to 2^X$ which defines the positive semitrajectory through each point $x \in X$. We now set $\mathcal{D} \, \delta \gamma^+ \equiv D \gamma^+ = D_1^+$, and call $D_1^+(x)$ as the *first positive prolongation* of x. Indeed D_1^+ is a cluster map as \mathcal{D} is idempotent, but it is not transitive. Therefore, we consider the map $\mathcal{D} \, \delta D_1^+$ and denote it by D_2^+ and call it as the *second prolongation* of x. We define a prolongation $D_{\alpha}^+(x)$ for any ordinal number α as follows: If α is a successor ordinal, then having defined $D_{\alpha-1}^+$, we set $D_{\alpha}^+ = \mathcal{D} \, \delta D_{\alpha-1}^+$. If α is not a successor ordinal, then having defined D_{β}^+ for every $\beta < \alpha$, we set $D_{\alpha}^+ = \mathcal{D} \cup \{\delta D_{\beta}^+ : \beta < \alpha\}$. It is easy to see $D^+(x) = D_1^+(x)$. $D_{\alpha}^+(x)$ are closed c - c map for any ordinal α . **Proposition 2.1.** (1) $D^+_{\alpha}(D^+_{\beta}(x))$ is not equal to $D^+_{\alpha+\beta}(x)$. Specially, $D^+_{\alpha}(D^+_{\beta}(x)) \neq D^+_{\beta}(D^+_{\alpha}(x))$. There $D^+_{\alpha}(M) = \bigcup \{D^+_{\alpha}(x) : x \in M\}$. **Example.** Consider a dynamical system defined on the real line. The points of the form $\pm \frac{n}{1+n}$, n=0,1,2,... are equilibrium points, and so are the points -1 and +1. Between any two successive (isolated) equilibrium points p, q, such that p < q, there is a single trajectory which has q as its positive limit point, and p as its negative limit point. There is a single trajectory with -1 as its sole positive limit points, and it has no negative limit point, and there is a single trajectory with +1 as its negative limit point, and it has no positive limit points. Moreover, between any two such successive equilibrium points, say q and q, there are two sequences of equilibrium points, say q and q, q, q. $q_{n-1}\cdots \leq q_1 \leq p_1 \leq p_2 \leq \cdots$, $p_n \to p$ and $q_n \to q$. Then direction of motion on a trajectory between any two equilibrium points is again from left to right. If we consider the point P=-1, then $D_1^+(P)=P$, $D_2^+(P)=P$, but $D_3^+(P)=[-1,1]$, $D_4^+(P)=[-1,+\infty)$. Then $D_1^+(D_2^+(P))=P \neq D_3^+(P)$, $D_3^+(D_1^+(P))=D_3^+(P)\neq D_1^+(D_3^+(P))=D_1^+([-1,1])$. (2) If $z \in D_{\alpha}^+(y)$, $y \in D_{\beta}^+(x)$, then there is an ordinal η such that $z \in D_{\eta}^+(x)$. **Proof.** If $z \in D_{\alpha}^{+}(y)$, $y \in D_{\beta}^{+}(x)$, we let $\eta - 1 = \max\{\alpha, \beta\}$, then $z \in D_{\eta-1}^{+}(y)$, $y \in D_{\eta-1}^{+}(x)$. So $$z \in D_{\eta-1}^+(y) \subset D_{\eta-1}^+(D_{\eta-1}^+(x)) = D_{\eta-1}^{2+}(x) \subset \mathcal{D} \, \delta D_{\eta-1}^+(x) = D_{\eta}^+(x).$$ The first positive prolongational limit set $x \in X$ is defined by $J_1^+(x) = \{y \in X : \text{ there are sequences } \{x_n\} \text{ in } X \text{ and } \{t_n\} \text{ in } R \text{ such that } x_n \to x, \ t_n \to +\infty, \text{ and } x_nt_n \to y\}.$ If α is any ordinal number, and J_{β}^+ has been defined for all $\beta < \alpha$, then we set $J_{\alpha}^+ = \mathcal{D}(\bigcup \{\delta J^+ : \beta < \alpha\})$. It is easy to see $J^+(x) = J_1^+(x)$. **Definition 2.1.