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Abstract

For an integer ,1≥m  a combinatorial manifold M
~

 is defined to be a

geometrical object M
~

 such that for ,
~

Mp ∈  there is a local chart

( )ppU ϕ,  enable ( )psiii nnn
pp BBBU ∪∪∪ 21: →ϕ  with ∩1in

B

( ) ,2 ∅≠psii nn
BB ∩∩  where jin

B  is an jin -ball for integers

( ) .1 mpsj ≤≤≤  Topological and differential structures such as those

of d-pathwise connected, homotopy classes, fundamental d-groups in

topology and tangent vector fields, tensor fields, connections, Minkowski

norms in differential geometry on these finitely combinatorial manifolds

are introduced. Some classical results are generalized to finitely

combinatorial manifolds. Euler-Poincaré characteristic is discussed and

geometrical inclusions in Smarandache geometries for various

geometries are also presented by the geometrical theory on finitely

combinatorial manifolds in this paper.
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1. Introduction

As a model of spacetimes in physics, various geometries such as those
of Euclid, Riemannian and Finsler geometries are established by
mathematicians. Today, more and more evidences have shown that our
spacetime is not homogenous. Thereby models established on classical
geometries are only unilateral. Then are there some kinds of overall
geometries for spacetimes in physics? The answer is YES. Those are just
Smarandache geometries established in last century but attract more
one’s attention now. According to the summary in [4], they are formally
defined following.

Definition 1.1 [4, 17]. A Smarandache geometry is a geometry which
has at least one Smarandachely denied axiom (1969), i.e., an axiom
behaves in at least two different ways within the same space, i.e.,
validated and invalided, or only invalided but in multiple distinct ways.

A Smarandache n-manifold is an n-manifold that support a
Smarandache geometry.

For verifying the existence of Smarandache geometries, Kuciuk and
Antholy gave a popular and easily understanding example on an Euclid
plane in [4]. In [3], Iseri firstly presented a systematic construction for
Smarandache geometries by equilateral triangular disks on Euclid
planes, which are really Smarandache 2-dimensional geometries (see also
[5]). In references [6, 7, 13], particularly in [7], a general constructing way
for Smarandache 2-dimensional geometries on maps on surfaces, called
map geometries was introduced, which generalized the construction of
Iseri. For the case of dimensional number ,3≥  these pseudo-manifold

geometries are proposed, which are approved to be Smarandache
geometries and containing these Finsler and Kähler geometries as
sub-geometries in [12].

In fact, by the Definition 1.1 a general but more natural way for
constructing Smarandache geometries should be seeking for them on a
union set of spaces with an axiom validated in one space but invalided in
another, or invalided in a space in one way and another space in a
different way. These unions are so-called Smarandache multi-spaces.
This is the motivation for this paper. Notice that in [8], these multi-metric
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spaces have been introduced, which enables us to constructing
Smarandache geometries on multi-metric spaces, particularly, on
multi-metric spaces with a same metric.

Definition 1.2. A multi-metric space A
~

 is a union of spaces ,1A

mAA ...,,2  for an integer 2≥m  such that each iA  is a space with

metric iρ  for .1, mii ≤≤

Now for any integer n, these n-manifolds nM  are the main objects in

modern geometry and mechanics, which are locally Euclidean spaces nR

satisfying the 2T  separation axiom in fact, i.e., for ,, nMqp ∈  there are

local charts ( )ppU ϕ,  and ( )qqU ϕ,  such that ∅=qp UU ∩  and

,: n
pp U B→ϕ  ,: n

qq U B→ϕ  where

{( ) }.1...,,, 22
2

2
121 <+++|= nn

n xxxxxxB

is an open ball.

These manifolds are locally Euclidean spaces. In fact, they are also
homogenous spaces. But the world is not homogenous. Whence, a more
important thing is considering these combinations of different
dimensions, i.e., combinatorial manifolds defined following and finding
their good behaviors for mathematical sciences besides just to research
these manifolds. Two examples for these combinations of manifolds with

different dimensions in 3R  are shown in Figure 1.1, in where,

(a) represents a combination of a 3-manifold, a torus and a 1-manifold,
and (b) a torus with 4 bouquets of 1-manifolds.

Figure 1.1

For an integer ,1≥s  let snnn ...,,, 21  be an integer sequence with

.0 21 snnn <<<<  Choose s open unit balls ,...,,, 21
21

sn
s

nn BBB  where
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∩
s

i

n
i

iB
1=

∅≠  in .21 snnn +++R  Then a unit open combinatorial ball of

degree s is a union

( ) ∪
s

i

n
is

iBnnnB
1

21 ....,,,~

=

=

Definition 1.3. For a given integer sequence 1,...,,, 21 ≥mnnn m

with ,0 21 mnnn <<<<  a combinatorial manifold M
~  is a Hausdorff

space such that for any point ,
~

Mp ∈  there is a local chart ( )ppU ϕ,  of p,

i.e., an open neighborhood pU  of p in M
~

 and a homoeomorphism

( ( ) ( ) ( )( ))pnpnpnBU pspp ...,,,~: 21→ϕ  with { ( ) ( ) ( )( )}pnpnpn ps...,,, 21

{ }mnnn ...,,, 21⊆  and { ( ) ( ) ( )( )} { }∪
Mp

mps nnnpnpnpn
~

2121 ,...,,,...,,,
∈

=

denoted by ( )mnnnM ...,,,~
21  or M

~
 on the context and

{( ) ( )}mpp nnnMpU ...,,,~,~
21∈|ϕ=A

an atlas on ( )....,,,~
21 mnnnM  The maximum value of ( )ps  and the

dimension ( )pŝ  of 
( )

∩
ps

i

n
i

iB
1=

 are called the dimension and the intersectional

dimensional of ( )mnnnM ...,,,
~

21  at the point p, respectively.

A combinatorial manifold M
~

 is called finite if it is just combined by

finite manifolds.

Notice that ∩
s

i

n
i

iB
1=

∅≠  by the definition of unit combinatorial balls of

degree s. Thereby, for ( ),...,,,~
21 snnnMp ∈  either it has a neighborhood

pU  with { }spp nnnU ...,,,,: 21∈ς→ϕ ςR  or a combinatorial ball

( )lB τττ ...,,,
~

21  with ( ) slBU lpp ≤τττ→ϕ ,...,,,
~

: 21  and { }lτττ ...,,, 21

{ }snnn ...,,, 21⊆  hold.
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The main purpose of this paper is to characterize these finitely

combinatorial manifolds, such as those of topological behaviors and

differential structures on them by a combinatorial method. For these

objectives, topological and differential structures such as those of

d-pathwise connected, homotopy classes, fundamental d-groups in

topology and tangent vector fields, tensor fields, connections, Minkowski

norms in differential geometry on these combinatorial manifolds are

introduced. Some results in classical differential geometry are

generalized to finitely combinatorial manifolds. As an important

invariant, Euler-Poincaré characteristic is discussed and geometrical

inclusions in Smarandache geometries for various existent geometries

are also presented by the geometrical theory on finitely combinatorial

manifolds in this paper.

For terminologies and notations not mentioned in this section, we

follow [1-2] for differential geometry, [5, 7] for graphs and [14, 18] for

topology.

2. Topological Structures on Combinatorial Manifolds

By a topological view, we introduce topological structures and

characterize these finitely combinatorial manifolds in this section.

2.1. Pathwise connectedness

On the first, we define d-dimensional pathwise connectedness in a

finitely combinatorial manifold for an integer d, ,1≥d  which is a natural

generalization of pathwise connectedness in a topological space.

Definition 2.1. For two points p, q in a finitely combinatorial

manifold ( ),...,,,
~

21 mnnnM  if there is a sequence sBBB ...,,, 21  of

d-dimensional open balls with two conditions following hold.

