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Abstract

We establish the orientability and orientations of vector bundles that
arise as the real parts of real structures by utilizing spin structures.

1. Introduction

Unlike complex algebraic varieties, real algebraic varieties are in
general nonorientable, the simplest example being the real projective

plane .2RP  Even if they are orientable, there may not be canonical

orientations. It has been an important problem to resolve the orientability
and orientation issues in real algebraic geometry. In 1974, Rokhlin
introduced the complex orientation for dividing real algebraic curves in

,2RP  which was then extended around 1982 by Viro to the

so-called type-I real algebraic surfaces. A detailed historic count was
presented in the lucid survey by Viro [10], where he also made some
speculations on higher dimensional varieties.

In this short note, we investigate the following more general
situation. We take XX →σ :  to be a smooth involution on a smooth
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manifold of an arbitrary dimension. (It is possible to consider involutions
on topological spaces with appropriate modifications.) Henceforth, we will

assume that X is connected for certainty. In view of the motivation above,

let us denote the fixed point set by ,RX  which in general is disconnected

and will be assumed to be non-empty throughout the paper. Suppose

XE →  is a complex vector bundle and assume σ has an involutional

lifting Eσ  on E that is conjugate linear fiberwise. We call Eσ  a real

structure on E and its fixed point set RE  a real part. Clearly the

restricted projection RR XE →  is a real vector bundle of a rank equal to

the complex rank of E. The main results in the paper relate the

orientability and orientations of the bundle RE  with spin structures on

E. In the special cases of 4,2dim =X  and ,TXE =  we can already

recover and extend results obtained by Rokhlin and Viro.

Aside from real algebraic varieties, we are mainly motivated by the
real versions of Gauge Theory, where it is important to be able to
determine the orientability and orientations of various real moduli

spaces. In such a context, E will be the (virtual) index bundle of a family

of Fredholm operators parameterized by a space X.

Edmonds [3] was the first to explore the orientability of the fixed
point set of an involution with the help of spin structures. He showed that
if the involution preserves a spin structure on the manifold, in particular
it must preserve the orientation of the manifold, then the fixed point set

is an orientable submanifold. Our result in the paper with ,TXE =  is

complementary to Edmonds’ in the sense that when ( ),122dim += kX  our

real structure reverses the orientation on X so Edmonds’ theorem does

not apply. In addition, we will have results about the orientation bundle

of RE  when the spin structure is not preserved by .Eσ  In terms of

techniques, the approach taken in [3] is topological, while ours is more
direct and geometrical. Bott and Taubes [2] gave a direct proof of
Edmonds’ result, and it seems that our approach is more comparable to
theirs. Another direct proof of Edmonds’ theorem appeared in Ono [7],

which also contains a spinc
 
version. In turn this was extended in Ono and

Stolz [8] to infinitely dimensional loop spaces and ±pin  manifolds.
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Moreover, Nagami [5] used branched covers to characterize those
orientations on the fixed point sets that were obtained in [7]. Our paper
differs from these papers mainly in that the dealing of real structures

forces us to take a different (conjugate) lifting on the frame bundle of E,

although there is a certain common thread of the methods used in all
papers.

For a brief description of the main results, Theorem 1 shows that the

real bundle RE  is orientable and an orientation is determined by a

conjugate spin lifting, under the assumption that the real structure Eσ  is

compatible with a spin structure on E. Without assuming this

compatibility, Theorem 4 characterizes the orientation bundle of RE  in

terms of the deficiency of the compatibility. We also discuss a few
examples as well as some remarks concerning the case when the bundle

E is not spin.

2. The Compatible Spin Case

To set up the notations, consider a rank r Riemannian oriented vector

bundle E on a smooth manifold X, with the ( )rSO -frame bundle of E

denoted by P. By definition, a spin structure is a class ( )2
1 , ZPH∈ξ

that restricts fiberwise to the non-trivial element in ( )( )., 2
1 ZrSOH  Thus

there associates a Spin(r)-principal bundle XP →ξ  together with a

fiber-preserving double covering .PP →ξ  (To be precise, we should

really call the covering PP →ξ  a spin structure on E.)

