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Abstract

For Fibonacci sequence, we have several well-known and familiar
properties, among which are the facts that the ratio of successive terms
approaches a fixed limit, and others. In this paper, we obtain the
property of convergence of a ratio of successive value of Fibonacci
sequences with delay by applying the elementary number theory.

1. Introduction

We introduce a delay Fibonacci equation:
Hn)=Hmn-Hn-1)+Hn-HMn-2)), n=>3 (1)

with initial value problem H(1) = H(2) =1, where H(n) is a function
possessing positive integers for domain as well as for range. This
equation was proposed by Hofstadter [5] in his huge book and soon, this
equation got treated as an unsolved problems in Number Theory (cf. [2],
[3]). Moreover, we consider cousins of Eq. (1)

Fn)=Fnh-Fn-1)+Fh-1-Fn-2), n=>3 @)

2000 Mathematics Subject Classification: 39A10, 39A11, 11B39.
Key words and phrases: Fibonacci equation, Meta-Fibonacci sequences, Hofstadter equation.

Received June 14, 2001
© 2001 Pushpa Publishing House



126 YOSHIHIRO HAMAYA
with F(1) =1 and F(2) = 1,
T(n) =T -1-TM-1)+T-2-T(n-2), n>3 3)
with 7(0) =1, T(1) = 1 and T(2) = 1,
C(n) = C(C(n-1))+ C(n - C(n 1)), n=3 ()
with C(1) = 1 and C(2) = 1. Finally, we consider the simple example
K(n) = K(K(n-1))+ K(K(n-2), n=3 ®)
with K(1)=1 and K(2)=1 and, more generally, we consider the
following equations with delays:
K(n) = K(K(n -1)) + K(K(n - 2)) + - + K(K(n - m)), ©)
K(n) = KE(K(K(n-1)-)) + KKK Ko - 2)-)
+oo+ KKK K —m)-)), n>m>2 )
with K1) = K(2) = - = K(m) = 1 and
C(n) = C(C(+Cln 1)) + CC(+Cn - Cln-1)-)), n=3 (8

with C(1) = C(2) =1, and others. We give names to these equations

(sequences). Eq. (2) is the Conolly’s equation (sequence) [1], Eq. (3) is
called to be the Tanny’s equation (sequence) [7] and Eq. (4) is said to be
the Conway’s challenging equation (sequence) [6]. Next, we give the
following table for Eq. (1) and this corresponds to the table of standard
Fibonacci sequence:

1,1,2,3,3,4,5,5,6,6,6, 8, 8,8,10,9, 10, 11, 11,
12,12, 12, 12, 16, 14, 14, 16, 16, 16, 16, 20, 17, 17, 20, 21, ...
We then consider three problems for Eq. (1) as follows:
Open Problems

1. Does H(n) miss infinitely many integers such as 7, 13, 15, 18, ...?

What is H(s)’s behavior, in general (cf. [5])?
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2. Is there a limit oo < « such that

M - o as n —> o ?
H(n)
What is this a?

3. Study to make the general theorems as Poincaré and Perron type

of recurrence with three terms (and more general terms m > 3, and also

more deep) for Eq. (1). For example,
Hn)=Hn-Hn-Hnr-1))+ Hn-Hn - Hn - 2)))
+Hn-Hn-HMn-3), n=4
and we have to set the adequate initial condition, for instance
H(1)=H@)=H@B)=1 and H(-k)=1

where k is a nonnegative integer. For Eq. (1), we set up the after
conjecture for problem 2, and solve another equation closely related to
Eq. (1), especially, we will study in detail with the equation (2) which is
cousin of Eq. (1), Eq. (3) and Eq. (4).

2. The Cousin of H(n)

In this section, our Lemmas and Theorem 1 are based on Tanny’s

idea [7]. First lemma refers to the monotonicity for Eq. (2).

Lemma 1. For F(n) of Eq. (2),
F(n+1)=F(n) or F(n+1)= F(n)+1 )

and if F(n) is odd for n = 3, then
F(n+1)= F(n)+1. (10)

Proof. We use the mathematical induction for the proofs of (9) and
(10) that are true for small n. We proceed by induction. We assume that
both (9) and (10) are true for all k < n. Then, for k < n, we have

F(k+1)- F(k)e {0, 1}. Thus, for & = 2, ..., n we have
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(k+1-FR)— (k- F(k-1)=1-(F(k)- F(k -1)) € {0, 1}.