(1) ( )mi nnnMB ...,,,
~

21⊂  for any integer i, si ≤≤1  and ,1Bp ∈

;sBq ∈

(2) The dimensional number ( ) dBB ii ≥+1dim ∩  for .11, −≤≤ sii



w
w
w
.p
ph

m
j.c

om

LINFAN MAO70

Then points p, q are called d-dimensional connected in ( )mnnnM ...,,,
~

21

and the sequence eBBB ...,,, 21  a d-dimensional path connecting p and

q, denoted by ( )., qpPd

If each pair p, q of points in the finitely combinatorial manifold

( )mnnnM ...,,,
~

21  is d-dimensional connected, then ( )mnnnM ...,,,
~

21  is

called d-pathwise connected and say its connectivity .d≥

Without loss of generality, we consider only finitely combinatorial

manifolds with a connectivity 1≥  in this paper. Let ( )mnnnM ...,,,
~

21  be

a finitely combinatorial manifold and d, 1≥d  an integer. We construct a

labelled graph [ ( )]m
d nnnMG ...,,,

~
21  by

( [ ( )]) ∪ ,...,,,~
2121 VVnnnMGV m

d =

where { inV =1 -manifolds inM  in ( ) }minnnM m ≤≤|1...,,,
~

21  and =2V

{isolated  intersection points jnin MM
O

,
 of ji nn MM ,  in ( )mnnnM ...,,,~

21

for }.,1 mji ≤≤  Label in  for each in -manifold in 1V  and 0 for each

vertex in 2V  and

( [ ( )]) ∪ ,...,,,~
2121 EEnnnMGE m

d =

where {( ) ( ) }mjidMMMME jiji nnnn ≤≤≥|= ,1,dim,1 ∩  and =2E

{( ) ( ) ij
jnin

i
jnin

nn

MM
n

MM
MMOMO |,,,

,,
 tangent jn

M  at the point

jnin MM
O

,
 for }.,1 mji ≤≤

Figure 2.1
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For example, these correspondent labelled graphs gotten from finitely

combinatorial manifolds in Figure 1.1 are shown in Figure 2.1, where

1=d  for (a) and (b), 2=d  for (c) and (d). By this construction,

properties following can be easily gotten.

Theorem 2.1. Let [ ( )]m
d nnnMG ...,,,

~
21  be a labelled graph of a

finitely combinatorial manifold ( )....,,,~
21 mnnnM  Then

(1) [ ( )]m
d nnnMG ...,,,

~
21   is connected only if .1nd ≤

(2) there exists an integer d, 1nd ≤  such that [ ( )]m
d nnnMG ...,,,

~
21

is connected.

Proof. By definition, there is an edge ( )ji nn MM ,  in [ ( ,,~
21 nnMGd

)]mn...,  for mji ≤≤ ,1  if and only if there is a d-dimensional

path ( )qpPd ,  connecting two points inMp ∈  and .jn
Mq ∈  Notice that

( ( ) ) ji nnd MMqpP ⊆\,  and ( ( ) ) .\, ij nnd MMqpP ⊆

Whence,

{ }.,min ji nnd ≤ (2.1)

Now if [ ( )]m
d nnnMG ...,,,

~
21  is connected, then there is a d-path

( )ji nn MMP ,  connecting vertices inM  and jn
M  for ∈ji nn MM ,

( [ ( )])....,,,~
21 m

d nnnMGV  Without loss of generality, assume

( ) ., 121 jtiji nsssnnn MMMMMMMP −=

Then we get that

{ }jti nsssnd ,...,,,,min 121 −≤ (2.2)

by (2.1). However, according to Definition 1.4, we know that

{ ( ) ( ) ( )( )} { }∪
Mp

mps nnnpnpnpn
~

2121 ....,,,...,,,
∈

= (2.3)
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Therefore, we get that

{ ( ) ( ) ( )( )} { } 121
~

21 ...,,,min...,,,min nnnnpnpnpnd m

Mp

ps ==≤
∈
∪

by combining (2.2) with (2.3). Notice that points labelled with 0 and 1 are
always connected by a path. We get the conclusion (1).

For the conclusion (2), notice that any finitely combinatorial manifold

is always pathwise 1-connected by definition. Accordingly, [ ( ,~
1

1 nMG

)]mnn ...,,2  is connected. Thereby, there are at least one integer, for

instance 1=d  enabling [ ( )]m
d nnnMG ...,,,

~
21  to be connected. This

completes the proof.

According to Theorem 2.1, we get immediately two following
corollaries.

Corollary 2.1. For a given finitely combinatorial manifold ,
~

M  all

connected graphs [ ]MGd ~
 are isomorphic if ,1nd ≤  denoted by [ ].~

MG

Corollary 2.2. If there are k 1-manifolds intersect at one point p in a

finitely combinatorial manifold ,
~

M  then there is an induced subgraph

1+kK  in [ ].~
MG

Now we define an edge set ( )MEd ~
 in [ ]MG

~
 by

( ) ( [ ]) ( [ ]).~\~~ 1 MGEMGEME ddd +=

Then we get a graphical recursion equation for graphs of a finitely

combinatorial manifold M
~

 as a by-product.

Theorem 2.2. Let M
~

 be a finitely combinatorial manifold. Then for

any integer d, ,1≥d  there is a recursion equation

[ ] [ ] ( )MEMGMG ddd ~~~1 −=+

for graphs of .
~

M

Proof. It can be obtained immediately by definition.
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For a given integer sequence ,1 21 mnnn <<<≤  ,1≥m  denote

by ( )m
d nnn ...,,, 21H  all these finitely combinatorial manifolds

( )mnnnM ...,,,
~

21  with connectivity ,d≥  where 1nd ≤  and ( )mnnn ...,,, 21G

all these connected graphs [ ]mnnnG ...,,, 21  with vertex labels

0, mnnn ...,,, 21  and conditions following hold.

(1) The induced subgraph by vertices labelled with 1 in G is a union of
complete graphs;

(2) All vertices labelled with 0 can only be adjacent to vertices labelled
with 1.

Then we know a relation between sets ( )m
d nnn ...,,, 21H  and

( )....,,, 21 mnnnG

Theorem 2.3. Let ,...1 21 mnnn <<<≤  1≥m  be a given integer

sequence. Then every finitely combinatorial manifold ∈M
~

( )m
d nnn ...,,, 21H  defines a labelled connected graph [ ]mnnnG ...,,, 21

( )....,,, 21 mnnnG∈  Conversely, every labelled connected graph

[ ] ( )mm nnnnnnG ...,,,...,,, 2121 G∈  defines a finitely combinatorial

manifold ( )m
d nnnM ...,,,

~
21H∈  for any integer .1 1nd ≤≤

Proof. For ( ),...,,,~
21 m

d nnnM H∈  there is a labelled graph

[ ] ( )mm nnnnnnG ...,,,...,,, 2121 G∈  correspondent to M
~

 is already

verified by Theorem 2.1. For completing the proof, we only need to

construct a finitely combinatorial manifold ( )m
d nnnM ...,,,

~
21H∈  for

[ ] ( )....,,,...,,, 2121 mm nnnnnnG G∈  Denoted by ( ) sul =  if the label of a

vertex [ ]( )mnnnGVu ...,,, 21∈  is s. The construction is carried out by

the following programming.

Step 1. Choose [ ] 021 ...,,, VnnnG m −  manifolds correspondent to

each vertex u with a dimensional in  if ( ) ,inul =  where

{ VuuV ∈|=0 [ ]( )mnnnG ...,,, 21  and ( ) }.0=ul  Denoted by 1≥V  all

these vertices in [ ]mnnnG ...,,, 21  with label .1≥
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Step 2. For 11 ≥∈ Vu  with ( ) ,
11 inul =  if its neighborhood set

[ ]( ) { ( )}1
21 1

2
1

1
111...,,, ...,,, us

nnnG vvvVuN
m

=≥∩  with ( ) ( ) == 2
111

1
1 , vlnvl

( ( ) ) ( ),...,,
1

1
1112 us

us nvln =  then let the manifold correspondent to the vertex

1u  with an intersection dimension d≥  with manifolds correspondent to

vertices ( )1
1

2
1

1
1 ...,,, usvvv  and define a vertex set { }.11 u=∆

Step 3. If the vertex set { } 121 ...,,, ≥⊆=∆ Vuuu ll  has been defined

and ,\1 ∅≠∆≥ lV  let ll Vu ∆∈ ≥+ \11  with a label .
1+lin  Assume

( [ ]( ) ) { ( )}1
21 1

2
1

1
111...,,, ...,,,\ +

+++≥+ =∆ l
m

us
lllllnnnG vvvVuN ∩

with ( ) ( ) ( ( ) ) ( )....,,,
1

1
,112,1

2
11,1

1
1 +

+
++++++ ===

l
l

usl
us

lllll nvlnvlnvl  Then let

the manifold correspondent to the vertex 1+lu  with an intersection

dimension d≥  with manifolds correspondent to these vertices ,, 2
1

1
1 ++ ll vv

( )1
1..., +
+

lus
lv  and define a vertex set { }.11 ++ ∆=∆ lll u∪

Step 4. Repeat steps 2 and 3 until a vertex set 1≥=∆ Vt  has been

constructed. This construction is ended if there are no vertices ( )GVw ∈

with ( ) ,0=wl  i.e., ( ).1 GVV =≥  Otherwise, go to the next step.

