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Abstract

ElGamal encryption is one of the best known public key encryption

methods in use. Usually the encryption is carried out in an associative

algebraic structure, such as a group. However, the ElGamal method can

be formulated also in a more general structure without the associativity

property. In this paper we study the discrete logarithm problem,

exponentiation and ElGamal encryption in a Paige loop. We discuss the

selection of the subgroup for the discrete logarithm problem and it is

shown that the exponentiation can be completely carried out in the

corresponding finite field. We also discuss the benefits, drawbacks and

feasibility of this method.

1. Introduction

Traditionally public key encryption is carried out in a finite group or
field. These have proved out to be useful algebraic structures, because
they are well known. But are they optimal? A group, for instance,
contains an axiom for the associativity of the operation. In many cases
this is a useful property, but in some cases it is not needed. For example,
the ElGamal encryption scheme can be formulated in a non-associative
structure provided that the exponentiation can be meaningfully carried
out. In a cryptographical point of view it is useful to study algebraic
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structures with minimum amount of properties and structure, and this
way cut down tools used in cryptanalysis.

In this paper we study ElGamal encryption [1] in one of the most
well-known generalization of groups - the Moufang loops. We have
restricted our investigation to the non-associative, finite and simple case.
These kind of Moufang loops are widely known as Paige loops, crediting
L. Paige who studied them in 1956 [7]. In the following sections we briefly
describe ElGamal encryption and the discrete logarithm problem. We also
define Moufang and Paige loops and describe a method to generate them.
The method is due to M. Zorn. In Section 2 we define the discrete
logarithm problem in Paige loops and give some results regarding its
security. We extend the results of Maze in [3]. We also study the selection
of the generating element and asses the complexity of exponentiation. In
Section 3 we study the ElGamal encryption in Paige loops and discuss the
feasibility of the encryption method.

1.1. ElGamal encryption

The basis of ElGamal encryption is the discrete logarithm problem,
which can be described as follows. Let G be a cyclic group of order n and
let g be a generator of G. Suppose now that .Ga ∈  The discrete logarithm

of a to the base g is an integer x such that ag x =  and .0 nx <≤  As

usual, it is denoted as .log ax g=  The problem is to find aglog  given G,

g and a. It is known that in certain groups this is a very hard problem [4].
The discrete logarithm problem is generally abbreviated as DLP, and in
the following we adopt the same convention.

A closely related problem to the DLP is the so-called Diffie-Hellman

problem. The problem is to find abg  given ag  and .bg  As can be seen,

this is easily solved by computing the discrete logarithm of one of the

elements ag   or .bg  This means that the DLP is at least as hard as the

Diffie-Hellman problem. It is not known whether the Diffie-Hellman
problem is computationally equivalent to the discrete logarithm problem.

Generalized ElGamal encryption utilizes the Diffie-Hellman problem

in the following way. Let gG =  be a given finite cyclic group. Suppose

that Alice wants to send a secret message to her friend Bob. We assume
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that the message has been coded in some way as an element .Gm ∈
Alice and Bob pick random integers a and b, respectively. These are their

secret keys. Their public keys are ag  and ,bg  respectively. To encrypt

the message m, Alice computes ( ) abab gg =  and multiplies it with m to

get the encrypted message .abmg  Bob can decrypt the message by

multiplying the encrypted message with the inverse of the element

( ) .abba gg =  As can be seen, if the adversary can solve the Diffie-

Hellman problem, he can solve the secret message m by computing the

element abg  from ag  and .bg

It should be pointed out, that the ElGamal scheme given here can

only be used as a primitive of the cryptosystem. It is not secure against

several imaginable attacks in itself. A practical cryptosystem utilizing the

ElGamal primitive can be found, for example, in [9].

1.2. Paige loops

Quasigroups are defined as follows.

Definition 1. Let Q be a non-empty set and ⋅ be a binary operation

on Q. Then ( )⋅,Q  is a quasigroup if and only if for every ordered pair

( ) 2, Qba ∈  equations

byabax =⋅=⋅ , (1)

have unique solutions for every x, .Qy ∈

These solutions are often expressed as abx =  and .\bay =  It is

important to notice that quasigroups do not necessarily have a neutral

element. If such an element exists, then the quasigroup is called a loop.