Since (k- F(k-1)) and (k—-1- F(k - 2)) differ by at most 1, by the

assumption of induction, (9) yields
Fk-F(k-1)-Fk-1-F(k-2))e{0,1}. 11)
Suppose F(n) = F(n —1)+ 1. Then, by the definition of F(n),
Fn+1)-F(n)=F(n+1-F(n))-Fn-1-F(n -2))
=Fn-Fn-1)-Fn-1-F@h-2)ec {0, 1},
from (11). On the other hand, if F(n) = F(n —1), then by (2)
Fn-Fn-1)=F@n-2-F(n-3)).
By (11), we must have each of these equals F(n —1- F(n — 2)). Thus,
once again,
Fn+1)-F(n)=Fn+1-F(@n)-Fh-1-F(n-2)
=Fn+1-F@®n)-Fn-Fr-1)e {0, 1}
This completes the induction for (9). For (10), suppose that F(n) is odd.
Then, F(n-1) is even. Because, if it is not, by the assumption of
induction (10), F(n) would be even. This is a contradiction. We have by
(9), F(n)= F(n —1)+1. Thus, we obtain F(n+1)=2F(n - F(n-1)) so

F(n +1) is even. Hence, by (9), F(n +1) = F(n)+ 1. This completes the

proof by induction.
Let ®N)={n:F(@n)= N}. The largest element in ®(N) is
zil # ®(i), where # ®(N) denotes the cardinal number of ®(N), that

is, the length of the string of consecutive integers whose image under F is

N.

Lemma 2. If N >1 is odd, #®(N) =1 or otherwise, if N is even,
#DO(N) > 2.
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Proof. It is easy to see that ®(N) is not empty for any N. If it is not,
let N be the smallest integer with ®(N) = &. Since Nj 2 3, it follows
from Lemma 1 that there is a unique ny such that F(ng)= Ny —2 and
F(ng +1) = Ny —1. But, then by the assumption that ®(Ny) =< and
(9) of Lemma 1, F(n) = Ny —1 for every n > ny. We choose n; such that
m — Ng —2 > ng. Then

F(ny)=F(n - F(m -1))+ F(ny -1~ F(ny - 2))
=F(7’L1—N0 +1)+F(n1—N0)
=2(N0—1).

This is a contradiction. Thus, for every N, ®(N) is not empty, that is F

takes every positive integer. It now follows immediately from (10) of
Lemma 1 that for N odd, #®(N)=1. For N even, we proceed by

contradiction. Let Ny > 2 be the smallest even number such that
# ®(Ny) = 1. Then, by assumption, there exists a unique ny such that
F(no): No. By Lemma 1, F(no —1): NO -1 and F(no +1): NO +1.
Furthermore, since Ny —1 is odd, F(ny —2) = Ng — 2. Now, we have

F(ng) = F(ng — F(ng — 1)) + F(ng -1 - F(ng - 2))

= 2F(n0 _NO +1)

But

F(no +1)= F(no +1—F(n0))+F(n0 —F(no —1))

= 2F(n0 - NO +1)

Then F(ng +1) also equals Ny which is a contradiction. Thus, # ®(N,)

> 2 for Nis even.

It is easy to guess a simple formula for #®(N): defined if
N =2"N;, with m>0 and N; is odd, then #®(N)=m+1+
B(N; =1), where B(N; =1) for N; =1 and 0 otherwise. We prove the
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first half of this formula, namely, where N is a power of 2 as part of the
next result. Before we do this, we remark that for N is odd, we get
# ®(N) = 1 which is true by Lemma 2.

Lemma 3. For every nonnegative integer m, ®(2™)={2" —m,

2™ 1, ., 2™ 21, 2™ Y and #D©R™) = m + 1.

Proof. We can check that this theorem holds for small values of m.
We proceed by induction on m. Suppose that the result is true for all

positive integers less than m. Let n, be the least positive integer such
that F(ng) = 2™. Then we have F(ny —1)=2" -1 by (9) of Lemma 1

and F(ng - 2) = 2" — 2 by Lemma 2. Thus, we get
2™ = F(ng) = F(ng - F(ng —1))+ F(ng -1 - F(ng - 2))
= 2F(ng - 2™ +1).

