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Abstract

In this note, we provide a formula for the sum of the reciprocals of the
derivatives of a rational function at its zeros, in terms of them and of its
poles. As a remarkable consequence, we obtain a formula for divided
differences of polynomial functions, which does not require the use of
divisions, only multiplications and additions.

1. Introduction

Let qpr =  be a rational function. The degree of r, denoted by

( ),deg r  is given by ( ) ( ) ( ).degdegdeg qpr −=  It is easy to see that this

definition does not depend upon the choice of p and q (see [3], Section
4.2).
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In this note, we first present a geometrical property of rational
functions R with ( ) 2deg ≥R  and whose zeros are pairwise distinct. For

the polynomial case, this property is useful for finding the barycentric
weights of polynomial interpolation (see e.g., [1, 5]). As a first application,
we point out a short proof of a fundamental result due to Berrut and
Mittelmann [2], which is used for finding the barycentric weights of
rational interpolants. The barycentric representation is very useful, since
it has many advantages in comparison with the canonical one (see e.g.,
[8]).

Our proof can be found in [7], there we provide a comprehensive
account on rational interpolation as well as some new results on the
subject. As another application, we have obtained in [6] a new proof of a
formula given by Szegö in [9] for the Christoffel numbers (see also [4]).

Next we provide a formula for the sum of the reciprocals of the
derivatives of a proper rational function ,qpR =  with ( ) ( ),degdeg qp <

at the zeros of p, in terms of the zeros of p and q. This result, together
with the one for the case ( ) ,0deg ≥R  gives rise to a formula for divided

differences of polynomial functions, which does not require any division
at all.

2. Main Results

When R is real and has real zeros, the result we are concerned with is
the following: The sum of the slopes of the normal lines to the graph of the

rational function R with ( ) ,2deg ≥R  considered at its zeros, is zero.

The following lemma, which holds for complex rational functions, is a
generalization to the above statement.

Lemma 2.1. Let ( ) ( ),
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Proof. Let .0 lr ≤≤  Using the Lagrange interpolation formula, we

can therefore, write
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Equating the coefficients of degree l on both sides, we obtain
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This proves the result when .01 =+la  Now, applying (2.1) to the equality
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which completes the proof.

The next result shows what happens when the denominator degree is

larger than the numerator degree.

Lemma 2.2. Let ( ) ( )∏ =
−=

n
j jzzzP

1
,  where ji zz ≠  for .ji ≠  Also,

let ( ) ( )∏ +
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Proof. We will use double induction on n and k, considering ,0=k

1≥n  and 0,1 ≥= kn  as basis of the induction. We have by Lemma 2.1

that the result holds for the case ( ).0,n  Furthermore, the result is also
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valid for the case ( ).,1 k  Indeed, let ( ) ( ) ( )∏
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1
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suppose the result holds for the cases ( )kn ,1−  and ( ),1, −kn  and let us

prove it for the case ( ),, kn  where 2≥n  and .1≥k  We have that
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Applying the case ( )1, −kn  of the induction hypothesis on the last

summand of the right-hand side of the equality, we get
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Now, applying the case ( )kn ,1−  on the first sum, we get
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In the light of Lemmas 2.1 and 2.2, a formula for divided differences
of polynomial functions can be derived.

Theorem 2.3. Let nzz ...,,1  be n distinct points in C  and consider
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,  where .Z∈k  Also, denote by [ ]nzzq ,,1 …  the

( )thn 1−  divided difference of q with respect to .,,1 nzz …  Then
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Proof. It is a well known fact that [ ] ( ) ( )∑ =
′= n

j jjn zpzqzzq
11 ,,,…

where ( ) ( )∏ =
−= n

j jzzzp
1

.  Thus, by Lemma 2.1 ( )0if ≤k  or Lemma

2.2 ( ),0if ≥k  the result is straightforward.
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