In some sense it can be said that loops are groups without the associative

property. This is because most of the concepts defined for groups can also

be defined for loops. For example, the notion of a subloop can be directly

adopted from group theory.

Probably the best known type of loops is the Moufang loop. These
loops were studied by Ruth Moufang in 1935 [5]. A loop M is a Moufang
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loop, if the operation satisfies the Moufang identities

( ),xyzxzxxy ⋅=⋅ (2)

( ) ( ) ,zxxyxzyx ⋅=⋅ (3)

( ) ( ) yyzxzyyx ⋅=⋅ (4)

for every .,, Mzyx ∈  The following evaluation rules are employed:

juxtaposition xy is evaluated first, followed by ,⋅  and finally by

parentheses. It can be shown that any of these equations implies the

other two [8]. A Moufang loop is also known to be power associative. That

is, every element generates a group.

A normal subloop P of Q is defined to satisfy the following conditions

for every :, Qyx ∈

( ) ( ) ( ) ( ) .,, PxyyPxPyxyxPPxxP === (5)

If the loop is a group, then these properties can be seen to reduce to the

well-known definition of a normal subgroup. If a loop has only the trivial

normal subloops, then it is simple. If a Moufang loop M is non-associative,

finite and simple, then it is called a Paige loop.

Paige loops can be constructed using Zorn’s algebra in the following

way. Let ( )qGFq =F  be the Galois field of q elements, and α, .F3
q∈β

Zorn’s algebra ( )qZ  consists of every 22 ×  matrix

,





β

α
b

a
 where ,a  qb F∈  and ,α  .F3

q∈β (6)

We define multiplication as

,






+γ⋅βγ×α+δ+β
δ×β−α+γδ⋅α+

=





δ

γ
⋅






β

α
bdbc

daac

d

c

b

a
(7)

where ⋅ is the normal inner product and ×  is the cross product of vectors.

If the determinant

det β⋅−=





β

α
aab

b

a
(8)
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of an element is non-zero, then it has an inverse element

.1
1








β−

α−
β⋅α−

=






β

α −

a

b

abb

a
(9)

It can be shown [7] that the set of elements with a determinant of 1 forms

a Moufang loop in respect to the multiplication defined in (7). This loop is

denoted as ( )qM   and its neutral element is

( )
( )

.
10,0,0

0,0,01





=e (10)

Clearly the set { }eeE −= ,   is a normal subloop of ( )qM   and it induces a

congruence relation ∼ on ( ).qM  Paige loop ( )qM ∗   is the quotient loop

( ) .~qM  A concise study of Moufang and Paige loops can be found, for

example, in [10].

2. DLP in Paige Loops

The discrete logarithm problem in Paige loops was studied by Gérard

Maze in [3]. In the case of Paige loop ( )qM ∗  we can work in the

corresponding Moufang loop ( ),qM  if we keep in mind that every

operation is considered modulo ∼.

In [3] Maze shows that the problem completely reduces to the DLP in

the projective special linear group

( ) ( ) ( ( )) ( ) { }.FSLFSLFSLFPSL 2222 IZ qqqq ±== (11)

In this case, we can work in ( )qFSL2  if we keep in mind that the

operations are considered modulo ( ( )).FSL2 qZ  Proof of the reduction is

based on an injective group homomorphism ( ) { },SL: 2 Iqx ±→ω  where

( ).qMx ∗∈

If

,





β

α
=

b

a
x (12)
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then every element xy ∈   can be written in form







β

α
=

ds

sc
y (13)

for some .F,, qsdc ∈  The injective group homomorphism can then be

expressed as

( ) 




 β⋅α

=




 






β

α
ω=ω

ds

sc

ds

sc
y (14)

for every .xy ∈

In [3] Maze also gives an algorithm for a polynomial-time reduction

from the DLP in ( )qM ∗   to the DLP in .Fq  This reduction means that the

traditional DLP in a finite field can be considered at least as hard as the
DLP in a Paige loop. For the sake of completeness we prove that the DLP

in ( )qM ∗  is at least as hard as the DLP in .Fq

Proposition 1. The discrete logarithm problem in qF  reduces to the

discrete logarithm problem in ( )qM ∗   in polynomial time.

