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Abstract

For Fibonacci sequence, we have several well-known and familiar

properties, among which are the facts that the ratio of successive terms

approaches a fixed limit, and others. In this paper, we obtain the

property of convergence of a ratio of successive value of Fibonacci

sequences with delay by applying the elementary number theory.

1. Introduction

We introduce a delay Fibonacci equation:

( ) ( )( ) ( )( ) 3,21 ≥−−+−−= nnHnHnHnHnH (1)

with initial value problem ( ) ( ) ,121 == HH  where ( )nH  is a function

possessing positive integers for domain as well as for range. This
equation was proposed by Hofstadter [5] in his huge book and soon, this
equation got treated as an unsolved problems in Number Theory (cf. [2],
[3]). Moreover, we consider cousins of Eq. (1)

( ) ( )( ) ( )( ) 3,211 ≥−−−+−−= nnFnFnFnFnF (2)
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with ( ) 11 =F  and ( ) ,12 =F

( ) ( )( ) ( )( ) 3,2211 ≥−−−+−−−= nnTnTnTnTnT (3)

with ( ) ( ) 11,10 == TT  and ( ) ,12 =T

( ) ( )( ) ( )( ) 3,11 ≥−−+−= nnCnCnCCnC (4)

with ( ) 11 =C  and ( ) .12 =C  Finally, we consider the simple example

( ) ( )( ) ( )( ) 3,21 ≥−+−= nnKKnKKnK (5)

with ( ) 11 =K  and ( ) 12 =K  and, more generally, we consider the

following equations with delays:

( ) ( )( ) ( )( ) ( )( ),21 mnKKnKKnKKnK −++−+−= (6)

( ) ( )( )( )( ) ( )( )( )( )21 −+−= nKKKKnKKKKnK

( )( )( )( ) 2, ≥>−++ mnmnKKKK (7)

with ( ) ( ) ( ) 121 ==== mKKK  and

( ) ( )( )( ) ( )( )( )( ) 3,11 ≥−−+−= nnCnCCCnCCCnC (8)

with ( ) ( ) ,121 == CC  and others. We give names to these equations

(sequences). Eq. (2) is the Conolly’s equation (sequence) [1], Eq. (3) is

called to be the Tanny’s equation (sequence) [7] and Eq. (4) is said to be

the Conway’s challenging equation (sequence) [6]. Next, we give the

following table for Eq. (1) and this corresponds to the table of standard
Fibonacci sequence:

1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 8, 8, 8, 10, 9, 10, 11, 11,

12, 12, 12, 12, 16, 14, 14, 16, 16, 16, 16, 20, 17, 17, 20, 21, …

We then consider three problems for Eq. (1) as follows:

Open Problems

1. Does ( )nH  miss infinitely many integers such as 7, 13, 15, 18, …?

What is ( )sH ’s behavior, in general (cf. [5])?
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2. Is there a limit ∞<α  such that

( )
( )

α→+
nH

nH 1
       as  ∞→n ?

What is this α?

3. Study to make the general theorems as Poincaré and Perron type
of recurrence with three terms (and more general terms ,3≥m  and also

more deep) for Eq. (1). For example,

( ) ( )( )( ) ( )( )( )21 −−−+−−−= nHnHnHnHnHnHnH

( )( )( ) 4,3 ≥−−−+ nnHnHnH

and we have to set the adequate initial condition, for instance

( ) ( ) ( ) 1321 === HHH     and    ( ) 1=−kH

where k is a nonnegative integer. For Eq. (1), we set up the after

conjecture for problem 2, and solve another equation closely related to
Eq. (1), especially, we will study in detail with the equation (2) which is
cousin of Eq. (1), Eq. (3) and Eq. (4).

2. The Cousin of ( )nH

In this section, our Lemmas and Theorem 1 are based on Tanny’s
idea [7]. First lemma refers to the monotonicity for Eq. (2).

Lemma 1. For ( )nF  of Eq. (2),

( ) ( )nFnF =+ 1     or    ( ) ( ) 11 +=+ nFnF (9)

and if ( )nF  is odd for ,3≥n  then

( ) ( ) .11 +=+ nFnF                                (10)

Proof. We use the mathematical induction for the proofs of (9) and

(10) that are true for small n. We proceed by induction. We assume that

both (9) and (10) are true for all .nk <  Then, for ,nk <  we have

( ) ( ) { }.1,01 ∈−+ kFkF  Thus, for nk ...,,2=  we have
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( )( ) ( )( ) ( ) ( )( ) { }.1,01111 ∈−−−=−−−−+ kFkFkFkkFk