Step 5. For [ ]( ) ,\...,,, 121 ≥∈ VnnnGVw m  assume [ ]( )wN
mnnnG ...,,, 21

{ }....,,, 21 ewww=  Let all these manifolds correspondent to vertices

ewww ...,,, 21  intersects at one point simultaneously and define a vertex

set { }.1 wtt ∪∆=∆∗+

Step 6. Repeat Step 5 for vertices in [ ]( ) .\...,,, 121 ≥VnnnGV m

This construction is finally ended until a vertex set =∆∗+ht

[ ]( )mnnnGV ...,,, 21  has been constructed.

As soon as the vertex set ∗
+∆ ht  has been constructed, we get a

finitely combinatorial manifold .
~

M  It can be easily verified that

( )m
d nnnM ...,,,~

21H∈  by our construction way.
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2.2. Combinatorial equivalence

For a finitely combinatorial manifold M
~

 in ( ),...,,, 21 m
d nnnH

denoted by [ ( )]mnnnMG ...,,,
~

21  and [ ]MG
~

 the correspondent labelled

graph in ( )mnnn ...,,, 21G  and the graph deleted labels on

[ ( )],...,,,~
21 mnnnMG  ( )inC  all these vertices with a label in  for

,1 mi ≤≤  respectively.

Definition 2.2. Two finitely combinatorial manifolds ( ,~
11 nM

),...,,2 mnn  ( )lkkkM ...,,,
~

212  are called equivalent if these correspondent

labelled graphs

[ ( )] [ ( )]....,,,~...,,,~
212211 lm kkkMGnnnMG ≅

Notice that if ( ),...,,,~
211 mnnnM  ( )lkkkM ...,,,

~
212  are equivalent,

then we can get that { } { }lm kkknnn ...,,,...,,, 2121 =  and [ ] ≅1
~

MG

[ ].~
2MG  Reversing this idea enables us classifying finitely combinatorial

manifolds in ( )m
d nnn ...,,, 21H  by the action of automorphism groups of

these correspondent graphs without labels.

Definition 2.3. A labelled connected graph [ ( )]mnnnMG ...,,,~
21  is

combinatorially unique if all these correspondent finitely combinatorial

manifolds ( )mnnnM ...,,,~
21  are equivalent.

A labelled graph [ ]mnnnG ...,,, 21  is called class-transitive if the

automorphism group AutG is transitive on ( ){ }.1, minC i ≤≤  We find a

characteristic for combinatorially unique graphs.

Theorem 2.4. A labelled connected graph [ ]mnnnG ...,,, 21  is

combinatorially unique if and only if it is class-transitive.

Proof. For two integers i, j, ,,1 mji ≤≤  re-label vertices in ( )inC  by

jn  and vertices in ( )jnC  by in  in [ ]....,,, 21 mnnnG  Then we get a new

labelled graph [ ]mnnnG ...,,, 21′  in [ ]....,,, 21 mnnnG  According to

Theorem 2.3, we can get two finitely combinatorial manifolds
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( )mnnnM ...,,,
~

211  and ( )lkkkM ...,,,
~

212  correspondent to

[ ]mnnnG ...,,, 21  and [ ]....,,, 21 mnnnG′

Now if [ ]mnnnG ...,,, 21  is combinatorially unique, we know

( )mnnnM ...,,,~
211  is equivalent to ( ),...,,,~

212 lkkkM  i.e., there is an

automorphism GAut∈θ  such that ( ) ( )ji nCnC =θ  for ,i  j, ,1 i≤  .mj ≤

On the other hand, if [ ]mnnnG ...,,, 21  is class-transitive, then for

integers i, j, ,1 i≤  ,mj ≤  there is an automorphism GAut∈τ  such that

( ) ( ).ji nCnC =τ  Whence, for any re-labelled graph [ ],...,,, 21 mnnnG′  we

find that
[ ] [ ],...,,,...,,, 2121 mm nnnGnnnG ′≅

which implies that these finitely combinatorial manifolds correspondent
to [ ]mnnnG ...,,, 21  and [ ]mnnnG ...,,, 21′  are combinatorially

equivalent, i.e., [ ]mnnnG ...,,, 21  is combinatorially unique.

Now assume that for parameters ,...,,, 21 iisii ttt  we have known an

enufunction

[ ] ( )∑=
isii

isii
in

ttt

t
is

t
i

t
iisiiiiiM

xxxtttnxxC
...,,,

212121

21

21...,,,...,,

for in -manifolds, where ( )isiii tttn ...,,, 21  denotes the number of non-

homeomorphic in -manifolds with parameters ....,,, 21 isii ttt  For instance

the enufunction for compact 2-manifolds with parameter genera is

[ ] ( ) ∑
≥

+=
1

~ .212
p

p
M xxC

Consider the action of [ ]mnnnG ...,,,Aut 21  on [ ]....,,, 21 mnnnG  If the

number of orbits of the automorphism group [ ]mnnnG ...,,,Aut 21  action

on ( ){ }minC i ≤≤1,  is ,0π  then we can only get !0π  non-equivalent

combinatorial manifolds correspondent to the labelled graph
[ ]mnnnG ...,,, 21   similar to Theorem 2.4. Calculation shows that there

are !l  orbits action by its automorphism group for a complete

( )lsss +++ 21 -partite graph ( ),...,,, 21
21

ls
l

ss kkkK  where is
ik  denotes
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that there are is  partite sets of order ik  in this graph for any integer

i, ,1 li ≤≤  particularly, for ( )mnnnK ...,,, 21  with ji nn ≠  for i, j, ,1 i≤

,mj ≤  the number of orbits action by its automorphism group is !.m

Summarizing all these discussions, we get an enufunction for these

finitely combinatorial manifolds ( )mnnnM ...,,,~
21  correspondent to a

labelled graph [ ]mnnnG ...,,, 21  in ( )mnnn ...,,, 21G  with each label .1≥

Theorem 2.5. Let [ ]mnnnG ...,,, 21  be a labelled graph in

( )mnnn ...,,, 21G  with each label .1≥  For an integer i, ,1 mi ≤≤  let the

enufunction of non-homeomorphic in -manifolds with given parameters

...,,, 21 tt  be [ ]...,, 21 iiM
xxC in  and 0π  the number of orbits of the

automorphism group [ ]mnnnG ...,,,Aut 21  action on ( ){ },1, minC i ≤≤

then the enufunction of combinatorial manifolds ( )mnnnM ...,,,
~

21

correspondent to a labelled graph [ ]mnnnG ...,,, 21  is

( ) [ ]∏
=

π=
m

i
iiMM xxCxC in

1
210~ ,...,,!

particularly, if [ ] ( )ms
m

ss
m kkkKnnnG ...,,,...,,, 21

2121 =  such that the

number of partite sets labelled with in  is is  for any integer i, ,1 mi ≤≤

then the enufunction correspondent to ( )ms
m

ss kkkK ...,,, 21
21  is

( ) [ ]∏
=

=
m

i
iiMM xxCmxC in

1
21~ ...,,!

and the enufunction correspondent to a complete graph mK  is

( ) [ ]∏
=

=
m

i
iiMM xxCxC in

1
21~ ....,,

Proof. Notice that the number of non-equivalent finitely
combinatorial manifolds correspondent to [ ]mnnnG ...,,, 21  is

( )∏
=

π
m

i
isiii tttn

1
210 ...,,,
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for parameters ,...,,, 21 isii ttt  mi ≤≤1  by the product principle of

enumeration. Whence, the enufunction of combinatorial manifolds

( )mnnnM ...,,,
~

21  correspondent to a labelled graph [ ]mnnnG ...,,, 21  is

( ) ( )∑ ∏∏
==














π=

isii

isii

ttt

m

i

t
is

t
i

t
i

m

i
isiiiM xxxtttnxC

...,,, 1
21

1
210~

21

21...,,,

[ ]∏
=

π=
m

i
iiM

xxC in

1
210 ....,,!