Let XX →σ :  be a smooth, not necessarily orientation-preserving,

involution. Denote its fixed point set by .RX  Suppose from now on that E

is a rank r Hermitian complex vector bundle and that σ can be lifted as a

real structure Eσ  on E. Namely Eσ  is an involution and is fiberwise

conjugate linear on E. We will also assume that Eσ  preserves the

Hermitian fiber metric so that it induces another lifting Uσ  on the

unitary frame bundle .UP  Note that this is a conjugate morphism in the

sense that ( ) ( ) ,gg pp UU σ=σ  where ( )rUPp U ∈∈ g,  and g  is the
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complex conjugate. Using the standard inclusion ( ) ( ),2: rSOrU →ρ ⊂  the

lifting Uσ  carries over to ( ),2rSOPP U ρ×=  which we denote by .Pσ

Note that Pσ  is again a conjugate morphism since ( ) ( )gg pp PP σ=σ  for

( ),2, rSOPp ∈∈ g  where 1−= TTgg  with 1−= TT  to be the ( ) ( )rr 22 ×

diagonal matrix

{ }.1,1...,,1,1,1,1diag −−−

Remark. When the complex rank r is odd, the real structure Eσ  on

E is orientation reversing fiberwise, hence it does not induce a bundle
morphism on the ( )rSO 2 -frame bundle P. When r is even, Eσ  preserves

the orientation and hence induces a bundle morphism on P which is
however different from the Pσ  defined above, as the latter is a conjugate

morphism.

We now introduce the compatibility between a spin structure and a
real structure.

Definition. We say a real structure EEE →σ :  is compatible with

a spin structure ( )2
1 , ZPH∈ξ  on E if the induced conjugate lifting

PPP →σ :  satisfies ,ξ=ξσ∗
P  or equivalently, if there exists a

conjugate lifting morphism ,: ξξξ →σ PP  namely ( ) ( ) ,gg pp ξξ σ=σ  for

,ξ∈ Pp  ( ).2rSpin∈g

Here the conjugation on ( )rSpin 2  is the lifting of that on ( )rSO 2  via

the double covering ( ) ( ).22 rSOrSpin →  Alternatively, it is the restriction

of the conjugation on the Clifford algebra ( ) ( ),2 rr ClCl CR =  where it is

induced by the complex conjugation on C. Note there are always two
conjugate liftings ξσ  on ξP  whenever there exists one. The equivalence

in the definition is for the same topological reason as the usual case. In
the definition above, we adopt the term “compatible” instead of the term
“preserving”, in order to distinguish from the usual case where only non-
conjugate lifting morphisms are involved.

Theorem 1. Suppose a complex vector bundle E has a spin structure ξ
and a real structure Eσ  that is compatible with ξ. Then any conjugate
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lifting ξσ  on the spin bundle ξP  determines a unique orientation on the

real vector bundle .RR XE →  The orientations resulting from the two

different conjugate liftings are exactly opposite each other.

Proof. First we consider the special case that E is a complex line

bundle. Here P is an ( ) ( )12 USO = -bundle while the fixed point set

RXP →σ  of the conjugate lifting PPP →σ :  is a 2Z -subbundle. In

fact, if p, gp  are fixed points on the same fiber of ,σP  then =gp

( ) gg ppP =σ  forcing .gg =  It follows that ( )11 U∈±=g  and σP  is a

2Z -bundle. Clearly σP  is the associated principal bundle of the real line

bundle .RR XE →  Let ξσ  be one of the two spin liftings on .ξP  Since ξσ

is also a conjugate morphism on the bundle ξP  of the ( ) ( )12 USpin =

structure group, one shows similarly that the fixed point set RXP →σ
ξ

is again a principal 2Z -bundle.

Fix a fiber of σ
ξP  for a moment and let a, b be the two points on the

fiber. Then ab −=  with ( ),21 2 Spin⊂∈− Z  as we have shown above.

