SOME CONDITIONS FOR A FORM $u \alpha-v$ OF A TWOGENERATOR EXTENSION $R[\alpha, \beta]$ TO BE A UNIT

KIYOSHI BABA

Department of Mathematics
Faculty of Education and Welfare Science
Oita University
Oita 870-1192, Japan
e-mail: baba@cc.oita-u.ac.jp

Abstract

Let α be an anti-integral element over an integral domain R and β be a linear fractional transform of α. Let u and v be elements of R. Then we give some conditions that $u \alpha-v$ is a unit of $R[\alpha, \beta]$.

Let R be an integral domain with quotient field K and $R[X]$ be a polynomial ring over R in an indeterminate X. Let α be an element of an algebraic field extension of K and $\pi: R[X] \rightarrow R[\alpha]$ be the R-algebra homomorphism defined by $\pi(X)=\alpha$. Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with $\operatorname{deg} \varphi_{\alpha}(X)=t$, and write

$$
\varphi_{\alpha}(X)=X^{t}+\eta_{1} X^{t-1}+\cdots+\eta_{t}, \quad\left(n_{1}, \ldots, \eta_{t} \in K\right)
$$

We define $I_{[\alpha]}:=\bigcap_{i=1}^{t}\left(R:_{R} \quad \eta_{i}\right)$, where $\left(R:_{R} \quad \eta_{i}\right)=\left\{c \in R ; c \eta_{i} \in R\right\}$. An element α is called an anti-integral element of degree t over R if $\operatorname{Ker} \pi=$ $I_{[\alpha]} \varphi_{\alpha}(X) R[X]$.

2000 Mathematics Subject Classification: Primary 13A99; Secondary 13G05.
Keywords and phrases: unit, anti-integral element, denominator ideal.
Received November 1, 2006

Let β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b}\left(a, b, c, d \in R, a d-b c \in R^{*}, a \alpha-b \neq 0\right)
$$

where R^{*} denotes the set of units of R.
Set $\varphi_{\alpha}(X, Y)=X^{t} \varphi_{\alpha}(Y / X)$. Since $\alpha=(b \beta-d) /(a \beta-c)$, it is easily verified that

$$
\varphi_{\beta}(X)=\varphi_{\alpha}(a, b)^{-1} \varphi_{\alpha}(a X-c, b X-d)
$$

Assume that α is in K. Ratliff [7] studied the conditions for $\operatorname{Ker}(\pi)$ to have a linear base, where it is said that $\operatorname{Ker}(\pi)$ has a linear base if $\operatorname{Ker}(\pi)=\sum\left(p_{i} X-q_{i}\right) R[X]$ with $\alpha=q_{i} / p_{i}\left(p_{i} \neq 0, q_{i} \in R\right)$, that is, $\operatorname{Ker}(\pi)=$ $\left(R:_{R} \alpha\right)(X-\alpha) R[X]$, where $\left(R:_{R} \alpha\right)=\{c \in R ; c \alpha \in R\}$. Subsequently, Mirbagheri and Ratliff [3] proved that $\operatorname{Ker}(\pi)$ has a linear base if and only if $R[\alpha] \cap R\left[\alpha^{-1}\right]=R$. In [5], an element $\alpha \in K$ is called an anti-integral element over R if $\operatorname{Ker}(\pi)=\left(R:_{R} \alpha\right)(X-\alpha) R[X]$. Furthermore, in [4], the notion of an anti-integral element over R was extended to the higher degree case, that is, the case that α is an element of an algebraic field extension of K. This notion is a generalization of linear base property.

Let α be an anti-integral element over R and u, v be elements of R. In [6], they gave a condition for $\alpha-v$ to be a unit of $R[\alpha]$. Moreover, [6] gave some conditions for $u \alpha-v$ to be a unit of $R[\alpha]$. In the case of Laurent extension $R\left[\alpha, \alpha^{-1}\right]$, [1] gave a condition for $\alpha-v$ to be a unit of $R\left[\alpha, \alpha^{-1}\right]$. Let β be a linear fractional transformation of α. Then the cases of $R[\alpha]$ and $R\left[\alpha, \alpha^{-1}\right]$ are special ones of $R[\alpha, \beta]$. So it will be worth considering the case $R[\alpha, \beta]$ and we generalize the results in [1] and [6] to the case $R[\alpha, \beta]$.