2.3. Homotopy classes

Denote by gf −~  two homotopic mappings f and g. Following the

same pattern of homotopic spaces, we define homotopically combinatorial
manifolds in the next.

Definition 2.4. Two finitely combinatorial manifolds ( )lkkkM ...,,,
~

21

and ( )mnnnM ...,,,
~

21  are said to be homotopic if there exist continuous

maps

( ) ( ),...,,,~...,,,~: 2121 ml nnnMkkkMf →

( ) ( )lm kkkMnnnMg ...,,,
~

...,,,
~

: 2121 →

such that ( ) ( )ll kkkMkkkMidentitygf ..,,,
~

...,,,
~

:~ 2121 →−  and

( ) ( )...,,,~...,,,~:~ 2121 mm nnnMnnnMidentityfg →−

For equivalent homotopically combinatorial manifolds, we know the
following result under these correspondent manifolds being homotopic.
For this objective, we need an important lemma in algebraic topology.

Lemma 2.1 (Gluing Lemma, [16]). Assume that a space X is a finite

union of closed subsets: ∪
n

i
iXX

1
.

=
=  If for some space Y, there are

continuous maps YXf ii →:  that agree on overlaps, i.e.,

jiji XXjXXi ff ∩∩ |=|  for all i, j, then there exists a unique continuous

YXf →:  with iX ff
i
=|  for all i.
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Theorem 2.6. Let ( )mnnnM ...,,,
~

21  and ( )lkkkM ...,,,
~

21  be finitely

combinatorial manifolds with an equivalence [ ( )] →ϖ mnnnMG ...,,,
~

: 21

[ ( )]....,,,~
21 lkkkMG  If for ( [ ( )]) im MnnnMGVMM ,...,,,~, 2121 ∈  is

homotopic to ( )iMϖ  with homotopic mappings ( ),: iiM MMf
i

ϖ→

( ) iiM MMg
i

→ϖ:  such that ,
jijjii MMMMMM ff ∩∩ |=|  =|

jii MMMg ∩

jij MMMg ∩|  providing ( ) ( [ ( )])mji nnnMGEMM ...,,,
~

, 21∈  for ,1 i≤

,mj ≤  then ( )mnnnM ...,,,
~

21  is homotopic to ( )....,,,~
21 lkkkM

Proof. By the Gluing Lemma, there are continuous mappings

( ) ( )lm kkkMnnnMf ...,,,~...,,,~: 2121 →

and

( ) ( )ml nnnMkkkMg ...,,,
~

...,,,
~

: 2121 →

such that

MM ff =|  and ( ) ( )MM gg ϖϖ =|

for ( [ ( )])....,,,~
21 mnnnMGVM ∈  Thereby, we also get that

( ) ( )ll kkkMkkkMidentitygf ...,,,
~

...,,,
~

:~ 2121 →−

and

( ) ( )mm nnnMnnnMidentityfg ...,,,
~

...,,,
~

:~ 2121 →−

as a result of ,:~ MMidentityfg MM →−  ( ) →ϖ− Midentitygf MM :~

( ).Mϖ

We have known that a finitely combinatorial manifold ( ,~
1nM

)mnn ...,,2  is d-pathwise connected for some integers .1 1nd ≤≤  This

consequence enables us considering fundamental d-groups of finitely

combinatorial manifolds.

Definition 2.5. Let ( )mnnnM ...,,,~
21  be a finitely combinatorial

manifold. Then for an integer d, 11 nd ≤≤  and ( ),...,,,~
21 mnnnMx ∈  a
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fundamental d-group at the point x, denoted by ( ( ,~
1nMdπ  ) )xnn m ,...,,2

is defined to be a group generated by all homotopic classes of closed

d-paths based at x.

If 1=d  and ( )mnnnM ...,,,~
21  is just a manifold M, we get that

( ( ) ) ( ).,,...,,,~
21 xMxnnnM m

d π=π

Whence, fundamental d-groups are a generalization of fundamental

groups in topology. We obtain the following characteristics for

fundamental d-groups of finitely combinatorial manifolds.

Theorem 2.7. Let ( )mnnnM ...,,,
~

21  be a d-connected finitely

combinatorial manifold with .1 1nd ≤≤  Then

(1) for ( ),...,,,~
21 mnnnMx ∈

( ( ) ) (
( )

( )) ( ),,...,,,~
21

dGMxnnnM d

GVM
m

d
d

ππ≅π ⊕⊕
∈

where [ ( )] ( ) ( )dd
m GMnnnMdGdG ππ= ,,...,,,~

21  denote the fundamental

d-groups of a manifold M and the graph ,dG  respectively and

(2) for ( ),...,,,~, 21 mnnnMyx ∈

( ( ) ) ( ( ) ).,...,,,~,...,,,~
2121 ynnnMxnnnM m

d
m

d π≅π

Proof. For proving the conclusion (1), we only need to prove that for

any cycle C
~

 in ( ),...,,,~
21 mnnnM  there are elements ( )

M
Ml

MM CCC ...,,, 21

( ),Mdπ∈  ( ) ( )d
G

Gd π∈ααα
β

...,,, 21  and integers j
M
i ba ,  for ( )dGVM ∈

and ( ),1 Mli ≤≤  ( ) ( )dd GGcj β≤≤≤1  such that

( )
( )( )

( )
∑ ∑ ∑
∈ = =

α+≡
d

d

GVM

Ml

i

Gc

j
jj

M
i

M
i bCaC

1 1

2mod
~
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and it is unique. Let ( )
M

Mb
MM CCC ...,,, 21  be a base of ( )Mdπ  for

( ).dGVM ∈  Since C
~

 is a closed trail, there must exist integers ,M
ik  ,jl

( ),1 Mbi ≤≤  ( )dGj β≤≤1  and Ph  for an open d-path on C
~

 such that

( )( )

( )
∑ ∑ ∑ ∑
∈ =

β

= ∆∈

+α+=
d

d

GVM

Mb

i

G

j P
Pjj

M
i

M
i PhlCkC

1 1

,
~

where ( )2mod0≡Ph  and ∆ denotes all of these open d-paths on .
~
C  Now

let

{ ( )} { ( )},1and01 MbikkMlia M
i

M
i

M
i ≤≤≠|=≤≤|

{ ( )} { ( )}.1,01 d
jj

d
j GjllGcjb β≤≤≠|=≤≤|

Then we get that

( )
( )( )

( )
∑ ∑ ∑
∈ = =

α+≡
d

d

GVM

Ml

i

Gc

j
jj

M
i

M
i bCaC

1 1

.2mod
~

(2.4)

If there is another decomposition

( )
( )( )

( )
∑ ∑ ∑
∈

′

=

′

=

α′+′≡
d

d

GVM

Ml

i

Gc

j
jj

M
i

M
i bCaC

1 1

,2mod
~

without loss of generality, assume ( ) ( )MlMl ≤′  and ( ) ( ),McMc ≤′  then

we know that

( ) ( )
( )( )

( )
∑ ∑ ∑
∈ = =

′ =α′−+′−
d

d

GVM

Ml

i

Gc

j
jjj

M
i

M
i

M
i bbCaa

1 1

,0

where 0=′Mia  if ( ),Mli ′>  0=′jb  if ( ).Mcj ′>′  Since ( )MbiC M
i ≤≤1,

and ( )d
j Gj β≤≤α 1,  are bases of the fundamental group ( )Mπ  and

( ),dGπ  respectively, we must have

( )Mliaa M
i

M
i ≤≤′= 1,  and ( ).1, d

jj Gcjbb ≤≤′=
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Whence, the decomposition (2.4) is unique.