Hence under the spin double covering ( ) ( ),,: abPP π=π→π ξ  as 1−  is

mapped to 1 in the standard covering ( ) ( ).22 SOSpin →  In other words,

any fiber of σ
ξP  is mapped to a single point of the corresponding fiber of

.σP  By varying the fibers on ,RX  the bundle σ
ξP  is mapped onto a

unique trivialization of .RXP →σ  This in turn yields a unique

orientation of the line bundle .RE  Furthermore, if we take the other spin

lifting ,: τσ=σ′ ξξ D  where ξξ →τ PP:  is the deck transformation of ,π

then any fiber of σ′
ξP  is mapped to the other point of the corresponding

fiber of .σP  Thus ξσ′  yields exactly the opposite orientation of .RE  This

proves the theorem in the case of a complex line bundle E.

The higher rank case follows easily by applying the above argument

to the complex determinant bundle .det EEL r∧==  Indeed, from E,
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the line bundle L inherits a spin structure as well as a compatible real

structure. Furthermore any conjugate spin lifting for E induces one for L

and consequently yields a unique orientation on .RL  Finally note that

CR ⊗= EE  on ,RX  the real determinant REdet  is exactly =RL

( ) .det RE  Hence RE  and RL  have the same orientations.

In the proof we have implicitly used the fact that on a complex vector

bundle E, the spin structures are in one-to-one correspondence with the

square roots of the canonical bundle (i.e., square roots of the determinant

bundle). In this terminology, a real structure Eσ  is compatible with a

spin structure if and only if Eσ  can be lifted to a conjugate linear

homomorphism on the corresponding square root.

Remark. A pair of opposite orientations is sometimes referred to as a

semi-orientation, which makes sense only if the underlying manifold is

disconnected. Regardless of the two spin liftings on ,ξP  Theorem 1 can be

put simply as that on a complex bundle E with a real structure, any spin

structure on E that is compatible with the real structure determines a

unique semi-orientation on .RE  (The original Theorem 1 is a bit stronger

in that it actually specifies the orientations, not just semi-orientations.)

This is how we will state the next two corollaries for the sake of

simplicity.

Corollary 2. Assume X has a trivial ( )2
1 , ZXH  group and Eσ  is a

real structure on a complex vector bundle E. If E is spin, then there is a

unique semi-orientation on .RE

The proof is clear: there is only one spin structure on E and it must

therefore be compatible with .Eσ  The corollary is useful because without

assuming ( ) ,0, 2
1 =ZXH  it is often difficult to determine whether a real

structure is compatible with a spin structure.

Suppose ( )JX ,  is an almost complex manifold and XX →σ :  is a

real structure, that is, TXTX →σ∗ :  satisfies .∗∗ σ−=σ DD JJ  Applying

Theorem 1 to the complex vector bundle TX gives us
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Corollary 3. Any spin structure on X that is compatible with σ
determines a unique semi-orientation on the real part .RX

Example. Real algebraic curves. Here 2RPR ⊂X  is defined by a

real homogeneous polynomial of three variables and 2CP⊂X  is the

complexification. The real structure σ on X is the restriction of the

complex conjugation on .2CP  Of course RX  consists of circles

topologically so is certainly orientable, although it does not inherit any

obvious orientation. The complement RXX \  can have at most two

connected components. When there are two components, RX  is called a

dividing curve. In this case, the orientations on both components yield

the same semi-orientation on the boundary ,RX  which is then called the

complex orientation of RX  by Rokhlin [10]. For non-dividing curves, no

canonical semi-orientation exists on .RX  Instead, semi-orientations

depend on and are determined by compatible spin structures on X, a
result first obtained by Natanzon [6], where he uses the Fuchsian group
of hyperbolic automorphisms of the Riemann surface X. Applying
Corollary 3 gives an alternative and easier proof of this. (The author has
not checked how the two kinds of semi-orientations might be related.)
Actually the first part of Theorem 1 states a bit stronger result that each
conjugate lifting in the spin bundle determines a unique orientation, not

just a semi-orientation, on .RX  It can be shown that for any real

algebraic curve with non-empty ,RX  there is always a spin structure on

X, that is, compatible with the conjugation. (This follows from [6;
Theorem 5.1], where compatible spin structures are shown in one-to-one
correspondence with compatible Arf functions on X. The existence of the
latter is given in [6; Theorem 3.4]. In [6], non-singular Arf functions mean

∅≠RX  and spinor bundles on real curves mean compatible spin

structures in our sense, cf. Section 3 and Section 5 of the paper.) As

alluded in the Introduction, Edmonds’ result [3] is not applicable to RX

here, since σ is orientation reversing on X.