Our notation is standard and our general reference for unexplained terms is [2].

First we study a criterion for $\alpha-v$ to be a unit of $R[\alpha, \beta]$. We need some lemmas:

Lemma 1. Let R be an integral domain with quotient field K. Let α be a non-zero element of an algebraic field extension of K and β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b}\left(a, b, c, d \in R, a d-b c \in R^{*}, a \alpha-b \neq 0\right) .
$$

Then $R[\alpha, \beta]=R\left[\alpha, \frac{1}{a \alpha-b}\right]$.
Proof. Since β is in $R\left[\alpha, \frac{1}{a \alpha-b}\right]$, we have $R(\alpha, \beta) \subset R\left[\alpha, \frac{1}{a \alpha-b}\right]$.
Conversely set $w=a d-b c$. Then w is a unit of R and $\frac{1}{a \alpha-b}=$ $w^{-1}(c-\alpha \beta)$. Hence $R\left[\alpha, \frac{1}{a \alpha-b}\right] \subset R[\alpha, \beta]$.

Lemma 2. Let R be an integral domain and α be an anti-integral element over R. Let β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b} \quad\left(a, b, c, d \in R, a d-b c \in R^{*}, a \alpha-b \neq 0\right) .
$$

Let u and v be elements of R such that $u \neq 0$. Assume that $u \alpha-v$ is a unit of $R[\alpha, \beta]$. Then $u(a v-b u)$ is in $\sqrt{\varphi_{\alpha}(u, v) I_{[\alpha]}}$.

Proof. Since $u \alpha-v$ is a unit of $R[\alpha, \beta]$, there exists an element $g(X, Y)$ of $R[X, Y]$ such that $(u \alpha-v) g(\alpha, \beta)=1$. Set $n=\operatorname{deg} g(X, Y)$ and

$$
g(X)=(u X-v)(a X-b)^{n} g\left(X, \frac{c \alpha-d}{a \alpha-b}\right)-(a X-b)^{n} .
$$

Then $g(X)$ is in $R[X]$ and $g(\alpha)=0$. Since α is anti-integral over R, we see that $g(X)$ is in $I_{[\alpha]} \varphi_{\alpha}(X) R[X]$. Hence there exists an element $h(X)$ of $I_{[\alpha]} R[X]$ such that $g(X)=\varphi_{\alpha}(X) h(X)$. Substituting v / u for X, we get

$$
-(a v / u-b)^{n}=g(v / u)=\varphi_{\alpha}(v / u) h(v / u) .
$$

Set $t=\operatorname{deg} \varphi_{\alpha}(X), k=\operatorname{deg} h(X)$ and $h(X, Y)=X^{k} h(Y / X)$. Then $\varphi_{\alpha}(v / u)=$ $u^{-t} \varphi_{\alpha}(u, v)$ and $h(v / u)=u^{-k} h(u, v)$. Moreover, $h(u, v)$ is in $I_{[\alpha]}$. Therefore, we have

$$
-u^{t+k-n}(a v-b u)^{n}=\varphi_{\alpha}(u, v) h(u, v) .
$$

Then, whether $t+k-n$ is non-negative or not, $u(a v-b u)$ is in $\sqrt{\varphi_{\alpha}(u, v) I_{[\alpha]}}$.

Lemma 3. Let R be an integral domain and α be an anti-integral element over R. Let β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b} \quad\left(a, b, c, d \in R, a d-b c \in R^{*}, a \alpha-b \neq 0\right) .
$$

Let u and v be elements of R such that $u \neq 0$. Let P be a prime ideal of $R[\alpha]$ or $R[\alpha, \beta]$ such that $u \alpha-v \in P$. Assume that $u(a v-b u) \in \sqrt{\varphi_{\alpha}(u, v) I_{[\alpha]}}$. Then $u^{2}(a \alpha-b) \in P$.