** Given any non-compact set $M \subset X$, we define (1) $\omega(M) = \bigcup \{\omega(x) : x \in M\}, \quad D_{\alpha}^{+}(M) = \bigcup \{D_{\alpha}^{+}(x) : x \in M\}, \quad J_{\alpha}^{+}(M) = \bigcup \{J_{\alpha}^{+}(x) : x \in M\}.$ (2) $$\Lambda(M) = \bigcap \{\overline{M[t, +\infty) : t \ge 0}\}, \quad J_u^+(M) = \bigcap \{\overline{S(M, \delta)[t, +\infty)} : t \ge 0, \delta > 0\},$$ $D_u^+(M) = \bigcap \{\overline{S(M, \delta)[0, +\infty)} : \delta > 0\}, \quad S(M, \delta) = \{x \in X : \rho(x, M) < \varepsilon\}(\varepsilon > 0).$ **Property 2.1.** Given any non-compact set $M \subset X$, it is easy to see the following facts: $$(1) \quad \omega(M) \subset \Lambda(M) \subset J_u^+(M) \subset D_u^+(M), \quad J_1^+(M) \subset J_u^+(M), \quad D_1^+(M) \subset D_u^+(M).$$ (2) $$D_{\alpha}^{+}(M) = M[0, +\infty) \cup J_{\alpha}^{+}(M).$$ If M is compact, then $D_1^+(M)=D_u^+(M)$. However, $\omega(M)\neq \Lambda(M)$ and $J_1^+(M)\neq J_u^+(M)$, even if M is compact. **Example.** (1) Consider a planar flow defined by the differential equations (in polar coordinates) $\dot{r}=r(1-r),\ \dot{\theta}=1.$ Let $M=\{r:r\leq 1\}.$ Then $\Lambda(M)=M,\ \omega(M)=\{r:r=1\}\cup\{0\}.$ (2) Consider the dynamical system, whose phase portrait is as in Figure 1, let O, P are critical points. Let M be the set \overline{AB} . Then $J_u^+(M)$ is the set \overline{OP} , $J_1^+(M) = \{O\} \cup \{P\}$. Figure 1 **Theorem 2.1.** Let X be a locally compact metric space. $\Gamma(M) = \bigcup \{\Gamma(x) : x \in M\}$, where $\Gamma(x)$ is a c-c map. If M is connected and $\Gamma(M)$ is compact, then $\Gamma(M)$ is connected. **Proof.** If $\Gamma(M)$ is compact, but not connected, then we can write $\Gamma(M)=M_1\cup M_2$, where M_1 , M_2 are non-empty compact disjoint sets. Since X is locally compact, we can choose compact neighborhoods U_1 , U_2 of M_1 , M_2 respectively such that $U_1\cap U_2\neq\varnothing$. Since $M\subset\Gamma(M)$ and M is connected, we have $M\subset M_1$ or $M\subset M_2$. Let $M\subset M_1$. Then there is an $x\in M\subset M_1\subset U_1$, such that $\Gamma(x)\not\subset U_1$ and $\Gamma(x)\cap\partial U_1=\varnothing$, contradicting the fact that $\Gamma(x)$ is a c-c map. Thus $\Gamma(M)$ is connected. **Corollary 2.1.** Let X be a locally compact metric space. If M is connected and $D_{\alpha}^{+}(M)$ is compact, then $D_{\alpha}^{+}(M)$ is connected. Let X be a locally compact metric space, M be a non-empty compact subset of X. Then it is easy to see $\overline{M[0, +\infty)} = M[0, +\infty) \cup \Lambda(M)$. $\overline{M[0, +\infty)}$ is compact if and only if $\Lambda(M)$ is a non-empty compact set. **Lemma 2.1.** If M is non-empty and closed, $J_u^+(M)$ is non-empty and compact, then $\Lambda(M)$ is non-empty and compact. If M is not closed, then $J_u^+(M)$ is non-empty and compact, $\Lambda(M)$ may be empty. **Proof.** Let $y \in J_u^+(M)$. Then there is a $\{x_n\}$ in X and a sequence $\{t_n\}$ in R^+ , such that $t_n \to +\infty$, $\rho(x_n, M) \to 0$, $x_n t_n \to y$. Since M is closed, we will have $x_n \to x \in M$, so $y \in J_1^+(x) \subset J_1^+(M) \subset J_u^+(M)$. And $J_u^+(M)$ is compact, so $J_1^+(x)$ is compact. And so $\omega(x)$ is non-empty and compact. Since $\omega(x) \subset \omega(M) \subset \Lambda(M)$ and $\Lambda(M)$ is closed, $\Lambda(M)$ is empty and compact. **Example.