Example. Real algebraic surfaces. Here 3RPR ⊂X  and ,3CP⊂X

given by a real polynomial of four variables. The Lefschetz hyperplane
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theorem tells us that X is simply connected and is spin if further the

defining polynomial has an even degree. Thus Corollaries 2 and 3 imply

that RX  carries a canonical semi-orientation, as long as the degree of

RX  is even. In the special case of type-I real surfaces, that is, for those

with [ ] ( ),,0 22 ZR XHX ∈=  Viro [10] has constructed semi-orientations

on RX  by using the double cover of X branched along .RX  Our

corollaries here apply to both type-I and non type-I surfaces. Note

Edmonds’ result [3] can also be applied to show that RX  is orientable

when X is spin, although it does not tell us anything about the semi-

orientation.

Theorem 1 and its corollaries apply equally well to higher
dimensional real algebraic varieties. In Viro [10], only some speculated
results were possible to make for higher dimensions, which moreover
require some unsettled assumptions such as [ ] ( ),,0 2ZR XHX r∈=

(where rX 2dim =R ) and ( ) .0, 2
1 =ZXH

The set σS  of spin structures compatible with a given real structure

Eσ  on E is an affine space modelled on ( ) ., 2
1 σZXH  The case of real

algebraic curves already shows that RE  gets different semi-orientations

from different spin structures in .σS  In general it remains to be seen how

semi-orientations depend on classes in ( ) ., 2
1 σZXH  This will be

answered readily in the next section.

3. The Incompatible Spin Case

Next we move on to study the case where the real structure is not
compatible with the spin structure.

Let PEPE σσξ ,,,,  be defined as in the previous section, but no

longer assume ( ).,0 2
1 ZPHP ∈=ξ−ξσ∗  Nonetheless it is easy to check

that ξ−ξσ∗
P  is the pull-back of a class ( ) ,, 2

1 σ∈α ZXH  i.e., α is

invariant under σ. So we can write α+ξ=ξσ∗
P  using the injection

( ) ( ).,, 2
1

2
1 ZZ PHXH →
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Fix a spin bundle ξP  for the spin structure ξ and choose a real line

bundle Xl → representing ( ) .: 1 α=α lw  Put any metric on l and let lP

denote the principal 2Z -bundle. Then we have the twisted bundle lP ,ξ  of

ξP  by lP  and lP ,ξ  is a spin bundle of the spin structure .ξσ∗  Here lP ,ξ  is

defined by the transition functions ,ijij h⋅g  if ijij h,g  are respectively the

transition functions of ξP  and .lP  We need to set up bundles carefully,

not just their isomorphism types, so that we can state the following
result.

Theorem 4. Suppose Eσ  is a real structure on a complex bundle E

that admits a spin structure ξ. Then for the real part ,RR XE →  we have

( ) ,det1 α′=REw  where .
RX|α=α′  Furthermore, up to a sign, there is a

canonical isomorphism

,det lE ′→R

where l′  is the restriction of l to .RX  In other words, the line bundle

( ) 1det −′⊗ lER  carries a canonical semi-orientation.

Proof. As in the proof of Theorem 1, we can assume E has rank 1 by

taking determinant if necessary. The idea is then to consider the double

cover of X corresponding to α and apply Theorem 1 to the pull backs on

the cover.

Rename lPX =~
 so we have a double covering .

