A "DIVISION-FREE" FORMULA FOR DIVIDED DIFFERENCES OF POLYNOMIALS

M. POLEZZI and A. SRI RANGA

Universidade Estadual de Mato Grosso do Sul-(UEMS)
Rodovia MS 306, Km 6. Cassilândia, MS, Brazil
e-mail: mpolezzi@ime.unicamp.br
DCCE-IBILCE
Universidade Estadual Paulista
Rua Cristóvão Colombo, 2265, 15054-000
São José do Rio Preto, SP, Brazil
e-mail: ranga@dcce.ibilce.unesp.br

Abstract

In this note, we provide a formula for the sum of the reciprocals of the derivatives of a rational function at its zeros, in terms of them and of its poles. As a remarkable consequence, we obtain a formula for divided differences of polynomial functions, which does not require the use of divisions, only multiplications and additions.

1. Introduction

Let $r=p / q$ be a rational function. The degree of r, denoted by $\operatorname{deg}(r)$, is given by $\operatorname{deg}(r)=\operatorname{deg}(p)-\operatorname{deg}(q)$. It is easy to see that this definition does not depend upon the choice of p and q (see [3], Section 4.2).

2000 Mathematics Subject Classification: 26C15, 65D05.
Keywords and phrases: rational interpolation, divided differences.
This research is part of the first author's doctorate thesis at IMECC-UNICAMP, with grants from FUNDECT. The research of the second author is supported by grants from FAPESP and CNPq.

Received January 31, 2007

In this note, we first present a geometrical property of rational functions R with $\operatorname{deg}(R) \geq 2$ and whose zeros are pairwise distinct. For the polynomial case, this property is useful for finding the barycentric weights of polynomial interpolation (see e.g., [1, 5]). As a first application, we point out a short proof of a fundamental result due to Berrut and Mittelmann [2], which is used for finding the barycentric weights of rational interpolants. The barycentric representation is very useful, since it has many advantages in comparison with the canonical one (see e.g., [8]).

Our proof can be found in [7], there we provide a comprehensive account on rational interpolation as well as some new results on the subject. As another application, we have obtained in [6] a new proof of a formula given by Szegö in [9] for the Christoffel numbers (see also [4]).

Next we provide a formula for the sum of the reciprocals of the derivatives of a proper rational function $R=p / q$, with $\operatorname{deg}(p)<\operatorname{deg}(q)$, at the zeros of p, in terms of the zeros of p and q. This result, together with the one for the case $\operatorname{deg}(R) \geq 0$, gives rise to a formula for divided differences of polynomial functions, which does not require any division at all.

2. Main Results

When R is real and has real zeros, the result we are concerned with is the following: The sum of the slopes of the normal lines to the graph of the rational function R with $\operatorname{deg}(R) \geq 2$, considered at its zeros, is zero.

The following lemma, which holds for complex rational functions, is a generalization to the above statement.

Lemma 2.1. Let $L(z)=\prod_{j=0}^{l}\left(z-z_{j}\right)$, where $z_{i} \neq z_{j}$ for $i \neq j$. Also, let $Q(z)=\sum_{r=0}^{l+1} a_{r} z^{r}$, where $Q\left(z_{j}\right) \neq 0$ for $j=0: l$, and consider the rational function $R=L / Q$. Then,

$$
\sum_{j=0}^{l} \frac{1}{R^{\prime}\left(z_{j}\right)}=a_{l}+a_{l+1} \sum_{j=0}^{l} z_{j}
$$

Proof. Let $0 \leq r \leq l$. Using the Lagrange interpolation formula, we can therefore, write

$$
z^{r}=\sum_{j=0}^{l} \frac{L(z)}{\left(z-z_{j}\right) L^{\prime}\left(z_{j}\right)} z_{j}^{r}
$$

Equating the coefficients of degree l on both sides, we obtain

$$
\sum_{j=0}^{l} \frac{z_{j}^{r}}{L^{\prime}\left(z_{j}\right)}= \begin{cases}0, & \text { if } 0 \leq r \leq l-1 \tag{2.1}\\ 1, & \text { if } r=l\end{cases}
$$

This proves the result when $a_{l+1}=0$. Now, applying (2.1) to the equality

$$
\sum_{j=0}^{l} \frac{L\left(z_{j}\right)}{L^{\prime}\left(z_{j}\right)}=0
$$

one readily finds

$$
\sum_{j=0}^{l} \frac{z_{j}^{l+1}}{L^{\prime}\left(z_{j}\right)}=\sum_{j=0}^{l} z_{j}
$$

which completes the proof.
The next result shows what happens when the denominator degree is larger than the numerator degree.