** Consider a dynamical system whose phase portrait is as in Figure 2, and O, P are critical points. Let M be the set $\overline{AB} \setminus (\{A\} \cup \{B\})$. Then $J_u^+(M)$ is the set $\overline{QP} \setminus \{P\}$, $\Lambda(M) = \emptyset$. **Lemma 2.2.** Let X be a locally compact metric space, M be a non-empty compact subset of X. Then $D_u^+(M)$ is compact if and only if $J_u^+(M)$ is non-empty and compact. **Proof.** Since $J_u^+(M)$ is non-empty and compact, $\Lambda(M)$ is non-empty and compact, then $\overline{M[0,+\infty)}$ is compact. And M is compact, then $D_u^+(M) = D_1^+(M) = M[0,+\infty) \cup J_1^+(M) \subset \overline{M[0,+\infty)} \cup J_u^+(M)$, and $\overline{M[0,+\infty)} \cup J_u^+(M)$ $J_u^+(M) \subset D_u^+(M)$. So $D_u^+(M) = \overline{M[0, +\infty)} \cup J_u^+(M)$ is compact. The converse is trivial. **Theorem 2.2.** Let X be a locally compact metric space, M be a non-empty compact and connected subset of X. If $J_u^+(M)$ is compact, then it is connected. **Proof.** Let $J_u^+(M) \neq \varnothing$ and $J_u^+(M)$ be compact but disconnected. Then there are two compact non-empty sets P and Q such that $J_u^+(M) = P \cup Q$ and $P \cap Q = \varnothing$. We can see that $\Lambda(M)$ is non-empty and compact, then $\overline{M[0, +\infty)}$ is compact and $\Lambda(M)$ is connected [4, Lemma 4.1]. So $\Lambda(M) \subset P$ or $\Lambda(M) \subset Q$. Let $\Lambda(M) \subset P$. Then $M[0, +\infty) \cup \Lambda(M) \cup P = \overline{M[0, +\infty)} \cup P$ is compact. We assume that $(M[0, +\infty) \cup P) \cap Q \neq \varnothing$, then there is an $x \in M[0, +\infty) \cap Q$, Q must be invariant. This will show that $\Lambda(M) \subset Q$, a contradiction. Since M is compact, $D_u^+(M) = M[0, +\infty) \cup J_u^+(M) = M[0, +\infty) \cup P \cup Q$, $M[0, +\infty) \cup P$ and Q are disjoint compact sets, we have a contradiction to the fact that $D_u^+(M)$ is connected whenever compact. This proves the theorem. **Definition 2.2.** A closed invariant set $M \subset X$ is said to be *orbital* stability, if for each point $x \in M$ and $\varepsilon > 0$, there exists a $\delta = \delta(x, \varepsilon) > 0$, such that $d(yt, M) < \varepsilon$ for all t > 0 whenever $d(y, x) < \delta$. We recall that a point $x \in X$ is said to be Lyapunov stable in positive direction if for each $\varepsilon > 0$, there exists a $\delta > 0$ such that if $d(x, y) < \delta$ and $t \ge 0$, then $d(xt, yt) < \varepsilon$. It is easy to see that if a dynamical system is positive Lyapunov stable at a point $x \in X$, then $\omega(x) = J^+(x)$. **Theorem 2.3.** Let a dynamical system (X, R, π) is positive Lyapunov stable at each point $x \in X$, and $J^+(\omega(x)) = \omega(x)$, $\omega(x) \neq \emptyset$, then $D^+(x)$ is orbital stability. **Proof.