~
: XX →π  By

definition, XX →~
 consists of local fiberwise orientations of l and is

endowed with the natural topology. Thus the pull back bundle

Xll
~~

→π= ∗  is trivial with a canonical orientation and the deck

transformation XX
~~

: →τ  of π lifts to 1−  under the trivialization, so we

have the quotient bundle .
~

ll =τ

Since ( ),, 2
1 ZXH∈α=ασ∗  there is a lifting homomorphism

lll →σ :  (not unique, lσ−  is the other). This in turn gives a lifting

involution XX
~~:~ →σ  on the associated principal bundle. Note on the
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real parts, the restriction RR XX →π ~
:  is not necessarily surjective. To

identify the image, note the lifting homomorphism lσ  must restrict to

1±  on the fibers of l over ,RX  as it preserves a fiber metric. Let ±
RX

denote the sets of those components of ,RX  where ,1±=σl  respectively

over the fibers. Then −+= RRR XXX ∪  and +→π RR XX
~

:  is surjective,

hence is a double cover. Of course, the double cover is the principal
bundle of the line bundle

.: ++ →|′= + R
R

Xll
X

Our first goal is to show that the orientation bundle of RE  restricted to

+
RX  is naturally isomorphic to +l  up to a sign.

Let XP
~~ →  be the pull back of P via π. So we have also the

homomorphism PP →π ~
:  and the pull back ( )2

1 ,
~~ ZPH∈ξ  of ξ, which

is a spin structure on .
~
P  Clearly the pull back bundle ξP

~  of ξP  is the

spin bundle of .~ξ

Now the conjugate lifting PPP →σ :  pulls back a conjugate lifting

PPP
~~:~ →σ  over the involution .~~:~ XX →σ  Since 0=απ∗

( ),,~
2

1 ZXH∈   the last lifting preserves the spin structure ξ~  on :~
P

( ) .0~~~ =απ=ξ−ξσπ=ξ−ξσ ∗∗∗∗
PP

Thus Theorem 1 applies to show that the fixed point set σP
~

 of Pσ~  is a

trivial bundle on .
~

RX  To actually obtain a specific trivialization, we need

to examine the spin bundle of ξ~  and the spin liftings of Pσ~  as in the

proof of Theorem 1. So consider the spin bundles lPP ,, ξξ  of ξ and ξσ∗

that were set up early. By definition of l, we have a conjugate lifting

,: lP P
∨

ξ ξσ →  (not unique, 
∨−σ  is the other) of .: XX →σ  Since the pull

back of l via π is a trivial bundle, we have a pull back conjugate morphism

of 
∨σ
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ξξξ →σ PP
~~

:~ (1)

on the double cover ,
~
X  where ξP

~  is the pull back of .ξP  It is not hard to

see that ξP
~  is the spin bundle of ξ~  and the conjugate morphism ξσ~  is a

spin lifting of .
~~

:~ PPP →σ  Let σ
ξP

~  be the fixed point set of .~
ξσ  From

the proof of Theorem 1, the image set σσ
ξ → PP

~~  gives rise to our desired

trivialization of .
~~

RXP →σ

Next check the lifting τ~  of the deck transformation τ on .~σP  Since

the construction of the conjugate morphism ξσ~  in (1) uses the lifting 1−

on the trivial bundle l
~

 (namely, the lifting switches the orientations of

the associated trivial principal bundle), the lifting of τ on ξP
~  will switch

the fixed points in σ
ξP

~  into the non-fixed points. Therefore, the push-

forward lifting τ~  on σP
~

 will switch the trivialization obtained from the

image of σ
ξP

~  into the opposite. In other words, the quotient bundle

+σ →τ RXP ~~  is the principal bundle associated to the double cover

.
~

: +→π RR XX  Since +|
R

R XEdet  is the line bundle of τ= σσ ~~
PP  and

+l  is that of the principal bundle ,~: +→π RR XX  this means that

+|
RR XEdet  is isomorphic to .+l

So far, the only choice we have made is for the lifting ,: .lP P
∨

ξ ξσ →  If

we use 
∨−σ  instead, we would get the opposite trivialization on ,

~σP  which

descends to the negative of the isomorphism on .~~ τ= σσ PP  That is to

say, the above isomorphism +→| + lE XRRdet  is well-defined up to a sign.