Therefore, F(ny -2 +1)=2""1 so by the induction assumption
ng — 2™ +1 must be in the set 2" - (m-1), 2" - m+2, ..., 2™ -1, 2"}
It is straightforward to show that for ngy to be the least positive integer
such that F(ng) = 2™, we must have ny — 2™ = 2™ —m. To see this we
claim as follows: Suppose ng—2" > 2™ —(m-1). Since F(ng-3)=
2™ — 2 we have

F(ng—1)= F(ng—1-F(ng —2))+ F(ng — 2 - F(ng — 3))

=F(n0—2m+1)+F(nO—2m).

F(ny-1)=2" -1 is odd and # ®(2™ - 2) is at least 2. But ny - 2™ >
2™ — (m —1) means that both ng— 2™ and ny — 2™ +1 are in ®2™!)
so F(ng-1)=2m"14+2m1 = 9™ However, this contradicts the
assumption that ng is the least integer with F(ng)=2". Thus,

ng—2m =2"—m, or ny = 2™ —m as required. From Lemma 2, we
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have immediately that F(ng + 1) = 2. Furthermore,

F(ng+2)=F(ng +2- F(ng +1))+ F(ny +1 - F(ng))
=F@™"™ —m+2-2")+ F@™! —m+1-2")
=FQ2"-m+2)+ F2" -m+1)
=2.2m1 = 9m

In a similar manner, we can show successively that if m > 2, then we

have F(ny + k) = 2™ for the remaining %k = 3, ..., m. For £k = m+1, we

have

Fing+m+1)=F(ng+m+1-F(nyg + m))+ F(ng + m — F(ng + m —1))
= F@™"™ —m+m+1-2")+ F@™ —m+m-2M)
=F@2" +1)+ F2™).

By the induction assumption F(2™ +1) = 2™ +1 while F(@2™) =21,
This concludes the proof.

To prove the remainder of the formula for # ®(N), we consider the

case when N is even but not a power of 2. We first prove an intermediate
result.

Lemma 4. Let M be any even integer, 2 < M < 2™ — 2, where m = 2.

Then #®2™ + M) = #®2™ + M/2)+1.

Proof. Let ny be the least positive integer such that F(ng) = 2™
+ M. Then, F(ny —1) = 2™ + M —1. Since M is even, we have F(ny — 2)
= F(ng - 3) = 2™ + M - 2, by Lemmas 1 and 2. Now, we have

F(ng) = F(ng — F(ng - 1)) + F(ny -1 - F(ny - 2))
— F(ng - (@™ + M ~1)+ F(ng —1- @ + M - 2))

= 2F(ng - @™ + M —1)).
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Thus, we have

F(ng - F(ng —1)) = F(ng - @™ + M -1)) = 2™ + M/2.
Furthermore, we obtain

F(no —1): F(no —l—F(nO —2))+ F(T’LO —2—F(n0 —3)),

2"+ M -1=F(ng-2" + M -1)+ F(nyg - 2™ + M)).
Hence, we have

F(ng - @™ + M)) = 2™ + (M/2) -1,
from which we consider that ng — (2™ + M) is the smallest integer in
®©2™ ! + (M/2)-1). That is, if ny is the least integer such that
F(ng)=2"+ M, then ny — (2™ + M) is the least integer whose image
under F is 2™ 7' 4+ (M/2)-1. Suppose F(ng+1)= F(ng+2) ==
F(ng + R) = 2" + M, where R+1 = #®(2™ + M). Then,
Fng+R+1)=2"+ M +1.
If R=1, then F(ng+2)=2"+M+1 and F(ng+2)=F(ng+2-F(ny+1))
+ F(ng+1-F(ng)) = F(ng +2 - 2™ + M))+ 2™1 + M/2. Thus
F(ng +2- 2™ + M))=2""1 + (M/2) +1,

so #®(2™ ! + M/2) = 1, and this theorem holds in this case. We assume
R >2. Using the recursion for F(ny+1) and the fact that

F(ng - F(ng —1)) = 2™ + M/2, we get

F(ng +1- (2™ + M)) = 2™ + M/2.
Proceeding iteratively we readily show that

F(ng + k- @™+ M)) = 2™ + M/2

for k=1, 2, .. R-1, while
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F(ng + R— (2™ + M)) = 2"1 + M/2 +1.