Proof. Assume that there exists a polynomial time algorithm to solve

the DLP in ( ).qM ∗  Let

( ).FSL
0

0
21 qg

g
X ∈





= − (15)

Now

,
0

0
0

0
1 








=






= −− n

nn
n

g

g
g

g
X (16)

and we can solve n from ( ) ( ( ))nn XX 11 −− ω=ω  using the assumed

algorithm. Since we now know n from ,Fq
ng ∈  and this is a discrete

logarithm problem in ,Fq  the algorithm can also solve the DLP in .Fq

The proposition above completes the proof that these two problems
can be considered computationally equivalent. This is a crucial point,
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because the DLP in qF  is well known and can thus be considered a safe

primitive. On the other hand, exponentiating in a Paige loop does not
yield any additional security to the encryption process. As the binary
operation of a Paige loop is obviously slower than that of the
corresponding finite field, this means that we should completely carry out

the exponentiation in .Fq

As can be seen from Proposition 1, it is possible to choose

( ) ( )
( ) 





=





 





ω=ω= −−

−−
11

11

0,0,0
0,0,0

0
0

g

g

g

g
Xx (17)

as the base of the discrete logarithm. Clearly X  is isomorphic to g

and we can operate completely in .Fq  The other possibility is to choose an

element ( ),FSL22 qX ∈

,2 




=

kj

ih
X (18)

with 0, ≠ji  and det .12 =X  The element is then exponentiated in

( )qFSL2  and the result is mapped to ( )qM ∗  using .1−ω  One has to be

careful in the selection of the generating element, because the DLP can be

feasibly solved in certain subgroups of ( ).FSL2 q  The following example

can be found in [6]. Suppose that we are working in ( ),ZSL2 p  and we

choose an element G of order divisible by p. Then the element is a

conjugate of 12δ+ cI  or ,21δ+ cI  where pc Z∈  and ijδ  is a matrix

whose entries are all zero except the ( )ji, -th entry, which is 1. Let us

assume that ( )AIAg 12
1 δ+= −  for some ( ).ZSL2 pA ∈  Now

( ( ) ) ( )AmIAAIAG mm
12

1
12

1 δ+=δ+= −− (19)

and m can be easily deduced.

If the selection of the generating element is made according to (18),
exponentiation is significantly slower compared to the case of (17),
because matrix multiplication has to be used. This can be countered, if we

make a right selection for .2X  In fact, we can show that, by making a
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good selection, the complexity of exponentiating the element in (18) is
virtually as good as exponentiating the element in (17). Let

.
0

0
1 



= −g

g
X (20)

Now choose P with det ,1=P  and let

.1
2 XPPX −= (21)

Exponentiating 2X  gives

( ) .11
2 PXPXPPX nnn −− == (22)

Proposition 2. 2X   is isomorphic to .g

Proof. Let XPPXf 1: −→  and

( ) .1APPAf −= (23)

Now f is a group isomorphism and .2 gXX ≅≅

It should be noted that since 2X  is a conjugation of X with P in

( ),FSL2 q  the procedure above works, if 2X  is in the same conjugacy

class with X. Proposition 2 and eq. (22) allow us to exponentiate in ,Fq  if

2X  is chosen accordingly. If ,IP ≠  then the mapping 1−ω  becomes a bit

more complicated. Let

.2 




=

kj

ih
X n (24)

Using (14), we find that

( ) ,1
2

1 





β

α
=





ω=ω −−

kj

jh

kj

ih
X n (25)

where ,ij =β⋅α  that is, .1ij−=β⋅α  We only need to find suitable

vectors α, β. One possible choice is ( )0,0,1−=α j  and ( ).0,0,i=β  Of

course these vectors have to be fixed to fix the mapping .ω  Regardless of

the choice of α and β, the subgroup of ( )qM ∗  generated by x satisfies the

following proposition.
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Proposition 3. x  is isomorphic to { }.2 IX ±

Proof. Now

( ) { }.2 IXx ±=ω (26)

Since ω is an injective group homomorphism from x  to ( ) { }Iq ±2SL

and thus an isomorphism from x  to { },2 IX ±

{ }.2 IXx ±≅ (27)