Lemma 2.2. Let $P(z)=\prod_{j=1}^{n}\left(z-z_{j}\right)$, where $z_{i} \neq z_{j}$ for $i \neq j$. Also, let $Q(z)=\prod_{j=1}^{n+k}\left(z-y_{j}\right)$, where $k \geq 0$ and $Q\left(z_{j}\right) \neq 0, j=1: n$, and consider the rational function $R=P / Q$. Then

$$
\sum_{j=1}^{n} \frac{1}{R^{\prime}\left(z_{j}\right)}=\sum_{t_{k}=1}^{n}\left(z_{t_{k}}-y_{t_{k}+k}\right) \sum_{t_{k-1}=1}^{t_{k}}\left(z_{t_{k-1}}-y_{t_{k-1}+(k-1)}\right) \cdots \sum_{t_{0}=1}^{t_{1}}\left(z_{t_{0}}-y_{t_{0}}\right)
$$

Proof. We will use double induction on n and k, considering $k=0$, $n \geq 1$ and $n=1, k \geq 0$ as basis of the induction. We have by Lemma 2.1 that the result holds for the case $(n, 0)$. Furthermore, the result is also
valid for the case $(1, k)$. Indeed, let $R(z)=\left(z-z_{1}\right) / \prod_{j=1}^{k+1}\left(z-y_{j}\right)$. Then $1 / R^{\prime}\left(z_{1}\right)=\prod_{j=1}^{k+1}\left(z_{1}-y_{j}\right)$, and so the result is true in both cases. Thus, suppose the result holds for the cases $(n-1, k)$ and $(n, k-1)$, and let us prove it for the case (n, k), where $n \geq 2$ and $k \geq 1$. We have that

$$
\sum_{j=1}^{n} \frac{1}{R^{\prime}\left(z_{j}\right)}=\sum_{j=1}^{n}\left(\prod_{p=1}^{n+k}\left(z_{j}-y_{p}\right) / \prod_{\substack{p=1 \\ p \neq j}}^{n}\left(z_{j}-z_{p}\right)\right)
$$

Applying the case $(n, k-1)$ of the induction hypothesis on the last summand of the right-hand side of the equality, we get

$$
\begin{aligned}
\sum_{j=1}^{n} \frac{1}{R^{\prime}\left(z_{j}\right)}= & \sum_{j=1}^{n-1} \frac{\prod_{p=1}^{n+k}\left(z_{j}-y_{p}\right)}{\prod_{\substack{p=1 \\
p \neq j}}^{n}\left(z_{j}-z_{p}\right)}+\left(z_{n}-y_{n+k}\right)\left[\sum_{t_{k-1}=1}^{n}\left(z_{t_{k-1}}-y_{t_{k-1}+(k-1)}\right)\right. \\
& \left.\left.\cdots \sum_{t_{0}=1}^{t_{1}}\left(z_{t_{0}}-y_{t_{0}}\right)-\sum_{j=1}^{n-1} \frac{\prod_{p=1}^{n}}{\prod_{p=1}^{n}\left(z_{j}-z_{p}\right)}\right]_{p \neq j}^{n+(k-1)} z_{p}-y_{p}\right) \\
= & {\left[\frac{z_{j}-y_{n+k}}{z_{j}-z_{n}}-\frac{z_{n}-y_{n+k}}{z_{j}-z_{n}}\right] \sum_{j=1}^{n-1} \frac{\prod_{p=1}^{n-1}\left(z_{j}-y_{p}\right)}{\prod_{p=1}^{n-1)+k}}\left(z_{j}-z_{p}\right) } \\
& +\left(z_{n}-y_{n+k}\right) \sum_{t_{k-1}=1}^{n}\left(z_{t_{k-1}}-y_{t_{k-1}+(k-1)}\right) \cdots \sum_{t_{0}=1}^{t_{1}}\left(z_{t_{0}}-y_{t_{0}}\right)
\end{aligned}
$$

