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Abstract

In this work, we present a new approach in the algorithm of the
Adomian method for the resolution of nonlinear partial differential

equations (PDE) with initial and boundary conditions.

This new method is based on a combination of Adomian decompositional
method and the idea of the successive approximation method [3]. We
have shown that this new algorithm is convergent with a few number of

iterations.
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1. Introduction

We are interested to solve nonlinear PDE with initial and boundary
conditions which model a big number of phenomena in biomathematics
[9, 12, 13]. Several numerical methods of resolution of these PDEs have
been developed. These classical methods of resolution, generally use
discretisation or linearisation methods. The new approach of Adomian,
that we propose, does not discretise, preserves the biological properties of
the model and conditions imposed to the PDE, that is important for the
applications [12-13].

The classical Adomian method [1, 2, 5] is not easy to compute and
this algorithm often does not take into account the boundary conditions
of PDE and it includes some special polynomials called Adomian’s

polynomial which are not easy to compute.

In this paper we introduce a new algorithm which takes into account
the boundary conditions of nonlinear PDE and does not compute
Adomian polynomials. This algorithm is numerically convergent with two

or three iterations.
1.1. Description of the new algorithm proposed

Let us consider the following PDE with initial and boundary

conditions in one space dimension:
w, = L(u(t, x))+ N(u(t, x)), H <x<ly, t>0
w0, x) = f(x),

1)
u(tr ll) = g(t),

ult, ly) = h(z),
where L and N are respectively linear and nonlinear operators with
L(u) = Ly(w) + Ly(uy, Uyy, Uypy, ), Lo # 0.

For a simple description, we can take the case where L(u) = u,, then the

equation (1) becomes
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w =u, + Nut, x), H<x<l, t>0

u(0, x) = f(x),

u(t, h) = g(t),

ult, lp) = hlt),

where
u=ult,x), (¢,x)e[0,+o[x[], ]

On the one hand, the equality wu =u, + N(u) (that is

6_u 6u
ot

proceedlng as follows:

+ N(u)) permits us to write boundary conditions while

I} l:
u(t, ly) = ult, ) +j 20ult, x) dx —I ? N(u(t, x))dx
L ot L
l
Soult, ) ult, ) - jza“(t *) gx v+ [ 7 NG, )z = 0.
h
On the other hand, this equation gives

ult, x) = u(0, x)+ j;%du +f ; Ny, x))dy,

that is equivalent to the following equation, where one added boundary
conditions:

ult, %) = ul0, )+ | ;%du ; jot N, ©)dp + ult, ) - ult, 1)

-| 2oult, x) [ ;2 N(ult, x))dx

L Ot

That give finally
u(0, x) + j thu o ; N, 2)dp + ult, by) - u(t, )
Louft, x) b 2)
I S le N(ut, x))dx
u(0, x) = f(x)

which is a Cauchy problem.

u(t, x) =
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So we bring back the resolution of problems (1) with initial and
boundary conditions to Cauchy problem. This transformation permits us
to solve this kind of problem with success. Afterwards we will illustrate
that through examples. By using the idea of successive approximation (2),

we give

t k
u(t, x) = u"(0, x) + uF(t, ) - u”(t, l1)+J Wdu+
0

Lwh)

¢ b 5,1 l
+ I N@@ ™ (n, x))dp —J‘ 26”—(t’s)ds +J ? N@@ (¢, s))ds
0 4 ot 4

ﬁ(uk—l)

with
W0, x) = f(x), k=12, ..

uFt, L) =g@), k=0,1,2, ..

uF(t, ) = ht), k=0,1,2, ..

which 1s an Adomian canonical form.

So the Adomian algorithm is
t
b = w0, x) + uk (@, ) - ut e, ) + I Ny, x))du
0

I} k-1 I}
—j 20u (¢, x) dx +J. ? N@@ (¢, x))dx
L ot L

t A,k
u,’in. al‘%ﬁ“’x)d% k=1,2,3.;n=12, ...

At this level all happens as in [3].

Indeed, the resolution of the algorithm above by the successive

approximation method, consists to determine at each iteration

(k =1, 2,...) the approached solutions
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where

—+00
uk = Zufz, k=1,2,....
n=0

But it requires a choice of the initial condition u® beforehand.
By following the solution, u of the problem (1) is

u = lim uk,
k—o
if (uk)kEN is convergent.

In summary the new algorithm is:

Step 1. Calcul of u!

u(l) 1st term of Adomian series at stepl;
u% 2nd term of Adomian series at step1l;
ué 3rd term of Adomian series at step1l;

ul  (n+1)th term of Adomian series at stepl.