For proving the conclusion (2), notice that ( )mnnnM ...,,,
~

21  is

pathwise d-connected. Let ( )yxPd ,  be a d-path connecting points x and

y in ( )....,,,~
21 mnnnM  Define

( ) ( ) ( ) ( )yxPCyxPC dd ,, 1−
∗ =ω

for ( )....,,,~
21 mnnnMC ∈  Then it can be checked immediately that

( ( ) ) ( ( ) )ynnnMxnnnM m
d

m
d ,...,,,~,...,,,~: 2121 π→πω∗

is an isomorphism.

A d-connected finitely combinatorial manifold ( )mnnnM ...,,,~
21  is

said to be simply d-connected if ( ( ) )xnnnM m
d ,...,,,~

21π  is trivial. As a

consequence, we get the following result by Theorem 2.7.

Corollary 2.3. A d-connected finitely combinatorial manifold ( ,~
1nM

)mnn ...,,2  is simply d-connected if and only if

(1) for ( [ ( )]),...,,,~
21 m

d nnnMGVM ∈  M is simply d-connected and

(2) [ ( )]m
d nnnMG ...,,,

~
21  is a tree.

Proof. According to the decomposition for ( ( ) )xnnnM m
d ,...,,,

~
21π

in Theorem 2.7, it is trivial if and only if ( )Mπ  and ( )dGπ  both are trivial

for ( [ ( )]),...,,,~
21 m

d nnnMGVM ∈  i.e, M is simply d-connected and dG  is

a tree.

For equivalent homotopically combinatorial manifolds, we also get a
criterion under a homotopically equivalent mapping in the next.

Theorem 2.8. If ( ) ( )lm kkkMnnnMf ...,,,~...,,,~: 2121 →  is a homotopic

equivalence, then for any integer d, 11 nd ≤≤  and ( ),...,,,~
21 mnnnMx ∈

( ( ) ) ( ( ) ( )).,...,,,~,...,,,~
2121 xfkkkMxnnnM l

d
m

d π≅π
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Proof. Notice that f can naturally induce a homomorphism

( ( ) ) ( ( ) ( ))xfkkkMxnnnMf l
d

m
d ,...,,,

~
,...,,,

~
: 2121 π→ππ

defined by ( )gfgf =π  for ( ( ) )xnnnMg m
d ,...,,,~

21π∈  since it can be

easily checked that ( ) ( ) ( )hfgfghf πππ =  for ( ( ) ).,...,,,~, 21 xnnnMhg m
dπ∈

We only need to prove that πf  is an isomorphism.

By definition, there is also a homotopic equivalence ( ,
~

: 1kMg

) ( )ml nnnMkk ...,,,~...,, 212 →  such that ( ,
~

:~ 1nMidentitygf −

) ( )....,,,
~

...,, 212 mm nnnMnn →  Thereby, ( ) ( ) :ππππ µ== identitygffg

( ( ) ) ( ( ) ),,...,,,~,...,,,~
2121 xnnnMxnnnM m

s
m

d π→π

where µ is an isomorphism induced by a certain d-path from x to ( )xgf  in

( )....,,,~
21 mnnnM  Therefore, ππ fg  is an isomorphism. Whence, πf  is a

monomorphism and πg  is an epimorphism.

Similarly, apply the same argument to the homotopy

( ) ( ),...,,,
~

...,,,
~

:~ 2121 ll kkkMkkkMidentityfg →−

we get that ( ) ( ) :ππππ ν== identityfggf

( ( ) ) ( ( ) ),,...,,,
~

,...,,,
~

2121 xkkkMxkkkM l
s

l
d π→π

where ν is an isomorphism induced by a d-path from ( )xfg  to x in

( )....,,,
~

21 lkkkM  So πg  is a monomorphism and πf  is an epimorphism.

Combining these facts enables us to conclude that ( ( ,~: 1nMf dππ

) ) ( ( ) ( ))xfkkkMxnn l
d

m ,...,,,~,...,, 212 π→  is an isomorphism.

Corollary 2.4. If ( ) ( )lm kkkMnnnMf ...,,,
~

...,,,
~

: 2121 →  is a

homeomorphism, then for any integer d, 11 nd ≤≤  and ( ,~
1nMx ∈

)mnn ...,,2

( ( ) ) ( ( ) ( )).,...,,,~,...,,,~
2121 xfkkkMxnnnM l

d
m

d π≅π
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2.4. Euler-Poincaré characteristic

It is well-known that the integer

( ) ( )∑
∞

=

α−=χ
0

1
i

i
iM

with iα  the number of i-dimensional cells in a CW-complex M  is defined

to be the Euler-Poincaré characteristic of this complex. In this subsection,

we get the Euler-Poincaré characteristic for finitely combinatorial

manifolds. For this objective, define a clique sequence ( ){ } 1≥iiCl  in the

graph [ ]MG
~

 by the following programming.

Step 1. Let ( [ ]) .
~

0lMGCl =  Construct

( ) { [ ]MGKKKKlCl l
i

i
p

ll ~
...,,, 0000

210 |=  and ,00 ∅=l
j

l
i KK ∩

or a vertex ( [ ])MGV
~∈  for }.,1, pjiji ≤≤≠

Step 2. Let 
( )

∪
00

0
1

lClK

l

l

KG
∈

=  and ( [ ] ) .\
~

11 lGMGCl =  Construct

( ) { [ ]MGKKKKlCl l
i

i
q

ll ~...,,, 1111
211 |=  and ∅=11 l

j
l
i KK ∩

or a vertex ( [ ])MGV
~∈  for }.,1, qjiji ≤≤≠

Step 3. Assume we have constructed ( )1−klCl  for an integer .1≥k

Let 
( )

∪
11

1

−−

−

∈

=

kkl

k

lClK

l
k KG  and ( [ ] ( )) .\

~
1 kk lGGMGCl =∪∪  We construct

( ) { [ ]MGKKKKlCl kkkk l
i

l
r

ll
k

~...,,, 21 |=  and ,∅=kk l
j

l
i KK ∩

or a vertex ( [ ])MGV
~∈  for }.,1, rjiji ≤≤≠

Step 4. Continue Step 3 until we find an integer t such that there are

no edges in [ ] ∪
t

i
iGMG

1
.\

~

=
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By this clique sequence ( ){ } ,1≥iiCl  we can calculate the Euler-Poincaré

characteristic of finitely combinatorial manifolds.

Theorem 2.9. Let M
~  be a finitely combinatorial manifold. Then

( ) ( ) ( )
( )( )

.1~

2, 1,

1
1∑ ∑

≥∈ ≤≤≤∈

+ χ−=χ

kkClK ksjKVM

ii
s

k k
ji

s
MMM ∩∩

Proof. Denoted the numbers of all these i-dimensional cells in a

combinatorial manifold M
~

 or in a manifold M by iα~  and ( ).Miα  If [ ]MG
~

is nothing but a complete graph kK  with ( [ ]) { ...,,,
~

21 MMMGV =

} ,2, ≥kMk  by applying the inclusion-exclusion principle and the

definition of Euler-Poincaré characteristic we get that

( ) ( )∑
∞

=

α−=χ
0

~1~

i
i

iM

( ) ( ) ( )
( )

∑ ∑
∞

= ≤≤≤∈

+ α−−=
0 1,

1
1

11
i ksjKVM

iii
si

k
ji

s
MM ∩∩

( ) ( ) ( )
( )
∑ ∑

≤≤≤∈

∞

=

+ α−−=

ksjKVM i
iii

is

k
ji

s
MM

1, 0

1
1

11 ∩∩

( ) ( )
( )

,1

1,

1
1∑

≤≤≤∈

+ χ−=

ksjKVM

ii
s

k
ji

s
MM ∩∩

 for instance, ( ) ( ) ( ) ( )2121
~

MMMMM ∩χ−χ+χ=χ  if [ ] 2~
KMG =  and

( [ ]) { }.,~
21 MMMGV =  By the definition of clique sequence of [ ],~

MG  we

finally obtain that

( ) ( ) ( )
( )( )

∑ ∑
≥∈ ≤≤≤∈

+ χ−=χ

2, 1,

1 .1~
1

kkClK ksjKVM

ii
i

k k
ji

s
MMM ∩∩

If [ ]MG
~

 is just one of some special graphs, we can get interesting

consequences by Theorem 2.9.
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Corollary 2.5. Let M
~

 be a finitely combinatorial manifold. If [ ]MG
~

is 3K -free, then

( ) ( ) ( )
( ) ( [ ])( [ ])