Since ( )( )1−− kFk  and ( )( )21 −−− kFk  differ by at most 1, by the

assumption of induction, (9) yields

( )( ) ( )( ) { }.1,0211 ∈−−−−−− kFkFkFkF (11)

Suppose ( ) ( ) .11 +−= nFnF  Then, by the definition of ( ),nF

 ( ) ( ) ( )( ) ( )( )2111 −−−−−+=−+ nFnFnFnFnFnF

( )( ) ( )( ) { },1,0211 ∈−−−−−−= nFnFnFnF

from (11). On the other hand, if ( ) ( ),1−= nFnF  then by (2)

( )( ) ( )( ).321 −−−=−− nFnFnFnF

By (11), we must have each of these equals ( )( ).21 −−− nFnF  Thus,

once again,

( ) ( ) ( )( ) ( )( )2111 −−−−−+=−+ nFnFnFnFnFnF

( )( ) ( )( ) { }.1,011 ∈−−−−+= nFnFnFnF

This completes the induction for (9). For (10), suppose that ( )nF  is odd.

Then, ( )1−nF  is even. Because, if it is not, by the assumption of

induction (10), ( )nF  would be even. This is a contradiction. We have by

(9), ( ) ( ) .11 +−= nFnF  Thus, we obtain ( ) ( )( )121 −−=+ nFnFnF  so

( )1+nF  is even. Hence, by (9), ( ) ( ) .11 +=+ nFnF  This completes the

proof by induction.

Let ( ) ( ){ }.: NnFnN ==Φ  The largest element in ( )NΦ  is

( )∑ = ΦN
i

i
1

,#  where ( )NΦ#  denotes the cardinal number of ( ),NΦ  that

is, the length of the string of consecutive integers whose image under F is

N.

Lemma 2. If 1>N  is odd, ( ) 1# =Φ N  or otherwise, if N is even,

( ) .2# ≥Φ N
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Proof. It is easy to see that ( )NΦ  is not empty for any N. If it is not,

let 0N  be the smallest integer with ( ) .0 ∅=Φ N  Since ,30 ≥N  it follows

from Lemma 1 that there is a unique 0n  such that ( ) 200 −= NnF  and

( ) .11 00 −=+ NnF  But, then by the assumption that ( ) ∅=Φ 0N  and

(9) of Lemma 1, ( ) 10 −= NnF  for every .0nn >  We choose 1n  such that

.2 001 nNn >−−  Then

( ) ( )( ) ( )( )211 11111 −−−+−−= nFnFnFnFnF

( ) ( )0101 1 NnFNnF −++−=

( ).12 0 −= N

This is a contradiction. Thus, for every N, ( )NΦ  is not empty, that is F

takes every positive integer. It now follows immediately from (10) of

Lemma 1 that for N odd, ( ) .1# =Φ N  For N even, we proceed by

contradiction. Let 20 >N  be the smallest even number such that

( ) .1# 0 =Φ N  Then, by assumption, there exists a unique 0n  such that

( ) .00 NnF =  By Lemma 1, ( ) 11 00 −=− NnF  and ( ) .11 00 +=+ NnF

Furthermore, since 10 −N  is odd, ( ) .22 00 −=− NnF  Now, we have

( ) ( )( ) ( )( )211 00000 −−−+−−= nFnFnFnFnF

( ).12 00 +−= NnF

But

( ) ( )( ) ( )( )111 00000 −−+−+=+ nFnFnFnFnF

( ).12 00 +−= NnF

Then ( )10 +nF  also equals 0N  which is a contradiction. Thus, ( )0# NΦ

2≥  for N is even.

It is easy to guess a simple formula for ( )NΦ# : defined if

,2 1NN m=  with 0≥m  and 1N  is odd, then ( ) ++=Φ 1# mN

( ),11 =NB  where ( )11 =NB  for 11 =N  and 0 otherwise. We prove the
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first half of this formula, namely, where N is a power of 2 as part of the

next result. Before we do this, we remark that for N is odd, we get

( ) 1# =Φ N  which is true by Lemma 2.

Lemma 3. For every nonnegative integer m, ( ) { ,22 1 mmm −=Φ +

}111 2,12...,,12 +++ −+− mmm m  and ( ) .12# +=Φ mm

Proof. We can check that this theorem holds for small values of m.