The approach solution of the problem is obtained by

o0
A=Yk

n=0
Step 2. Calcul of u?
u(z) 1st term of Adomian series at step 2;
ui‘z 2nd term of Adomian series at step 2;
u% 3rd term of Adomian series at step 2;

u2  (n+1)th term of Adomian series at step 2.
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The approach solution of the problem is obtained by

0

n=0
Step k. Calcul of uk
ug 1st term of Adomian series at step k;
u{e 2nd term of Adomian series at step k;
u§ 3rd term of Adomian series at step k;

uﬁ (n+1)th term of Adomian series at step k.
The approach solution of the problem is obtained by

o0
=k

n=0

Finally the solution of the problem is
T k _ k
“~ iy Az&[z ]

1.2. Some examples of illustration
1.2.1. Example 1
Let us consider the following PDE:

3
ou OJu 1(0%u
ow _ ot ol il <x< >
pr ax+2+4(asz,O_x_l,t_O

u(0, x) = x(1 — x),

u(t, 0) = t(1 - t),

u(t, 1) = —t(1 + ¢t).

The equality

2 3
u_ou o 1fo%
ot ox 4| 02
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gives, on the one hand,

u(t, 1) = ult, 0) + J.Ol(— 2 + au({;’: x))dx - %j:[%}gd&

that is,

2 3
u(t, 1) - u(t, 0) + j:(2 —%jdx +%I:(%J dx = 0.

On the other hand, it gives

u(t, x) = u(0, x) + J.(:(2 + %)du + %I;[%]gdu

+u(t, 1) - ult, 0) + J:(Z -~ %jdx 4 %J‘:(%Tdm

which can be written as:

u(t, x) = (0, x) + ul¢, 1) — u(t, 0) + j; (2 + Z—Z)du

3 3
1J’t o%u J‘l( 6uj 1J‘1 o%u
+=| |—=| du+ 2-—\|ds—-=| |—| ds.
4 0(8362) H 0 ot 4 Jo| ps?

The equation approached by the new technique can be written as:

t k
ut(t, x) = u®(0, x) + F (2, 1) - B, o)+j [2 +68ijdu +
0
L)
t( A2 k1> 1 k-1 10 A2, k12
+lJ. ou dp+J. 2_6u dx+lJ‘ Ou dx.
4 Jol px? 0 ot 4Jo| ox?

ﬁ(uk—l)

For k = 1, with the choice of u° = 2t = N(uo) =0, u' is, therefore, the

solution of

t 1
ul(t, x) = u (0, x) + ut(t, 1) - ul (¢, 0) + I (2 + %)du.
0
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With initial and boundary conditions, we have
t 1
1 — (1 - ou_
wt,x)=x(1-x)+ J‘o( = Jdu.

At this level the classic algorithm of Adomian is
uy = x(1 - x)

t oul
L _ | Yn-l g4 =1. 2
U Io e L, n , 2, .

The solution of this stage is
o0
= (up) = %1 - x)+ (1 20)t - 2.
n=0

For k& > 2, we get at each stage the same solution
u = u? = uf = 2l -x)+ (- 2%) — 2.

So solution of the problem is obtained by

0

u=lim u* = Z(us) = x(1-x)+ (1 - 2x)t — 2.
k—o0 ~

1.2.2. Example 2

Let us consider the following nonlinear PDE:

2
a—u:a—u—et(l—u)2—eftsin2x+e7'f, 0<x<X >0
ot o2 2
u(0, x) =2 sinz(ﬁj,
2

u(t, 0)=1-et,

T

LA
u(t, 2)

While considering the operator %—l; , on the one hand,

2
u _Ou_ ell-u? —etsin?x+e?,
ot O
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gives
t A2
ult, x) = ul0, %)+ [ Tl %) g,
0 Ox
t n 2 -0 o2 —t
| ("1 -u) +eHsin”“x)du—-e* +1. 3)
0
o%u
On the other hand, the choice of the operator — gives
ox
r. T P
u(t, g) = ult, 0)+ .[02 IOQ u(;; x) dxdx
r. T
+ I 2 J. Z(—ef(1-u)? - e tsin? x + e!)dxdx,
0Jo
that is,

Y T
LN (2 [2oult, x)
u(t, 2] u(t, 0) IO IO ot dxdx

- J‘Ejg(et(l —u)f +etsin? x — e!)dxdx = 0. 4)
0 Jo
(3) and (4) =

t A2
ult, x) = u(0, %)+ [ Tl 3) g,
0 ox

t
- J. (M1-u?-ePsin?x)dp—et+1+ u(t, %) —uf(t, 0)
0

I z.z
_IZIQ u(t’ x) dxdx_jZIQ (et(l_u)z +eft sin2 x —eit)dde.
0 Jo ot 0J0

The approached canonical form associated to the above Adomian
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canonical form is

t A2. k
uF(t, x) = u"(0, x) + uk(t, Ej - uk, O)+J Mdu —el 4
0

t
- I ("1 - u* 1Y + e Hsin? x)dp
0
T T
- I 2 j 21 -u)f - etsin®x + e )dadx .