∑ ∑
∈ ∈

χ−χ=χ
MGVM MGEMM

MMMM
~ ~

,

21
2

21

.~ ∩

Particularly, if dim ( )21 MM ∩  is a constant for any ( ) ∈21, MM

( [ ]),~
MGE  then

 ( ) ( ) ( ) ( [ ])
( [ ])
∑

∈

|χ−χ=χ
MGVM

MGEMMMM
~

21
2 .~~ ∩

Proof. Notice that [ ]MG
~

 is 3K -free, we get that

( ) ( ) ( ) ( )( )
( ) ( [ ])

∑
∈

χ−χ+χ=χ
MGEMM

MMMMM
~

,

2121

21

~ ∩

( ) ( )( ) ( )
( ) ( [ ])( ) ( [ ])

∑ ∑
∈ ∈

χ−χ+χ=
MGEMM MGEMM

MMMM
~

,
~

,

2121

21 21

∩

( ) ( )
( ) ( [ ])( [ ])

∑ ∑
∈ ∈

χ−χ=
MGVM MGEMM

MMM
~ ~

,

21
2

21

.∩

Since the Euler-Poincaré characteristic of a manifold M is 0 if
( ),2mod1dim ≡M  we get the following consequence.

Corollary 2.6. Let M
~  be a finitely combinatorial manifold with odd

dimension number for any intersection of k manifolds with .2≥k  Then

( ) ( )
( [ ])
∑

∈

χ=χ
MGVM

MM
~

.~

3. Differential Structures on Combinatorial Manifolds

We introduce differential structures on finitely combinatorial
manifolds and characterize them in this section.

3.1. Tangent vector fields

Definition 3.1. For a given integer sequence ,1 21 mnnn <<<≤

a combinatorially hC  differential manifold ( ( ) )A~;...,,,~
21 mnnnM  is a
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finitely combinatorial manifold ( ) ( )mm nnnMnnnM ...,,,
~

,...,,,
~

2121

∪
Ii

iU
∈

= ,  endowed with an atlas {( ) }IU ∈α|ϕ= αα ;~A  on

( )mnnnM ...,,,
~

21  for an integer h, 1≥h  with conditions following hold.

(1) { }IU ∈αα ;  is an open covering of ( );...,,,
~

21 mnnnM

(2) For ,, I∈βα  local charts ( )αα ϕ;U  and ( )ββ ϕ;U  are equivalent,

i.e., ∅=βα UU ∩  or ∅≠βα UU ∩  but the overlap maps

( ) ( )βββαβ
−
βα ϕ→ϕϕϕ UUU ∩:1  and ( ) ( )ααβαβ

−
αβ ϕ→ϕϕϕ UUU ∩:1

are hC  mappings;

(3) A~  is maximal, i.e., if ( )ϕ;U  is a local chart of ( )mnnnM ...,,,
~

21

equivalent with one of local charts in ,
~A  then ( ) .

~
; A∈ϕU

Denote by ( ( ) )A~;...,,,
~

21 mnnnM  a combinatorially differential

manifold. A finitely combinatorial manifold ( )mnnnM ...,,,
~

21  is said to

be smooth if it is endowed with a ∞C  differential structure.

Let A~  be an atlas on ( )....,,,~
21 mnnnM  Then choose a local chart

( )ϖ;U  in .
~A  For ( ),; ϕ∈ Up  if ( )

( )

∪
ps

i

pn
pp

iBU
1

:
=

→ϖ  and ( ) =pŝ

( )
( )

,dim
1












=
∩

ps

i

pniB  the following ( ) ( )psnps ×  matrix ( )[ ]pϖ

( )[ ]

( )
( )

( )
( )( )

( )
( )

( )
( )( )

( )

( )
( ) ( )

( )
( ) ( )( ) ( ) ( ) ( ) ( )



























=ϖ

−+

+

+

psps npsnpspsps
pspsps

nps
ps

nps
ps

xxx
ps

x
ps

x

xx
ps

x
ps

x

xx
ps

x
ps

x

p

11ˆ
ˆ1

21ˆ2
ˆ221

11ˆ1
ˆ111

0

0

2

1
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with jsis xx =  for ( ) ( )psspsji ˆ1,,1 ≤≤≤≤  is called the coordinate

matrix of p. For emphasize ϖ is a matrix, we often denote local charts

in a combinatorially differential manifold by [ ]( ).; ϖU  Using the

coordinate matrix system of a combinatorially differential manifold

( ( ) ),~;...,,,~
21 AmnnnM  we introduce the conception of hC  mappings and

functions in the next.

Definition 3.2. Let ( ) ( )lm kkkMnnnM ...,,,
~

,...,,,
~

212211  be

smoothly combinatorial manifolds and

( ) ( )lm kkkMnnnMf ...,,,~...,,,~: 212211 →

be a mapping, ( )....,,,~
211 mnnnMp∈  If there are local charts ( [ ])ppU ϖ;

of p on ( )mnnnM ...,,,~
211  and ( ( ) [ ( )])pfpfV ω;  of ( )pf  with ( ) ( )pfp VUf ⊂

such that the composition mapping

[ ( )] [ ] [ ] ( ) [ ( )] ( ( ) )pfpfppppf VUff ω→ϖϖω= − :
~ 1

is a hC  mapping, then f is called a hC  mapping at the point p. If f is hC

at any point p of ( ),...,,,
~

211 mnnnM  then f is called a hC  mapping.

Particularly, if ( ) ,...,,,
~

212 R=lkkkM  then f is called a hC  function on

( )....,,,~
211 mnnnM  In the extreme ,∞=h  these terminologies are called

smooth mappings and functions, respectively. Denote by pX  all these ∞C

functions at a point ( )....,,,~
21 mnnnMp∈

For the existence of combinatorially differential manifolds, we know
the following result.

Theorem 3.1. Let ( )mnnnM ...,,,~
21  be a finitely combinatorial

manifold and d, 11 nd ≤≤  an integer. If ( [ ( )])m
d nnnMGVM ...,,,

~
21∈∀

is hC  differential and ( ) ( [ ( )])m
d nnnMGEMM ...,,,

~
, 2121 ∈∀  there exist

atlas

( ){ } {( ) }2211 ;,; MyWMxV yyxx ∈∀|ψ=∈∀|ϕ= AA
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such that 
yxyx WVyWVx ∩∩ |ψ=|ϕ  for ,1Mx ∈  ,2My ∈  then there is a

differential structures

{( [ ]) ( )}mpp nnnMpU ...,,,
~

;
~

21∈∀|ϖ=A

such that ( ( ) )A~;...,,,
~

21 mnnnM  is a combinatorially hC  differential

manifold.

Proof. By definition, we only need to show that we can always choose

a neighborhood pU  and a homoeomorphism [ ]pϖ  for each ∈p

( )mnnnM ...,,,~
21  satisfying these conditions (1)-(3) in Definition 3.1.

By assumption, each manifold ( [ ( )])m
d nnnMGVM ...,,,

~
21∈∀  is hC

differential, accordingly there is an index set MI  such that

{ }MIU ∈αα ;  is an open covering of M, local charts ( )αα ϕ;U  and

( )ββ ϕ;U  of M are equivalent and ( ){ }ϕ= ;UA  is maximal. Since for

( ),...,,,~
21 mnnnMp ∈  there is a local chart ( [ ])ppU ϖ;  of p such that

[ ] ( )
( )
∪

ps

i

pn
pp

iBU
1

,:
=

→ϖ  i.e., p is an intersection point of manifolds

( ) ( ).1, psiM pni ≤≤  By assumption each manifold ( )pniM  is hC

differential, there exists a local chart ( )i
p

i
pV ϕ;  while the point

( )pniMp ∈  such that ( ).pni
p

iB→ϕ  Now we define

( )

∪
ps

i

i
pp VU

1

.
=

=

Then applying the Gluing Lemma again, we know that there is a

homoeomorphism [ ]pϖ  on pU  such that

[ ] ( )
i
pMp pin ϕ=|ϖ

for any integer i, ( ).1 psi ≤≤  Thereafter,

{( [ ]) ( )}mpp nnnMpU ...,,,
~

;
~

21∈∀|ϖ=A
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is a hC  differential structure on ( )mnnnM ...,,,~
21  satisfying conditions

(1)-(3). Thereby ( ( ) )A~;...,,,~
21 mnnnM  is a combinatorially hC  differential

manifold.