We proceed by induction on m. Suppose that the result is true for all

positive integers less than m. Let 0n  be the least positive integer such

that ( ) .20
mnF =  Then we have ( ) 1210 −=− mnF  by (9) of Lemma 1

and ( ) 2220 −=− mnF  by Lemma 2. Thus, we get

( ) ( )( ) ( )( )2112 00000 −−−+−−== nFnFnFnFnFm

( ).122 0 +−= mnF

Therefore, ( ) 1
0 212 −=+− mmnF  so by the induction assumption

120 +− mn  must be in the set { ( ) }.2,12...,,22,12 mmmm mm −+−−−

It is straightforward to show that for 0n  to be the least positive integer

such that ( ) ,20
mnF =  we must have .220 mn mm −=−  To see this we

claim as follows: Suppose ( ).1220 −−≥− mn mm  Since ( ) =− 30nF

,22 −m  we have

 ( ) ( )( ) ( )( )32211 00000 −−−+−−−=− nFnFnFnFnF

( ) ( ).212 00
mm nFnF −++−=

( ) 1210 −=− mnF  is odd and ( )22# −Φ m  is at least 2. But ≥− mn 20

( )12 −− mm  means that both mn 20 −  and 120 +− mn  are in ( )12 −Φ m

so ( ) .2221 11
0

mmmnF =+=− −−  However, this contradicts the

assumption that 0n  is the least integer with ( ) .20
mnF =  Thus,

,220 mn mm −=−  or mn m −= +1
0 2  as required. From Lemma 2, we
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have immediately that ( ) .210
mnF =+  Furthermore,

 ( ) ( )( ) ( )( )00000 1122 nFnFnFnFnF −+++−+=+

( ) ( )mmmm mFmF 212222 11 −+−+−+−= ++

( ) ( )1222 +−++−= mFmF mm

.222 1 mm =⋅= −

In a similar manner, we can show successively that if ,2≥m  then we

have ( ) mknF 20 =+  for the remaining ....,,3 mk =  For ,1+= mk  we

have

( ) ( )( ) ( )( )111 00000 −+−+++−++=++ mnFmnFmnFmnFmnF

( ) ( )mmmm mmFmmF 22212 11 −+−+−++−= ++

( ) ( ).212 mm FF ++=

By the induction assumption ( ) 1212 1 +=+ −mmF  while ( ) .22 1−= mmF

This concludes the proof.

To prove the remainder of the formula for ( ),# NΦ  we consider the

case when N is even but not a power of 2. We first prove an intermediate
result.

Lemma 4. Let M be any even integer, ,222 −≤≤ mM  where .2≥m

Then ( ) ( ) .122#2# 1 ++Φ=+Φ − MM mm

Proof. Let 0n  be the least positive integer such that ( ) mnF 20 =

.M+  Then, ( ) .1210 −+=− MnF m  Since M is even, we have ( )20 −nF

( ) ,2230 −+=−= MnF m  by Lemmas 1 and 2. Now, we have

( ) ( )( ) ( )( )211 00000 −−−+−−= nFnFnFnFnF

( ( )) ( ( ))22112 00 −+−−+−+−= MnFMnF mm

( ( )).122 0 −+−= MnF m
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Thus, we have

( )( ) ( ( )) .22121 1
000 MMnFnFnF mm +=−+−=−− −

Furthermore, we obtain

( ) ( )( ) ( )( ),32211 00000 −−−+−−−=− nFnFnFnFnF

( ( )) ( ( )).21212 00 MnFMnFM mmm +−+−+−=−+

Hence, we have

( ( )) ( ) ,1222 1
0 −+=+− − MMnF mm

from which we consider that ( )Mn m +− 20  is the smallest integer in

( ( ) ).122 1 −+Φ − Mm  That is, if 0n  is the least integer such that

( ) ,20 MnF m +=  then ( )Mn m +− 20  is the least integer whose image

under F is ( ) .122 1 −+− Mm  Suppose ( ) ( ) ==+=+ 21 00 nFnF

( ) ,20 MRnF m +=+  where ( ).2#1 MR m +Φ=+  Then,

( ) .1210 ++=++ MRnF m

If ,1=R  then ( ) 1220 ++=+ MnF m  and ( ) ( ))( 122 000 +−+=+ nFnFnF

( )( ) ( ( )) .22221 1
000 MMnFnFnF mm +++−+=−++ −  Thus

( ( )) ( ) ,12222 1
0 ++=+−+ − MMnF mm

so ( ) ,122# 1 =+Φ − Mm  and this theorem holds in this case. We assume

.2≥R  Using the recursion for ( )10 +nF  and the fact that

( )( ) ,221 1
00 MnFnF m +=−− −  we get

( ( )) .2221 1
0 MMnF mm +=+−+ −

Proceeding iteratively we readily show that

( ( )) 222 1
0 MMknF mm +=+−+ −

for ,1...,,2,1 −= Rk  while
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( ( )) .1222 1
0 ++=+−+ − MMRnF mm

Thus, for ( ) ( ) ,122#2#,2 1 ++Φ=+Φ≥ − MMR mm  and the proof is

complete.