Thus, for R > 2, #®Q2™ + M) = #®@2™ ! + M/2)+1, and the proof is
complete.

We now have the formula for # ®(N) by above Lemma 4. If
N =2" - N; is even but not a power of 2, so N; >1, then N can be
written as 2"+ M, with M =2"-p, m>r=>1, p is odd, and

2< M <2™ - 2. Applying Lemma 4, r times readily yields the desired
result, namely, # ®(N) = r + 1 + B(N;).

m
Lemma 5. For N =2™ +2"2 +...4+277, 0<m <mg < - <my,

the greatest element in ®(N) is given by

N
2#(1)(i): N - p+1.
i=1

Proof. If p =1, then this formula gives the greatest element of

®(N) as 2™ ™1 which also follows directly from Lemma 3. The simplest

proof, once the formula has been guessed, is by induction. The result is
true for N =1, 2. Assume the result for N. For N + 1, we consider three

cases:
(1) Suppose my = 1. Then we can write
N+1=20 4ok 4.yl

where 0 =10 <ly =m <lg=mg <--<1l,;,; =mp. Since N +1 is odd,

#DP(N +1)=1 so

N+1 N
2#@(i)z1+2#<1>(i):1+(2N—p+1)
=1 =1

=2N+1)-(p+1)+1,

as required.
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(i1) Suppose my = 0, and that k exists, with 1 < £ < p, where k is the

smallest such that m, > k. Then it is readily seen that
N+1=2F142M 4 oMkl 4.y 9P,
with £ -1 <my <mp,y <--<mp. This can be rewritten as

N+1=20 42k 4. qolphez

where k—1=04 <my =ly <mp,y =l3<--<my, =1, 3,9. Thus, #O(N +1)
=k and

N+1 N
Z#CD(i): k+2#d>(i): E+@2N-p+1)
i-1 i1

=2(N+1)-(p-k+2)+1,
which is of the required form.

(ii1) The only remaining case has m, =k -1 for £k=0,1,2, .., p.

Then, N+1=2, [, = p and #®(N +1)= p + 1.

N+1 N
Z#CI)(L')=p+1+2#<b(i)=p+1+(2N—p+1)
i=1 i=1

= 2(N +1),
which completes this induction.

The main result of this section is the following:

Lemma 6. Let N =2™ +2"2 +...+2"P 0 <m; <mg < <m,,.
If p=1, then F(n)= N for all (m; +1) consecutive integers n =
2mtl i omt 1, 2™t g 9™t If b > 9 then F(n) = N
for all (my +1) consecutive integers from n=2N-m; —-p+1 to

n =2N - p +1 inclusive.
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It is clear that the proof of this lemma essentially follows from the
same argument as in the proof of Lemma 5 by using the mathematical

induction and Lemmas 1 and 3. So we will omit this. If p =1, then the
largest n for which F(n)= N 1is always 2N and F(@2N)= N. This

characterizes precisely those n for which F(n)/n = 1/2.
Theorem 1. We have F(n)/n — 1/2 as n — « and

. F(n+1)

Proof. By using Lemma 6, it is easy to see that the values of n for
which F(n) = N satisfy

2N —-logg N < n < 2N.

From the second inequality we get N > n/2. Then, the first half of the
inequality gives N < n/2 + (logg n)/2. Thus, for any n with F(n) = N we
have n/2 + (logg n)/2 2 F(n) = n/2 from which the desired result follows.

Then, we have (12). This completes the proof.

We demonstrate theorem of another type for the asymptotic behavior
for Eq. (2).

Theorem A. For equation (2), let n > 2 and let m be the largest

integer such that
n=2"4+k, for m=21 2" -12k=0. (13)
Then, with F(1) = 0,
F(n)=2"1+F(k+1), for n=2. (14)

See [1] for the proof of Theorem A.

Next, we compute the asymptotic behavior of the ratio of successive
terms of solution H(n) of Eq. (1) (cf. [4]).
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For H(n) of Eq. (1), we guess

lim Hn+1)-[(n+1)/2] _
n—seo H(n)- [n/2] ,

where [n] means the greatest integer < n.