Finally we consider the other components ,RR XX ⊂−  where the lift

1−=σl  over the fibers of l. However for the lifting ,: lll →σ−  the

argument above is suitable and can be repeated to show that −|
RR XEdet
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is naturally isomorphic to −|′=−
RXll  up to a sign. Combining the two

parts together, we have the required isomorphism .det lE ′→R  This

surely implies ( ) α′=REw1  as stated in the theorem.

Note that Theorem 4 is consistent with Theorem 1: In the compatible

spin case, Xl →  is a trivial bundle. Fix a trivialization on l. Each spin

lifting in Theorem 1 picks up the lifting 
∨σ  as in the proof of Theorem 4,

hence determines a unique isomorphism lE ′→Rdet  and an orientation

on RE  as well. Switching between the two spin liftings corresponds to

switching between 
∨σ  and .

∨−σ

For a simple illustrative example, consider the Hopf surface

( { } ) ,0\2 GX C=  where G is the infinite cyclic group generated by

( ) ( ).2,2, 1221 zzzz 6  The complex conjugation on 2C  descends to a real

structure σ on X. Note that σ switches the two spin structures on
31 SSX ×≈  and the real part is a Klein bottle.

Remark. In [3], Edmonds showed that for a smooth involution on a

spin manifold X, the orientation bundle of the fixed point set F lies in the

image set of the restriction map ( ) ( ).,, 2
1

2
1 ZZ FHXH →  It is not clear

to us how the proof of Theorem 4 can be adapted here since we have used

essentially that E is a complex vector bundle, although we speculate that

Edmonds’ result can be strengthened in a way similar to Theorem 4.

If ( )2
1

1 , ZPH∈ξ  is another spin structure on E and 111 ξ−ξσ=α ∗
P

( ),, 2
1 ZXH∈  Theorem 4 would imply 

RX|α=α′ 11  must be .α′  This

indeed is true, following from the simple calculation

,1 γ−γσ=α−α ∗
P

where ( ),, 2
1

1 ZPH∈ξ−ξ=γ  and ∗σP  of course restricts to the identity

on ,RX  so .01 =α′−α′

As a kind of by-product, we now find out how the orientations on RE

depend on the compatible spin structures, which is an extension of
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Theorem 1. So continue using ξξσ PE E ,,,  as in Theorem 1. Moreover,

let η be a second spin structure on E that is compatible with Eσ  and ηP

be the spin principal bundle. Assume .α+ξ=η  We have seen that

( )σ∈α 2
1 , ZXH  at the end of Section 2. Choose a line bundle Xl →

representing α. Then as in the proof of Theorem 4, σ lifts to an involution

lσ  on l and the restriction 1±=′l  on fibers over .RX  Recall from

Theorem 1, each spin conjugate lifting on ξP  or ηP  determines a unique

orientation on .RE

Proposition 5. Upon suitable choices of spin conjugate liftings on

,, ηξ PP  the corresponding orientations on RE  differ by a factor of value

1±=′l  on .RX

Proof. Adopting a similar strategy as in Theorem 4, but here for a
slight advantage, we will work with vector bundles instead of principal
bundles.

So let the complex line bundle K be a square root of ,det E

representing the spin structure ξ. Then by definition of lKl R⊗,  is a

square root of ,det E  representing the spin structure .η  Since Eσ  is

compatible with ξ, ,det Eσ  lifts to a conjugate linear morphism ξσ̂  on K

via the squaring map

.,det vvvEK ⊗→ 6

Moreover, similar to the proof of Theorem 1, the fixed points σK  of ξσ̂  is

a real line bundle on ,RX  and it determines a unique orientation on RE

through the squaring map .det REK →σ  (Surely this is another proof of

Theorem 1 using vector bundles alone.)