J. J‘26u l(t x)dxdx+1

N

For k =1, with the choice of ©® =1 (that is, x = g) = N@u’)=0

ul is, therefore, the solution of

t 2.1
ul(t, x) = uh(0, x) + ul(t, g)—ula, 0)-et [ S lex)g,
0

o2

To this level the classic algorithm of Adomian is

uy = u'(0, x) = 2 sin%%)

t2
J.a nldu,n—12
0 ox?

tn
The solution of this stage is
o0
= Z(u}l) =1-e"cosx.
n=0

For k > 2, we get at every stage the same solution

ut = u? =---:uk =1-e"!cosux.

The solution of the problem is obtained by

o0

u = lim u* = E (us) =1-¢"'cosx.
k—wo i
n=
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1.2.3. Example 3
Let us consider the following nonlinear PDE:

*u  %u ) s (%) 1
22249 [—2}; —[—2J +§(1+cos2t)—2cost,

ot?  ox? ox ox

u(0, x) = sin x,

2 2

While considering respectively the operators —— and ——

, we get like
ot? =

above, on the one hand,

tptp2
ult, x) = u(0, x)+J. J‘ LPL2’x)dudu+2cost—2
040 ox

tpt %u) o (o%u ? 1
+J. J 20— | - | —% + = (1 + cos 2u) dpdy,
0Jo ox ox 2

and on the other hand,

r T 22ult
u(t, %) ( - g) j QEI 22( u( x) + 2 cos t)dxdx
2 2

£ z L
2£ 2£ —Z] + 5(1 + cos 2t )dxdx,
that is,
r T 2
T T 2 [2 | 07ult, x)
u(t, 5) _ u(t, _ 5) _ J‘_g J._% (7 + 2 cos tjdxdx

z = 2 2 )3
+J.2n_ 2 9 Ou) 2 _[0u +l(1+cos2t)dxdx =0.
——J = 6x2 59(32 2
2732
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The above equalities give the following approached canonical form:

t ot A2,k
u*(t, x) = u"(0, x)+I J‘ au—(u’x)dudu+200st+uk(t, E]
odo  ox? 2

r . r 2. k-1
—uk(t,—ﬂj—jg I2 (au—(t’x)+200stjdxdx

2 LU o2

m 2 k-1 2 k-1)3
+I2 J.2 2\/(au—2j(uk_l)2—(a u2 j +l(1+cos2t)dxdx—2
ox ox 2

t ot 2. k-1 2. k-1 3
+ J I 2 Tu Wk 1y - Tu 1L (1 + cos 2u)dudp.
040 ox? ox? 2
So the exact solution is

u(t, x) = cost sin x.

1.2.4. Example 4

Let us consider the following PDE:

o 252
u(0, x) = x(I - x),

2 2 \2
ou__10 ”+1—(la—uj ,0<x<Lt>0

u(t, 0) =t,

u(t, l)=t.
The equation

2
u_ 1%, (1%
ot 2 6x2 2 8x2

can be written as (while considering the operator aa—LtL), on the one hand

¢, x) ( ) 1 tézud t(1 0%u 2d
u(t, x) = w0, x +t——j— _J‘ i
2Jo ox? 3 0\ 2 ox? 3
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2
On the other hand, the operator 6_L2¢ gives
ox

u(t, 1) = ult, 0)+lau(t 0) I J. ( )dsds——j I (62 J dxdx,

that is,

ou(t, 0) Leliou 1plpl %)
u(t,l)—u(t,O)—l—’+2IJ-(——2)dxdx+—jI O\ Gxdx = 0.
ox odo\ Ot 2Jo0do axg

That gives

ult, 5) = u(0,x) + ¢~ 2 6—du+u(t - u(t, 0) - 1946:0)

12,2 t 2. )2
JI(——2)dxdx+—j J ou dxdx—j' Lotu) g
Oax 0 26.’)62

The approached canonical form, according to the method of successive

approximations can be written as:

t A2k
u®(t, x) = u”(0, x)+t—lj 8u2
2Jo ox

+2j j' [8”“ dedx+—j J' (52 - IJ dxdx

y 2 k-1)\2
—jo[%aa”z Jdu, =12 ..,
X

WP, x) = w0, x) - b, 0) 4 £ - & j

du + w7, 1) - WP, 0) -1

ou”(t, 0)
ox

that is,

L(u )