Proof. Since $u(a v-b u) \in \sqrt{\varphi_{\alpha}(u, v) I_{[\alpha]}}$, there exist a positive integer m and an element r of $I_{[\alpha]}$ such that $u^{m}(a v-b u)^{m}=r \varphi_{\alpha}(u, v)$. Set

$$
\varphi_{\alpha}(X)=X^{t}+\eta_{1} X^{t-1}+\cdots+\eta_{t},\left(\eta_{1}, \ldots, \eta_{t} \in K\right)
$$

where K is the quotient field of R. Then there exist elements $\lambda_{1}, \ldots, \lambda_{t} \in K$ such that

$$
\begin{align*}
& X^{t}+\eta_{1} u X^{t-1}+\cdots+\eta_{t-1} u^{t-1} X+\eta_{t} u^{t} \\
= & (X-v)^{t}+\lambda_{1}(X-v)^{t-1}+\cdots+\lambda_{t-1}(X-v)+\lambda_{t} . \tag{1}
\end{align*}
$$

Note that $\lambda_{1}, \ldots, \lambda_{t}$ are in $\left(\eta_{1}, \ldots, \eta_{t}\right)$ and

$$
\lambda_{t}=v^{t}+\eta_{1} u v^{t-1}+\cdots+\eta_{t-1} u^{t-1} v+\eta_{t} u^{t}=\varphi_{\alpha}(u, v),
$$

where $\left(\eta_{1}, \ldots, \eta_{t}\right)$ is the R-module generated by $\eta_{1}, \ldots, \eta_{t}$. In equation (1), substituting $u \alpha$ for X and multiplying r by the both sides of equation (1),
we have

$$
r(u \alpha-v)^{t}+r \lambda_{1}(u \alpha-v)^{t-1}+\cdots+r \lambda_{t-1}(u \alpha-v)+r \lambda_{t}=0 .
$$

Therefore,

$$
\begin{aligned}
& r(u \alpha-v)^{t}+r \lambda_{1}(u \alpha-v)^{t-1}+\cdots+r \lambda_{t-1}(u \alpha-v) \\
= & -r \lambda_{t}=-r \varphi_{\alpha}(u, v)=-u^{m}(a v-b u)^{m} .
\end{aligned}
$$

Because $u \alpha-v \in P$ and $r \lambda_{1}, \ldots, r \lambda_{t-1} \in R$, we obtain $u^{m}(a v-b u)^{m} \in P$. Hence $u(a v-b u) \in P$. Moreover, $u \alpha-v \in P$. Therefore, $u^{2}(a \alpha-b)=$ $u a(u \alpha-v)+u(a v-b u) \in P$.

Theorem 4. Let R be an integral domain and α be an anti-integral element over R. Let β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b} \quad\left(a, b, c, d \in R, a d-b c \in R^{*}, a \alpha-b \neq 0\right) .
$$

Let v be an element of R. Then the following three conditions are equivalent:
(i) $\alpha-v$ is a unit of $R[\alpha, \beta]$.
(ii) $a v-b \in \sqrt{\varphi_{\alpha}(v) I_{[\alpha]}}$.
(iii) $a \alpha-b \in \sqrt{(\alpha-v) R[\alpha]}$.

Proof. (i) \Rightarrow (ii) In Lemma 2, set $u=1$. Then we see that $a v-b$ is in $\sqrt{\varphi_{\alpha}(1, v) I_{[\alpha]}}=\sqrt{\varphi_{\alpha}(v) I_{[\alpha]}}$.
(ii) \Rightarrow (iii) Set $A=R[\alpha]$ and let P be an arbitrary prime ideal of A such that $\sqrt{(\alpha-v) A} \subset P$. Lemma 3 asserts that $a \alpha-b$ is in P. Therefore, $\sqrt{(a \alpha-b) A} \subset P$. Since $\bigcap_{\alpha-v \in P} P=\sqrt{(\alpha-v) A}$, this asserts that $\alpha \alpha-b \in$ $\sqrt{(a \alpha-b) A}$.
(iii) \Rightarrow (i) By the condition (iii), there exist a positive integer k and an element $p(X)$ of $R[X]$ such that $(a \alpha-b)^{k}=(\alpha-v) p(\alpha)$. Then Lemma 1 implies that $p(\alpha) /(a \alpha-b)^{k}$ is in $R[\alpha, \beta]$. Hence $(\alpha-v) p(\alpha) /(a \alpha-b)^{k}=1$ and $\alpha-v$ is a unit of $R[\alpha, \beta]$.