In a supplementary of above, we only describe the following sequence
of H(n +1)/H(n):

11,223,128 18 4,2 9 1011
2 3 4 5 3 4 10 9 1
L2 1,278 1
11 3 8 7

We have a conjecture for problems 1 and 2 as follows:

Conjecture. For Eq. H(n),

lim Hn+1) _

1.
n—ew H(n)

Remark. For Eq. (3), Tanny [7] has shown that T(n)/n — 1/2 as
n — oo, that is lim,_,, T'(n +1)/T(n) = 1. In [6], Mallows studied that
Conway’s challenging sequence (4) has the similar property of
C(n)/n — 1/2 as n — o, that is lim,_,., C(n +1)/C(n) =1 making the
new function A(n) = 2C(n) - n. Eq. (5) has simple structure for all n > 3,
that is K(n) = 2. Thus, in the theorem below, we get the asymptotic

behavior of submarine equations. The very important and strong common
property in Egs. (2), (3) and (4) is monotonicity. However, the sequence
H(n) of Hofstadter’s equation (1) is not so. The values of this H(n)

express highly erratic behavior with no discernible regularities. This
behavior may seem like a “chaotic” as in the discrete case of the theory of
strange attracters. Unfortunately, we cannot now prove it directly, and to

our best belief it has not been proved. We are working for it.

For Eq. (1), we impose the expression (13). Then, by the same

argument as in Theorem A, we have
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Hn)=2"1+HE+1), for n>2, (15)
where [ = I/(n) is some integer and must depend on n [1].

We rewrite Eqgs. (6), (7) and (8) to simplify the procedure to Egs. (16),
(17) and (18), respectively,

Kn = KKn—l + KKn—Z + -+ KKn—m (16)
and
Kn=KK. +KK. +"'+KK. , n>m =2 (17)
“Kp-1 “Kp-2 “Kp—m
with K; = Ky = - = K,, =1,
Cn = CC. + Cc_ , n>=3 (18)
“Cp-1 “Cn-Cp_q

with C; = Cy = 1. Then, we obtain the following proposition:

Proposition. For equations (16), (17) and (18),

Jim Kntl _ 1, (19)
n—oo n

and
lim Snst _ 1, (20)
n—oo 2

respectively.

Proof. It is sufficient to take up Eq. (18) on behalf of these equations.
We first prove that

C,=2 for n=3. 21)

To do this, we use the mathematical induction. It is clear that (21) holds
in case n = 3. We assume that (21) holds when n = &, that is C; = 2.

Then, we get

Cra1 = Cc. +Cc.
Cey, CCri1-cy,

=Cc.  +Cc. (by assumption)
Ce CCp1



138 YOSHIHIRO HAMAYA

CC~. + CC~_

-G 6]

=0 =2

by initial value C; = Cy = 1. This completes the induction for (21). Thus,
we can easily prove (20). We also have K,, = m for n > m 22 to Egs.

(16) and (17), and we easily have (19).
Finally, we consider the following equation for Eq. (3):

+T

T, =T, 2Ty s NZ3 (22)

_l_Tn—l—Tn_l
with Tp =Ty =Ty =1 and T, =1, forall ke Z*.

Then, we have the result by direct computing.

Theorem 2. The solution sequence of Eq. (22) is equivalent to the
solution sequence of Eq. (23):

Tn = Tn_2 + Tn—S’ n=3 (23)

with Ty =Ty =Ty =1, and

lim Tn+1
n—oo A,

= ply

where py satisfies the following characteristic equation of (23):
pd—p-1=0.

Proof. We drive Eq. (23) from Eq. (22). We can check that this
theorem holds for small values of n. Put positive integers m and [/ so that

m=1T, ;1 and [ =1T,_5. For these integers m and [/, we can take
nonnegative integers i and j sothat n—-1-m=-1 and n-2-1=-

for n 211. Thus, 7_; = T_; = 1. Then, we have
Ty =Tho+tTh3=Th11+Th 21
=dpa-1,; * Tn—2—T,j =dp1-T, 4, T Tn—Z—Tn,Z,l

= n_l_Tn—l—Tn,l + Tn_2_Tn—2—Tn,2 ’
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as required. It is easy to drive Eq. (23) from Eq. (22) by the above

argument.

It is clear that Theorem 2 is definitely not true if initial value

T, #1forall ke Z™.

(1]

(2]

(3]

(4]

(5]

(6]
(7
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