3. Encryption and Decryption

As was seen in the previous section, the exponentiation can be
completely carried out in the finite field .Fq  For the encryption process

we need a generator qg F∈  and ( ).FSL2 qP ∈  As in Subsection 1.1 Alice

and Bob then choose their secret keys a and b and publish their public

keys ag  and .bg

If Alice wants to send a message to Bob, then she computes

( ) 















ω=ω= −

−−− P
g

gPXx
ab

ab
ab

0
0111 (28)

using the method in Section 2. The vectors α and β have to be fixed. It is
completely possible to make the selection at this point. It only has to be
known in which way the selection is made. In particular, it is better to fix
ω at this point, because the adversary cannot deduce it without solving

the Diffie-Hellman problem to get .abg

The message has to be coded in some way as an element of ( ).qM ∗  A

very simple way to do this could be

( )
( ) ,

0,0,0
0,0,0

1
0

0 




= −m

m
m (29)

where .F0 qm ∈  The selection is up to the protocol, and more research is

needed to find a secure method. Once the message has been coded as an

element of ( ),qM ∗  the encryption process is then straightforward: the
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elements m and ( )abXx 1−ω=  are multiplied using the Zorn multiplication

formula in (7). The secret message is therefore

( ),1 abXmmxc −ω== (30)

which, if m is coded in a way described in (29) and

,





β

α
=

kj

jh
x (31)

comes to

.1
0

1
0

00 






β
α

= −− kmjm

jmhm
c (32)

For the decryption process Bob has to invert the element

( ).1 abXx −ω=  Since det 1=x  in Moufang loops, (9) reduces to

.
1








β−

α−
=







β

α −

a

b

b

a
(33)

Using this fact we get

.1 







β−
α−

=−

hj

jk
x (34)

Decryption is therefore

( )
( )

.
0,0,0

0,0,0
1

0

0
1

0
1

0

001 






=







β−
α−









β

α
= −−−

−
m

m

hj

jk
kmjm

jmhm
cx (35)

4. Discussion

As is well known, in the tradition ElGamal encryption system, the

secret keys a and b have to be changed for every new message m. Let

,1m  2m  be two consecutive messages and ,1c  2c  be the respective secret

messages. The adversary now knows abgmc 11 =  and ,22
abgmc =  and

he can compute − using associativity − that

( ) ( ) .1
21

1
21

1
21

1
21

−−−−−− ==⋅= mmmggmmggmcc abababab (36)



w
w

w
.p

ph
m

j.c
om

ELGAMAL ENCRYPTION IN PAIGE LOOPS 295

It is not a desirable property that secret messages are in relation to the

original messages in such a way. This property renders the method

vulnerable, for example, to differential cryptanalysis, unless some kind of

randomization is used. If non-associative structures are used instead of

groups, this is no longer the case as pointed out by Keedwell in [2].

Unfortunately this is not the case in Paige loops due to the weak

associative property in (2).

It is up to the protocol whether the loss of the associative law benefits

the encryption process. It was seen in Section 2, that the actual

computation intensive part of the encryption, the exponentiation, is

virtually as fast in a Paige loop as in the corresponding Galois field .Fq

This is an interesting property as the complexity of the encryption

process is almost the same compared to finite field encryption. In

addition, in the former case, the associative law is missing. Unfortunately

we still have the weak associative laws that force us to change the

encryption key for every new message. More research is needed whether

it is possible to find a loop in which the exponentiation is fast, the DLP is

secure and there is not even any weak forms associativity.

For the ElGamal encryption method to work, we obviously still need

some additional structure in the loop. To have a unique interpretation to

the expression nx  and thus a meaningful discrete logarithm, the loop has

to be power associative. For the decryption we also need to be able to

cancel out .abg

Another point is the discrete logarithm problem. Since there exist

many fast algorithms for computing discrete logarithms in finite fields

[11], the key size has to be very large. It would be better to find a loop

whose DLP does not reduce to the DLP of qF  in polynomial time. If it is

possible to show that the DLP in qF  reduces to the DLP in that particular

loop, then we could consider the DLP of that loop safe. For this the loop

would have to have a big cyclic subgroup but as little structure as

possible. This is not the case with the nearly associative Moufang and

Paige loops.
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