WG, 1)+2j I {a“k ' Zdedx
TN =

N(uk—l)
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For k =1, with the choice of ¥ =0 = N@®) =0, u! is therefore,

solution of

t A2 1
WLt x) = 110, x) - ul (2, o)+t-lj U g,
2Jo ox?
The algorithm of Adomian gives
up = ut(0, x) = x(I - x)
2.1
1 110Uy
u, =—-——| —2=dp, n=1,2, ...
The solution at this stage is:
o0
ul = Z(u}l) =x(l-x)+t
n=0
For k > 2, we get at every stage the same solution
W =u? ==k = x(l-x)+

So the solution of the problem is obtained by

o0

u = lim u” = Z(u,}‘z)zx(l—x)+t.

k—o©
n=0

2. Discussions

As for nonlinear PDE of Cauchy type, examples below show that the
new algorithm is very efficient to solve nonlinear PDE with initial and
boundary conditions. In fact the exact solution of the equation is obtained
very often at the first iteration; this algorithm contrary to the initial
algorithm of Adomian takes into account all conditions imposed to the
PDE. This second point is very revolutionary because the original
algorithm of Adomian cannot take into account all conditions imposed to
a PDE. The first point is very important for the numerical application

because the exact solution is obtained very quickly and explicitly.
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But some problems stay opened. In the present paper, we have not

studied the global theoretical convergence of this algorithm and the case
of system of PDE. We also think that the generalization of this method to

more than two or three space dimensions is easy and we hope to resolve

more complicated PDE problems. These points will be the object of our

future articles.

(1]

(2]

(3]

(4]

(5]

(6]

(7

(8]

(9]

(10]
(11]

(12]

(13]

References

K. Abbaoui and Y. Cherruault, Convergence of Adomian method applied to
differential equation, Math. Comput. Modelling 28(5) (1994), 103-109.

K. Abbaoui, Les fondements mathématiques de la méthode décomposition-nelle
d’Adomian et application a la résolution des équations issues de la biologie et de la

médecine, Theése de Doctorat de I'université de Paris, VI, Octobre 1995.

B. Abbo, N. Ngarasta, B. Mampassi, B. Some and L. Some, A new approach of the
Adomian algorithm for solving nonlinear ordinary or partial differential equations,
Far East J. Appl. Math. 23(3) (2006), 299-312.

B. Abbo, Nouvel algorithme numérique de résolution des équations différentielles
ordinaires (EDQO) et des équations aux dérivées partielles (EDP) non linéaires,
Theése de Doctorat unique, de I’ Université de Ouagadougou, Burkina Faso, Janvier
2007.

G. Adomian, Nonlinear Stochastic Systems Theory and Application to Physics,
Kluwer Academic Publishers, 1989.

E. Babolian and Sh. Javadi, New method for calculating Adomian polynomials, Appl.
Math. Comput. 153 (2004), 253-259.

G. Barro, O. So, B. O. Konfe and B. Some, Solving the Cauchy problem for
quasilinear equation with power law nonlinearities by the Adomian decomposition
method (ADM), Far East J. Appl. Math. 17(3) (2004), 277-285.

W. Chen and Z. Lu, An algorithm for Adomian decomposition method, Appl. Math.
Comput. 159 (2004), 221-235.

Y. Cherruault, Modéles et Méthodes Mathématiques pour les Sciences du Vivant,

Presses Universitaires de France, Paris, 1998.
Hassan K. Khalil, Nonlinear Systems, Second edition, Prentice-Hall, Inc., 1996.

D. Lesnic, Blow-up solutions obtained using the decomposition method, Chaos,
Solitons Fractals 28(3) (2006), 776-787.

J. D. Murray, Nonlinear Differential Equation Models in Biology, Clarendon Press,
Oxford, 1977.

J. D. Murray, Mathematical Biology, Springer, Berlin, 1989.



52

(14]

[15]

[16]

(17]

(18]

B. ABBO, O. SO, G. BARRO and B. SOME

Shepley L. Ross, Introduction to Ordinary Differential Equations, Second edition,
University of New Hampshire, 1974.

Andreas Ruffing et al., Comparing algebraic and numerical solutions of classical
diffusion process equations in computational financial mathematics, Discrete
Dynamics Nature Society 6 (2001), 157-169.

B. Some, Convergence of the Adomian method applied to Fredholm integro-
differential equations, Africa Mat. 14(3) (2001), 71-88.

A. Wazwaz, The numerical solution of sixth-order boundary value problems by the
modified decomposition method, Appl. Math. Comput. 118 (2001), 311-325.

Y. Zhu, Q. Chang and S. Wu, A new algorithm for calculating Adomian polynomials,
Appl. Math. Comput. 169 (2005), 402-416.
|