Now, applying the case ($n-1, k$) on the first sum, we get

$$
\begin{aligned}
\sum_{j=1}^{n} \frac{1}{R^{\prime}\left(x_{j}\right)}= & \sum_{t_{k}=1}^{n-1}\left(z_{t_{k}}-y_{t_{k}+k}\right) \sum_{t_{k-1}=1}^{t_{k}}\left(z_{t_{k-1}}-y_{t_{k-1}+(k-1)}\right) \cdots \sum_{t_{0}=1}^{t_{1}}\left(z_{t_{0}}-y_{t_{0}}\right) \\
& +\left(z_{n}-y_{n+k}\right) \sum_{t_{k-1}=1}^{n}\left(z_{t_{k-1}}-y_{t_{k-1}+(k-1)}\right) \cdots \sum_{t_{0}=1}^{t_{1}}\left(z_{t_{0}}-y_{t_{0}}\right) \\
= & \sum_{t_{k}=1}^{n}\left(z_{t_{k}}-y_{t_{k}+k}\right) \sum_{t_{k-1}=1}^{t_{k}}\left(z_{t_{k-1}}-y_{t_{k-1}+(k-1)}\right) \cdots \sum_{t_{0}=1}^{t_{1}}\left(z_{t_{0}}-y_{t_{0}}\right) .
\end{aligned}
$$

In the light of Lemmas 2.1 and 2.2, a formula for divided differences of polynomial functions can be derived.

Theorem 2.3. Let z_{1}, \ldots, z_{n} be n distinct points in \mathbb{C} and consider $q(z)=\prod_{j=1}^{n+k}\left(z-y_{j}\right)$, where $k \in \mathbb{Z}$. Also, denote by $q\left[z_{1}, \ldots, z_{n}\right]$ the $(n-1)^{\text {th }}$ divided difference of q with respect to z_{1}, \ldots, z_{n}. Then

$$
q\left[z_{1}, \ldots, z_{n}\right]= \begin{cases}0, & \text { if } k \leq-2 ; \\ 1, & \text { if } k=-1 ; \\ \sum_{j=1}^{n}\left(z_{j}-y_{j}\right) & \text { if } k=0 ; \\ \sum_{t_{k}=1}^{n}\left(z_{t_{k}}-y_{t_{k}+k}\right) \cdots \sum_{t_{0}=1}^{t_{1}}\left(z_{t_{0}}-y_{t_{0}}\right), & \text { if } k \geq 1 .\end{cases}
$$

Proof. It is a well known fact that $q\left[z_{1}, \ldots, z_{n}\right]=\sum_{j=1}^{n} q\left(z_{j}\right) / p^{\prime}\left(z_{j}\right)$, where $p(z)=\prod_{j=1}^{n}\left(z-z_{j}\right)$. Thus, by Lemma 2.1 (if $k \leq 0$) or Lemma 2.2 (if $k \geq 0$), the result is straightforward.

References

[1] K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley, New York, 1978.
[2] J. P. Berrut and H. Mittelmann, Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997), 355-370.
[3] N. Bourbaki, Algebra II, Springer-Verlag, Berlin, 1980.
[4] T. S. Chihara, An Introduction to Orthogonal Polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach, New York, 1978.
[5] W. Gautschi, Numerical Analysis-An Introduction, Birkhäuser, Boston, 1997.
[6] M. Polezzi, A new approach for obtaining a formula for the Christoffel numbers, Far East J. Appl. Math. 22(2) (2006), 155-159.
[7] M. Polezzi and A. Sri Ranga, On the denominator values and barycentric weights of rational interpolants, J. Comput. Appl. Math. 200(2) (2007), 576-590.
[8] C. Schneider and W. Werner, Some new aspects of rational interpolation, Math. Comp. 47 (1986), 285-299.
[9] G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, RI, 1975.