We now have the formula for ( )NΦ#  by above Lemma 4. If

12 NN r ⋅=  is even but not a power of 2, so ,11 >N  then N can be

written as ,2 Mm +  with ,2 pM r ⋅=  ,1≥> rm  p is odd, and

.222 −≤≤ mM  Applying Lemma 4, r times readily yields the desired

result, namely, ( ) ( ).1# 1NBrN ++=Φ

Lemma 5. For ,222 21 pmmmN +++=  ,0 21 pmmm <<<≤

the greatest element in ( )NΦ  is given by

( )∑
=

+−=Φ
N

i

pNi
1

.12#

Proof. If ,1=p  then this formula gives the greatest element of

( )NΦ  as ,2 11+m  which also follows directly from Lemma 3. The simplest

proof, once the formula has been guessed, is by induction. The result is

true for .2,1=N  Assume the result for N. For ,1+N  we consider three

cases:

(i) Suppose .11 ≥m  Then we can write

,2221 121 ++++=+ plllN

where .0 123121 pp mlmlmll =<<=<=<= +  Since 1+N  is odd,

( ) 11# =+Φ N  so

( ) ( ) ( )∑ ∑
+

= =

+−+=Φ+=Φ
1

1 1

121#1#
N

i

N

i

pNii

( ) ( ) ,1112 ++−+= pN

as required.
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(ii) Suppose ,01 =m  and that k exists, with ,1 pk <<  where k is the

smallest such that .kmp ≥  Then it is readily seen that

,22221 11 pkk mmmkN ++++=+ +−

with .1 1 pkk mmmk <<<<− +  This can be rewritten as

,2221 221 +−+++=+ kplllN

where .1 23121 +−+ =<<=<=<=− kppkk lmlmlmlk  Thus, ( )1# +Φ N

k=  and

( ) ( ) ( )∑ ∑
+

= =

+−+=Φ+=Φ
1

1 1

12##
N

i

N

i

pNkiki

( ) ( ) ,1212 ++−−+= kpN

which is of the required form.

(iii) The only remaining case has 1−= kmk  for ....,,2,1,0 pk =

Then, ,21 1lN =+  pl =1  and ( ) .11# +=+Φ pN

( ) ( ) ( )∑ ∑
+

= =

+−++=Φ++=Φ
1

1 1

121#1#
N

i

N

i

pNpipi

 ( ),12 += N

which completes this induction.

The main result of this section is the following:

Lemma 6. Let ,222 21 pmmmN +++=  .0 21 pmmm <<<≤

If ,1=p  then ( ) NnF =  for all ( )11 +m  consecutive integers =n

.2,12...,,12,2 11
1

1
1

1 1111 ++++ −+−− mmmm mm  If ,2≥p  then ( ) NnF =

for all ( )11 +m  consecutive integers from 12 1 +−−= pmNn  to

12 +−= pNn  inclusive.
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It is clear that the proof of this lemma essentially follows from the

same argument as in the proof of Lemma 5 by using the mathematical

induction and Lemmas 1 and 3. So we will omit this. If ,1=p  then the

largest n for which ( ) NnF =  is always 2N and ( ) .2 NNF =  This

characterizes precisely those n for which ( ) .21=nnF

Theorem 1. We have ( ) 21→nnF  as ∞→n  and

( )
( )

.1
1

lim =+
∞→ nF

nF
n

(12)

Proof. By using Lemma 6, it is easy to see that the values of n for

which ( ) NnF =  satisfy

.2log2 2 NnNN ≤≤−

From the second inequality we get .2nN ≥  Then, the first half of the

inequality gives ( ) .2log2 2 nnN +≤  Thus, for any n with ( ) NnF =  we

have ( ) ( ) 22log2 2 nnFnn ≥≥+  from which the desired result follows.

Then, we have (12). This completes the proof.

We demonstrate theorem of another type for the asymptotic behavior

for Eq. (2).

Theorem A. For equation (2), let 2≥n  and let m be the largest

integer such that

,2 kn m +=     for    .012,1 ≥≥−≥ km m (13)

Then, with ( ) ,01 =F

( ) ( ),12 1 ++= − kFnF m     for    .2≥n (14)

See [1] for the proof of Theorem A.