** Let $y \in \omega(x)$. Then $y \in J^+(y)$. Since $J^+(x)$ is invariant, $\gamma(y) \subset J^+(x) \subset J^+(\omega(x))$. So $D^+(\omega(x)) = \omega(x)R^+ \cup J^+(\omega(x)) = J^+(\omega(x)) = \omega(x)$. Since the dynamical system is positive Lyapunov stable at each point $x \in X$, $\omega(x) = J^+(x)$. So $D^+(x) = K^+(x)$. Then it is sufficient to prove that $K^+(x)$ is orbital stability whenever $D^+(\omega(x)) = \omega(x)$. We assume that $K^+(x)$ is not orbital stability, then there is a $y \in K^+(x)$, $\varepsilon > 0$, a sequence $\{x_n\} \subset X$ with $x_n \to y$ and $\{t_n\} \subset R^+$ such that $d(x_nt, K^+(x)) < \delta$ $(0 \le t \le t_n)$, $d(x_nt_n, K^+(x)) = \varepsilon$. If $y \in \gamma^+(x)$, then this contradicts to that the dynamical system is positive Lyapunov stable at each point $x \in X$. If $y \in \omega(x)$, then $\varepsilon = d(x_nt_n, K^+(x)) \le d(x_nt_n, \omega(x))$, this contradicts to that $D^+(\omega(x)) = \omega(x)$. Hence $K^+(x)$ is orbital stability. ## 3. Dispersiveness This section is devoted to the dynamical systems which are in general lack of recursiveness. There we set the X is a locally compact T_2 space. Let $x \in X$. Then the point x is called positively Poisson unstable if $x \notin \omega(x)$, negatively Poisson unstable if $x \notin \omega(x)$, and Poisson unstable if it is both positively and negatively Poisson unstable. If each $x \in X$ is Poisson unstable, then the dynamical system is said to be Poisson unstable. If for every $x \in X$, $\omega(x) \cup \alpha(x) = \emptyset$, then the dynamical system is said to be divergent. The point x is called wandering whenever $x \notin X$. If every $x \in X$ is wandering, then the dynamical system is said to be completely unstable. If for every pair of points $x, y \in X$ there exist neighborhoods U_x of x and U_y of y such that U_x is not positively recursive with respect to U_y , then the dynamical system is said to be dispersive. This is equal to $J^+(x) = \emptyset$ for each point $x \in X$. We know that each of the concepts above implies the preceding one. The set of all points $x \in X$ such that $x \in J_{\alpha}^{+}(x)$ will be denoted by R_{α} . And we set $R = \bigcup \{R_{\alpha} : \alpha \text{ an ordinal number}\}$. We see that if the dynamical system is dispersive, then $J_{\alpha}^{+}(x) = \emptyset$ for all $x \in X$, i.e., $R = \emptyset$. And if $R = \emptyset$, then $R_{1} = \emptyset$, this is equal to the dynamical system is completely unstable. **Definition 3.1.** Let π be a dynamical system on X. The relation C of being on the same orbit (i.e., xCy iff $x \in \gamma(y)$) is an equivalence relation on X. The set of equivalence classes modulo C will standardly be endowed with the quotient topology, denoted by X/C, and called the *orbit space*. The canonical quotient map $X \to X/C$ will consistently be denoted by $e: X \to X/C$, thus $e(x) = \gamma(x) \in X/C$ for $x \in X$. We see that the quotient map e is a continuous open surjection, so the orbit space is locally compact, but may not be T_2 . **Lemma 3.1** [3]. $K(x) = \gamma(x)$ iff X/C is a T_1 space; $D(x) = \gamma(x)$ iff X/C is a T_1 space. **Theorem 3.1.** If the dynamical system is divergent, then the orbit space is a T_1 space. **Proof.