The following generalizes the results of $[6$, Theorem 6] and $[1$, Proposition 9].

Corollary 5. Let R be an integral domain and α be an anti-integral element over R. Let v be an element of R. Then the following two assertions hold:
(1) $\alpha-v$ is a unit of $R[\alpha]$ if and only if $\varphi_{\alpha}(v) I_{[\alpha]}=R$.
(2) Suppose that $\alpha \neq 0$. Then $\alpha-v$ is a unit of $R\left[\alpha, \alpha^{-1}\right]$ if and only if $v \in \sqrt{\varphi_{\alpha}(v) I_{[\alpha]}}$.

Proof. It is immediate from Theorem 4 by setting $a=0, b=-1, c=1$, $d=0$ in (1), and setting $a=1, b=0, c=0, d=-1$ in (2).

Our main theorem is the following:
Theorem 6. Let R be an integral domain and α be an anti-integral element over R. Let β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b} \quad\left(a, b, c, d \in R, a d-b c \in R^{*}, a \alpha-b \neq 0\right) .
$$

Let u and v be elements of R such that $u \neq 0$. Then the following three conditions are equivalent:
(i) $u \alpha-v$ is a unit of $R[\alpha, \beta]$.
(ii) $(u, v) R[\alpha, \beta]=R[\alpha, \beta]$ and $u(a v-b u) \in \sqrt{\varphi_{\alpha}(u, v) I_{[\alpha]}}$.
(iii) $a \alpha-b \in \sqrt{(u \alpha-v) R[\alpha, \beta]}$.

Proof. (i) \Rightarrow (ii) Assume that $(u, v) R[\alpha, \beta] \neq R[\alpha, \beta]$. Then there exists a prime ideal P of $R[\alpha, \beta]$ such that $(u, v) R[\alpha, \beta] \subset P$. Thus $u \alpha-v$ is in P. This contradicts the condition (i). The latter half is proved by Lemma 2.
(ii) \Rightarrow (iii) Let P be an arbitrary prime ideal of $R[\alpha, \beta]$ such that $u \alpha-v \in P$. Then $u^{2}(a \alpha-b) \in P$ by Lemma 3 . We shall show that u is not in P. Assume that $u \in P$. Then u and v are in P because $u \alpha-v \in P$. This contradicts the fact $(u, v) R[\alpha, \beta]=R[\alpha, \beta]$. Hence $a \alpha-b \in P$. Note
that $\sqrt{(u \alpha-v) R[\alpha, \beta]}=\bigcap P$, where the intersection is taken over P such that $u \alpha-v \in P \quad$ and $P \in \operatorname{Spec} R[\alpha, \beta]$. This implies that $a \alpha-b \in$ $\sqrt{(u \alpha-v) R[\alpha, \beta]}$.
(iii) \Rightarrow (i) By the condition (3), there exist a positive integer k and an element $p(X, Y)$ of $R[X, Y]$ such that $(a \alpha-b)^{k}=(u \alpha-v) p(\alpha, \beta)$. Lemma 1 implies that $p(\alpha, \beta) /(a \alpha-b)^{k} \in R[\alpha, \beta]$. Hence $(u \alpha-v)\left(p(\alpha, \beta) /(a \alpha-b)^{k}\right)=1$, and $u \alpha-v$ is a unit of $R[\alpha, \beta]$.

Corollary 7 (cf. [6, Theorem 11]). Let R be an integral domain and α be an anti-integral element over R. Let u and v be elements of R such that $u \neq 0$. Then the following conditions are equivalent:
(i) $u \alpha-v$ is a unit of $R[\alpha]$.
(ii) $(u, v) R[\alpha]=R[\alpha]$ and $u \in \sqrt{\varphi_{\alpha}(u, v) I_{[\alpha]}}$.