Definition 3.3. Let ( ( ) )A~,...,,,~
21 mnnnM  be a smoothly combinatorial

manifold and ( )....,,,~
21 mnnnMp∈  A tangent vector v at p is a mapping

R→pv X:  with conditions following hold.

(1) ( ) ( ) ( );,,, hvgvhhvhg p λ+=λ+∈λ∀∈∀ RX

(2) ( ) ( ) ( ) ( ) ( ).,, hvpgphgvghvhg p +=∈∀ X

Denoted all tangent vectors at ( )mnnnMp ...,,,~
21∈  by ( ,~

1nMTp

)mnn ...,,2  and define addition +  and scalar multiplication   ⋅ for

( ),...,,,~, 21 mp nnnMTvu ∈  R∈λ  and pf X∈  by

( )( ) ( ) ( ) ( )( ) ( )., fufufvfufvu ⋅λ=λ+=+

Then it can be shown immediately that ( )mp nnnMT ...,,,~
21  is a vector

space under these two operations + and .  ⋅

Theorem 3.2. For any point ( )mnnnMp ...,,,~
21∈  with a local chart

( [ ]),; ppU ϕ  the dimension of ( )mp nnnMT ...,,,~
21  is

( ) ( ) ( )( )
( )

∑
=

−+=
ps

i
imp psnpsnnnMT

1
21 ˆˆ...,,,

~
dim

with a basis matrix

( ) ( )
=




∂
∂

× psnpsx

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ( ) ) ( ) ( ) 























∂

∂

∂

∂
∂

∂
∂

∂
∂

∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

−+

+

+

psnpspsnpspspspspsps

npsps

npsps

xxxxpsxps

xxxpsxps

xxxpsxps

11ˆˆ1

221ˆ2ˆ221

111ˆ1ˆ111

11

011

011
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where jlil xx =  for ( ) ( ),ˆ1,,1 pslpsji ≤≤≤≤  namely there is a smoothly

functional matrix [ ] ( ) ( )psnpsijv ×  such that for any tangent vector v  at a

point p of ( ),...,,,~
21 mnnnM

[ ] ( ) ( ) ( ) ( )
,

ps
ps nps

npsij x
vv

×
× 




∂
∂=

 



where [ ] [ ] ∑∑
= =

×× =
k

i

l

j
ijijlktslkij baba

1 1

.

 



Proof. For ,pf X∈  let [ ] [ ]( ).
~ 1

pp p
ff ϕ

− ∈ϕ⋅= X  We only need to prove

that f can be spanned by elements in

( )
( )

( )

∪ ∪ ∪ ,1||ˆ1||
1 1ˆ





















 ≤≤
∂
∂







 ≤≤
∂
∂

= +=

ps

i

n

psj
pijphj

i

sj
x

psj
x

(3.1)

for a given integer h, ( ),1 psh ≤≤  namely (3.1) is a basis of ( ,~
1nMTp

)....,,2 mnn  In fact, for [ ] ( ),pp Ux ϕ∈  since f
~

 is smooth, we know that

( ) ( ) ( )( )∫ −+=−
1

0
000

~~~
dtxxtxf

dt
dxfxf

( )( ) ( )( )
( )

∑∑ ∫
= =

−+
∂

∂−η=
ps

i

n

j
ij

ijijj
ps

i

dtxxtx
x

fxx
1 1

1

0
000ˆ

~

in a spherical neighborhood of the point p in

[ ] ( ) ( ) ( ) ( ) ( )psnnnpspsps
pp U

++++−
⊂ϕ 21ˆˆ

R

with [ ] ( ) ,0xpp =ϕ  where

( ) ( ) ( )




 ≤≤=η

.otherwise,1

,ˆ1if,
ˆ
1

ˆ
psj

psj
ps

Define

( ) ( )( )∫ −+
∂

∂=
1

0
00

~
~ dtxxtx

x

fxg
ijij



w
w
w
.p
ph

m
j.c

om

LINFAN MAO92

and [ ].~
pijij gg ϕ⋅=  Then we find that

( ) ( ) ( )00

~
~ x

x

fxgpg
ijijij

∂

∂==

( [ ] )
([ ]( )) ( ).

1

p
x

fp
x

f
ijpij

p

∂

∂=ϕ
∂

ϕ⋅∂
=

−

Therefore, for ,pUq ∈  there are ( ) iij njpsig ≤≤≤≤ 1,1,  such that

( ) ( ) ( )( ) ( )
( )

∑∑
= =

−η+=
ps

i

n

j
ij

ijijj
ps

i

pgxxpfqf
1 1

0ˆ .

Now let ( )....,,,~
21 mp nnnMTv ∈  Application of the condition (2) in

Definition 3.1 shows that

( )( ) ,0=pfv  and ( ( ) ) .00ˆ =η ijj
ps xv

Accordingly, we obtain that

( ) ( ) ( )( ) ( )
( )














−η+= ∑∑

= =

ps

i

n

j
ij

ijijj
ps

i

pgxxpfvfv
1 1

0ˆ

( ) ( ( )( ) ( ))
( )














−η+= ∑∑

= =

ps

i

n

j
ij

ijijj
ps

i

pgxxvpfv
1 1

0ˆ

( ( ) ( ) ( ) ( ( ) ) ( ( ) ( )))
( )

∑∑
= =

η−+−η=
ps

i

n

j
ij

j
ps

ijijijij
ij

j
ps

i

pgvxpxxxvpg
1 1

ˆ00ˆ

( ) ( ) ( )
( )

∑∑
= = ∂

∂η=
ps

i

n

j

ij
ij

j
ps

i

xvp
x

f

1 1
ˆ

( ) ( ) ( ) [ ] ( ) ( ) ( ) ( )
( )

( )

∑∑
= = ×

× |




∂
∂=|

∂

∂η=
ps

i

n

j
p

nps
npsijpij

j
ps

ij
i

ps
ps

f
x

vf
x

xv
1 1

ˆ .

 



Therefore, we get that

[ ] ( ) ( ) ( ) ( )
.

ps
ps nps

npsij x
vv

×
× 




∂
∂=

 

 (3.2)
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The formula (3.2) shows that any tangent vector v  in ( ,~
1nMTp

)mnn ...,,2  can be spanned by elements in (3.1).

Notice that all elements in (3.1) are also linearly independent.

Otherwise, if there are numbers ( ) i
ij njpsia ≤≤≤≤ 1,1,  such that

( )

( )( )
,0

ˆ

1 1 1ˆ

=|













∂

∂+
∂

∂∑ ∑ ∑
= = +=

p

ps

j

ps

i

n

psj
ij

ij
hj

hj
i

x
a

x
a

then we get that

( )

( )( )
( ) 0

ˆ

1 1 1ˆ

=













∂

∂+
∂

∂= ∑ ∑ ∑
= = +=

ij
ps

j

ps

i

n

psj
ij

ij
hj

hjij x
x

a
x

aa
i

for ( ) .1,1 injpsi ≤≤≤≤  Therefore, (3.1) is a basis of the tangent

vector space ( )mp nnnMT ...,,,~
21  at the point ( ( ) ).~

;...,,,
~

21 AmnnnMp∈

By Theorem 3.2, if ( ) 1=ps  for any point ( ( ) ),~
;...,,,

~
21 AmnnnMp ∈

then ( ) ....,,,~dim 121 nnnnMT mp =  This can only happens while ( ,~
1nM

)mnn ...,,2  is combined by one manifold. As a consequence, we get a

well-known result in classical differential geometry again.

Corollary 3.1 [2]. Let ( )A;nM  be a smooth manifold and .nMp ∈

Then

nMT n
p =dim

with a basis

.1||






 ≤≤
∂
∂ ni
x

pi

Definition 3.4. For ( ( ) ),~;...,,,~
21 AmnnnMp ∈  the dual space

( )mp nnnMT ...,,,~
21

∗  is called a co-tangent vector space at p.

Definition 3.5. For ( )mpp nnnMTdf ...,,,~, 21
∗∈∈X  and ( ,~

1nMTv p∈

),...,,2 mnn  the action of d on f, called a differential operator ,: R→pd X

is defined by
( ).fvdf =
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Then we immediately obtain the result following.

Theorem 3.3. For ( ( ) )A~;...,,,~
21 mnnnMp ∈  with a local chart

( [ ]),; ppU ϕ  the dimension of ( )mp nnnMT ...,,,
~

21
∗  is

( ) ( ) ( )( )
( )

∑
=

∗ −+=
ps

i
imp psnpsnnnMT

1
21 ˆˆ...,,,~dim

with a basis matrix

[ ] ( ) ( )psnpsxd ×

( )
( )

( )
( )( )

( )
( )

( )
( )( )

( )

( )
( ) ( )

( )
( ) ( )( ) ( ) ( ) ( ) ( )

,0

0

11ˆ
ˆ1

21ˆ2
ˆ221

11ˆ1
ˆ111

2

1



























=

−+

+

+

psps npsnpspsps
pspsps

nps
ps

nps
ps

dxdxdx
ps

dx
ps

dx

dxdx
ps

dx
ps

dx

dxdx
ps

dx
ps

dx

where jlil xx =  for ( ) ( ),ˆ1,,1 pslpsji ≤≤≤≤  namely for any co-tangent

vector d at a point p of ( ),...,,,~
21 mnnnM  there is a smoothly functional

matrix [ ] ( ) ( )pspsiju ×  such that

[ ] ( ) ( )
[ ] ( ) ( ) .psps npsnpsij xdud ××=

 



3.2. Tensor fields

Definition 3.6. Let ( )mnnnM ...,,,
~

21  be a smoothly combinatorial

manifold and ( )....,,,~
21 mnnnMp ∈  A tensor of type ( )sr,  at the point p

on ( )mnnnM ...,,,~
21  is an ( )sr + -multilinear function τ,

,
~~~~