Next, we compute the asymptotic behavior of the ratio of successive

terms of solution ( )nH  of Eq. (1) (cf. [4]).
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For ( )nH  of Eq. (1), we guess

( ) ( )[ ]
( ) [ ] ,1

2
211

lim =
−

+−+
∞→ nnH

nnH
n

where [ ]n  means the greatest integer .n≤

In a supplementary of above, we only describe the following sequence

of ( ) ( ):1 nHnH +

,
10
11

,
9

10
,

10
9

,
4
5

,1,1,
3
4

,1,1,
5
6

,1,
4
5

,
3
4

,1,
2
3

,2,1,1

....,1,1,1,
7
8

,1,
8
7

,
3
4

,1,1,1,
11
12

,1

We have a conjecture for problems 1 and 2 as follows:

Conjecture. For Eq. ( ),nH

( )
( )

.1
1

lim =+
∞→ nH

nH
n

Remark. For Eq. (3), Tanny [7] has shown that ( ) 21→nnT  as

,∞→n  that is ( ) ( ) .11lim =+∞→ nTnTn  In [6], Mallows studied that

Conway’s challenging sequence (4) has the similar property of

( ) 21→nnC  as ,∞→n  that is ( ) ( ) 11lim =+∞→ nCnCn  making the

new function ( ) ( ) .2 nnCnA −=  Eq. (5) has simple structure for all ,3≥n

that is ( ) .2≡nK  Thus, in the theorem below, we get the asymptotic

behavior of submarine equations. The very important and strong common
property in Eqs. (2), (3) and (4) is monotonicity. However, the sequence

( )nH  of Hofstadter’s equation (1) is not so. The values of this ( )nH

express highly erratic behavior with no discernible regularities. This
behavior may seem like a “chaotic” as in the discrete case of the theory of
strange attracters. Unfortunately, we cannot now prove it directly, and to
our best belief it has not been proved. We are working for it.

For Eq. (1), we impose the expression (13). Then, by the same
argument as in Theorem A, we have
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( ) ( ),2 1 lkHnH m ++= −     for    ,2≥n (15)

where ( )nll =  is some integer and must depend on n [1].

We rewrite Eqs. (6), (7) and (8) to simplify the procedure to Eqs. (16),
(17) and (18), respectively,

mnnn KKKn KKKK −−− +++=
21

(16)

and

2,
21

≥>+++=
−−−

mnKKKK
mnKnKnK

KKKn (17)

with ,121 ==== mKKK

3,
11

≥+=
−−−

nCCC
nCnCnC

CCn (18)

with .121 == CC  Then, we obtain the following proposition:

Proposition. For equations (16), (17) and (18),

,1lim 1 =+
∞→ n

n

n K
K

(19)

and

,1lim 1 =+
∞→ n

n

n C
C

(20)

respectively.

Proof. It is sufficient to take up Eq. (18) on behalf of these equations.
We first prove that

2≡nC     for   .3≥n (21)

To do this, we use the mathematical induction. It is clear that (21) holds

in case .3=n  We assume that (21) holds when ,kn =  that is .2=kC

Then, we get

 
kCkCCkCC

CCk CCC
−+

+=+
1

1

12 −

+=
kCCC

CC CC (by assumption)
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11 CC
CC CC +=

211 =+== CC

by initial value .121 == CC  This completes the induction for (21). Thus,

we can easily prove (20). We also have mKn ≡  for 2≥> mn  to Eqs.

(16) and (17), and we easily have (19).

Finally, we consider the following equation for Eq. (3):

3,
2211 21 ≥+=

−−−−−− −−−− nTTT
nTnnTn TnTnn (22)

with 1210 === TTT  and ,1=−kT  for all .+∈ Zk

Then, we have the result by direct computing.

Theorem 2. The solution sequence of Eq. (22) is equivalent to the

solution sequence of Eq. (23):

3,32 ≥+= −− nTTT nnn (23)

with ,1210 === TTT  and

,lim 1
1 ρ=+

∞→ n

n

n T
T

where 1ρ  satisfies the following characteristic equation of (23):

.013 =−ρ−ρ

Proof. We drive Eq. (23) from Eq. (22). We can check that this

theorem holds for small values of n. Put positive integers m and l so that

1−= nTm  and .2−= nTl  For these integers m and l, we can take

nonnegative integers i and j so that imn −=−− 1  and jln −=−− 2

for .11≥n  Thus, .1== −− ji TT  Then, we have

 121132 −−−−−− +=+= nnnnn TTTTT

lnmnji TnTnTnTn TTTT −−−−−− −−−−−−−− +=+=
21 2121

,
2211 21 −−−−−− −−−− +=

nTnnTn TnTn TT
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as required. It is easy to drive Eq. (23) from Eq. (22) by the above
argument.

It is clear that Theorem 2 is definitely not true if initial value

1≠−kT  for all .+∈ Zk
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