Proof. By setting $a=0, b=-1, c=1, d=0$ in Theorem 6 , we can prove Corollary 7.

Corollary 8. Let R be an integral domain and α be non-zero antiintegral element over R. Let u and v be elements of R such that $u \neq 0$. Then the following conditions are equivalent:
(i) $u \alpha-v$ is a unit of $R\left[\alpha, \alpha^{-1}\right]$.
(ii) $(u, v) R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]$ and $u v \in \sqrt{\varphi_{\alpha}(u, v) I_{[\alpha]}}$.
(iii) $\alpha \in \sqrt{(u \alpha-v) R\left[\alpha, \alpha^{-1}\right]}$.

Proof. It is clear by Theorem 6 by setting $a=1, b=0, c=0, d=-1$.
Let R be an integral domain and α be an anti-integral element over R. Let β be a linear fractional transform of α and u, v be elements of R such that $u \neq 0$. We cannot use the condition $(u, v) R[\alpha]=R[\alpha]$ instead of $(u, v) R[\alpha, \beta]=R[\alpha, \beta]$ in the condition (ii) of Theorem 6 as the following example shows. Also we cannot use the condition $a \alpha-b \in \sqrt{(u \alpha-v) R[\alpha]}$ instead of $a \alpha-b \in \sqrt{(u \alpha-v) R[\alpha, \beta]}$ in the condition (ii) of Theorem 6.

Example 9. Set $R=\mathrm{Z}$ and $\alpha=\sqrt{3}$. Then α is an anti-integral element over Z. Set $u=3, v=0$ and $\beta=(\sqrt{3})^{-1}$. Then the following are easily verified:
(1) $u \alpha-v=3 \sqrt{3}$ is a unit of $\mathbf{Z}\left[\sqrt{3},(\sqrt{3})^{-1}\right]$.
(2) $(u, v) \mathbf{Z}[\sqrt{3}]=3 \mathbf{Z}[\sqrt{3}] \neq \mathbf{Z}[\sqrt{3}]$.
(3) $a \alpha-b=\sqrt{3} \notin 3 \sqrt{3} \mathbf{Z}[\sqrt{3}]=\sqrt{(u \alpha-v) R[\alpha]}$.
(4) Set $P=\sqrt{3} \mathbf{Z}[\sqrt{3}]$. Then P is a prime ideal of $\mathbf{Z}[\sqrt{3}], u \alpha-v=3 \sqrt{3} \in P$ and $(u, v) \mathbf{Z}[\sqrt{3}]=3 \mathbf{Z}[\sqrt{3}] \subset P$. Hence $u \alpha-v$ is not a unit of $\mathbf{Z}[\sqrt{3}]$.

References

[1] M. Kanemitsu, K. Baba and K. Yoshida, The invertibility of an element $\alpha^{2}-a$ of a super-primitive extension $R[\alpha] / R$ and a linear form of a Laurent extension $R\left[\alpha, \alpha^{-1}\right]$, Scientiae Mathematicae 3(3) (2000), 371-376.
[2] H. Matsumura, Commutative Algebra, 2nd ed., Benjamin, New York, 1980.
[3] A. Mirbagheri and L. J. Ratliff, Jr., On the intersection of two overrings, Houston J. Math. 8 (1982), 525-535.
[4] S. Oda, J. Sato and K. Yoshida, High degree anti-integral extensions of Noetherian domains, Osaka J. Math. 30(1) (1993), 119-135.
[5] S. Oda and K. Yoshida, Anti-integral extensions of Noetherian domains, Kobe J. Math. 5 (1988), 43-56.
[6] S. Oda and K. Yoshida, On units of an anti-integral extension $R[\alpha]$ and conditions for a linear fractional transformation β of α to satisfy $R[\beta]=R[\alpha]$, submitted to Algebra Colloquium.
[7] L. J. Ratliff, Jr., Conditions for $\operatorname{Ker}(R[X] \rightarrow R[c / b])$ to have a linear base, Proc. Amer. Math. Soc. 39 (1973), 509-514.