Now the lifting ξσ̂  coupled with lσ  yields a conjugate linear lifting

l,ˆ ξσ  on .lK R⊗  Then the fixed points of lK R⊗  gives another

orientation on ,RE  as in the previous paragraph. Clearly, the two

orientations on RE  constructed here differ by a factor of .l′  The theorem
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follows if we choose the spin conjugate liftings on ηξ PP ,  that are

transferred from ξσ̂  and .ˆ , lξσ

Proposition 5 can be generalized to incompatible spin structures in
the situation of Theorem 4. The details are left to the reader.

4. Remarks on the Non-spin Case

A complex vector bundle E has a canonical spinc bundle

( )rSpinPP c
Uc 2ρ×=  from the complex frame bundle UP  and the

natural homomorphism ( ) ( ).2: rSpinrU c→ρ  Note, unlike the spin case,

that there is always a canonical conjugate lifting morphism cσ  on ,cP

where ( ) ( ) ( )122 UrSpinrSpinc
±×=  inherits a conjugation from ( )rSpin 2

and ( ).1U

Squaring the ( )1U  factor of ( )rSpinc 2  yields a bundle morphism

,Lc PP →  where LP  is the principal bundle of .det EL =  However,

unlike the spin case, the fixed point set σ
cP  of cσ  no longer gives any

trivialization of .σ
LP  To see this, consider the essential case that LE =

is a complex line bundle. Then cP  is a ( )2cSpin -bundle and σ
cP  is a

22 ZZ × -bundle. It is not hard to check that σσ → Lc PP  is a surjective

homomorphism, hence does not single out a trivialization of the 2Z -

bundle .σ
LP  (Essentially, this is due to that the real element { }ii,  of

( ) ( ) ( )112 UUSpinc
±×=  is mapped to .1 2

2 Zi ∈−= ) Of course we know

already that σ
LP  namely RE  may not be orientable, as shown by the real

part 2RP  of 2CP  with the standard complex conjugation. (As pointed out

in the previous paragraph, the canonical spinc structure on a complex
manifold is always compatible with any real structures.)

Borel and Haefliger [1, Proposition 5.18] showed that for an algebraic

complex vector bundle E defined over R, the Chern class ( )Ec1

determines ( ),1 REw  both classes as algebraic cycles, via a map that is
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constructed using their 2Z  intersection theory and fundamental class.

This suggests that in general, ( )Ew2  could relate to ( )REw1  in some way.

One way to clarify this sentence seems to be the following “virtual
bundle” version of our early results in Section 2.

Consider two complex vector bundles XFE →,  both of which are

equipped with real structures. Let FES −=  denote the virtual bundle

in the K-theory. Then S has an induced real structure in a proper sense.

Suppose S is spin, i.e., the Stiefel-Whitney class

( ) ( ) ( ) 0222 =−= FwEwSw

(E, F are orientable!), and assume there is a spin structure on S that is

compatible with the real structure. Then RS  has a unique semi-

orientation, namely, the orientation bundles of RR FE ,  are isomorphic

and the isomorphisms are unique up to constant multiples. All of these

amount to applying Theorem 1 to the determinant ⊗= ES detdet

( ) ,det ∗F  which is a usual complex line bundle.

The previous remark is meant to reflect that roughly speaking,

complex vector bundles with the same 2w  have the same kind of

orientability for their real parts. Besides the virtual bundle version, there
is also a “relative” version, where we consider complex vector bundles

YFXE →→ ,  with real structures and a smooth map YXf →:  that

is compatible with the involutions. Then assuming f has a spin structure

that is compatible with the real structure in a proper sense, one concludes

that the map f is orientable with a well-defined semi-orientation. In

essence this relative version is simply to translate everything from the

virtual bundle .FfE ∗−  The orientability of f is used in order to define

the degree of f, which will be studied elsewhere [4].

Without having ( ) ,01 =REw  one might turn to a characteristic

submanifold W of ( ),1 REw  i.e., a codimension 1 submanifold of RX  such

that [ ] ( ).1 REwWPD =  It is perhaps possible to have a natural candidate

of W in some situations, and it would be interesting to figure out the

structure of “chambers” in the complement of W.
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