** If the dynamical system is divergent, $\omega(x) \cup \alpha(x) = \emptyset$ for every $x \in X$, then $K(x) = \gamma(x)$, so X/C is a T_1 space. If the dynamical system is Poisson unstable, then X/C may not be a T_1 space. For example, consider a dynamical system in euclidean (x_1,x_2) -plane. The unit circle contains a rest point p and a trajectory q such that for each point $q \in q$, we have $\omega(x) = \alpha(x) = p$. All trajectories in the interior of the unit circle $(=\{p\} \cup q)$ have the same property as q. All trajectories in the exterior of the unit circle are spiral to the unit circle as $t \to +\infty$, so that for each point q in the exterior of the unit circle we have $\omega(q) = \{p\} \cup q$, and $\alpha(x) = \emptyset$. Notice that if we consider the dynamical system obtained from this one by deleting the rest point p, then this system is Poisson unstable, but for every $q \in X$, $q(q) \neq K(q)$, then the orbit space is not a T_1 space. **Theorem 3.2.** If the dynamical system is dispersive, then the orbit space is a T_2 space. **Proof.** If the dynamical system is dispersive, $J^+(x) = \emptyset$ for every $x \in X$, then the orbit space is a T_2 space. If $R=\varnothing$, then X/C may not be a T_2 space. For example, consider the dynamical system defined by the system $\dot{x}=\sin y,\ \dot{y}=\cos^2 y$. The orbit are the curves $x=c+\sec x$, and the lines $y=(2k+1)(\pi/2)$; $(k=0,\pm 1,\ldots)$. Let the dynamical system obtained by restricting to the strip $-(\pi/2) \le y \le \pi/2$. In this case, $R=\varnothing$ and the orbit space is not a T_2 space, but the dynamical system is not dispersive. **Theorem 3.3.** Let X be a locally compact T_2 space, if the dynamical system (X, R, π) is Lagrange unstable and is positively Lyapunov stable on the set $M = \{x : J_{\alpha}^+(x) \neq \emptyset\}$ for each ordinal α , then $R = \emptyset$. **Proof.** Let $R \neq \emptyset$. Then there exists a $y \in X$ such that $J^+(y) \neq \emptyset$. So $J_{\alpha}^+(y) \neq \emptyset$ for every α . From the condition, we know that the dynamical system is Lyapunov stable at the point y, so $\omega(y) = J^+(y) \neq \emptyset$. Let $z \in \omega(y)$. Then $J^+(y) \subset J^+(z)$ [1, Lemma 6.17]. So $z \in \omega(y) \subset J^+(y)$ $\subset J^+(z)$. Then $z \in M$, $\omega(z) = J^+(z)$. So $\omega(y) \subset \omega(z)$. Since $\omega(z)$ is a closed invariant set, $\omega(z) \subset \omega(y)$, then we have $\omega(z) = \omega(y)$. So $\omega(x)$ is positively minimal [1, Lemma 12.3]. We know that X is locally compact, then $\omega(y)$ is compact [1, Lemma 12.8]. So $\overline{\gamma^+(y)}$ is compact [2, Theorem 3.93]. This contradicts to the fact that the dynamical system is Lagrange unstable. So $X = \emptyset$. # References - N. P. Bhatia and O. Hájek, Local semi-dynamical systems, Lecture Notes in Math., Vol. 90, Springer, Berlin, New York, 1969. - [2] N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer-Verlag, Berlin, 1970. - [3] Wencheng Chen, Almost periodicity in dynamical systems, Science in China, 1995. - [4] C. Conley, Isolated Invariant Sets and the Morse Index, Amer. Math. Soc., Providence, RI, 1978. - [5] O. Hájek, Parallelizability revisited, Proc. Amer. Math. Soc. 27 (1971), 77-84. - [6] L. Markus, Parallel dynamical systems, Topology 8 (1969), 47-57.