: R→×××××τ ∗∗

s

pp

r

pp MTMTMTMT

where ( )mpp nnnMTMT ...,,,
~~

21=  and ( )....,,,
~~

21 mpp nnnMTMT ∗∗ =
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Denoted by ( )MpT r
s

~
,  all tensors of type ( )sr,  at a point p of

( )....,,,
~

21 mnnnM Then we know its structure by Theorems 3.2 and 3.3.

Theorem 3.4. Let ( )mnnnM ...,,,
~

21  be a smoothly combinatorial

manifold and ( )....,,,~
21 mnnnMp∈  Then

( ) ,~~~~~,

s

pp

r

pp
r
s MTMTMTMTMpT ∗∗ ⊗⊗⊗⊗⊗=

where ( )mpp nnnMTMT ...,,,
~~

21=  and ( ),...,,,~~
21 mpp nnnMTMT ∗∗ =

particularly,

( ) ( ) ( )( )
( )

.ˆˆ~,dim
1

srps

i
i

r
s psnpsMpT

+

=













−+= ∑

Proof. By definition and multilinear algebra, any tensor t of type

( )sr,  at the point p can be uniquely written as

∑ ⊗⊗⊗|
∂

∂⊗⊗|
∂

∂= ss
rr

r
s

lklk
pjipji

ii
jj dxdx

xx
tt 11

11
1
1

for smooth components r
s

ii
jjt 1

1
 on a neighborhood pU  according to

Theorems 3.2 and 3.3, where ( )pski hh ≤≤ ,1  and hhhh klij ≤≤≤≤ 1,1

for .1 rh ≤≤  As a consequence, we obtain that

( ) .~~~~~,

s

pp

r

pp
r
s MTMTMTMTMpT ∗∗ ⊗⊗⊗⊗⊗=

Since ( ) ( )( )
( )
∑
=

∗ −+==
ps

i
ipp psnpsMTMT

1
ˆˆ~dim~dim  by Theorems 3.2 and 3.3,

we also know that

( ) ( ) ( )( )
( )

.ˆˆ~
,dim

1

srps

i
i

r
s psnpsMpT

+

=













−+= ∑
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Definition 3.7. Let ( ) ( )∪
Mp

r
s

r
s MpTMT

~

~,~

∈

=  for a smoothly

combinatorial manifold ( )....,,,~~
21 mnnnMM =  A tensor field of type

( )sr,  on ( )mnnnM ...,,,
~

21  is a mapping ( ) ( )MTnnnM r
sm

~
...,,,

~
: 21 →τ

such that ( ) ( )MpTp r
s

~
,∈τ  for ( )....,,,~

21 mnnnMp ∈

A k-form on ( )mnnnM ...,,,
~

21  is a tensor field ( ).~
0 MT k∈ω  Denoted

all k-form of ( )mnnnM ...,,,
~

21  by ( )Mk ~Λ  and

( )
( ) ( ) ( ) ( )

( ) ( ) .~,~~

~

ˆˆ

0

1

∪
Mp

p
k

npspsps

k
MMM

ps
i i

∈

+−

=
=Λ=Λ

∑ =
⊕ XX

Similar to the classical differential geometry, we can also define

operations ψ∧ϕ  for ( ) [ ]YXMT r
s ,,

~
, ∈ψϕ  for ( )MYX

~, X∈  and obtain

a Lie algebra under the commutator. For the exterior differentiations on
combinatorial manifolds, we find results following.

Theorem 3.5. Let M
~

 be a smoothly combinatorial manifold. Then

there is a unique exterior differentiation ( ) ( )MMd
~~

:
~

Λ→Λ  such that for

any integer ( ) ( )Mdk kk ~~
,1 1+Λ⊂Λ≥  with conditions following hold.

(1) d
~

 is linear, i.e., for ( ) ,,~, R∈λΛ∈ψϕ M

( ) ψλ+ψ∧ϕ=λψ+ϕ ddd
~~~

and for ( ) ( ),~,~
MMk Λ∈ψΛ∈ϕ

( ) ( ) .
~

1
~~

ψ∧ϕ−+ϕ=ψ∧ϕ ddd k

(2) For ( ) fdMf
~

,
~0Λ∈  is the differentiation of f.

(3)  .0
~~~2 =⋅= ddd

(4) d
~

 is a local operator, i.e., if MVU
~⊂⊂  are open sets and

( ),VkΛ∈α  then ( ) ( ) .
~~

UU dd |α=|α
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Proof. Let [ ]( ),; ϕU  where [ ] [ ] ( ) ( )[ ]
( )

,:
1
∪

ps

i
ppp

=
ϕ=ϕ→ϕ  be a local

chart for a point Mp
~∈  and ( ) ( ) kk

kk
dxdx νµνµ

ψµνµ ∧∧α=α 11
11

 with

i
nj µ≤ν≤1  for ( ),1 psi ≤µ≤  .1 ki ≤≤  We first establish the

uniqueness. If ,0=k  the local formula µν
µν∂

α∂=α dx
x

d
~

 applied to the

coordinates µνx  with 
i

nj µ≤ν≤1  for ( ),1 psi ≤µ≤  ki ≤≤1  shows that

the differential of µνx  is 1-form .µνdx  From (3), ( ) ,0
~

=µνxd  which

combining with (1) shows that ( ) .0
~ 11 =∧∧ νµνµ kkdxdxd  This, again

by (1),

( ) ( ) kkkk dxdxdx
x

d νµνµµν
µν

ψµνµ ∧∧∧
∂

α∂
=α 1111~

(3.3)

and d
~

 is uniquely determined on U by properties (1)-(3) and by (4) on

any open subset of .
~

M

For existence, define on every local chart ( [ ])ϕ;U  the operator d
~

 by

(3.3). Then (2) is trivially verified as is R-linearity. If =β

( ) ( ) ( ),11
11

Udxdx lll
ll

Λ∈∧∧β ςσςσ
ςσςσ  then

( )β∧αd
~

( ( ) ( ) ( ) ( ) )llkk

llkk
dxdxdxdxd ςσςσνµ

ςσςσψµνµ ∧∧∧∧∧βα=
νµ

1111
1111

~

( ) ( )
( ) ( ) ( ) ( )




α+β

∂

α∂
= ψµνµςσςσµν

ψµνµ
kkll

kk

x 1111
11

( ) ( ) llkkll dxdxdxdx
x

ςσςσνµ
µν

ςσςσ ∧∧∧∧∧




∂

β∂
×

νµ
111111

( ) ( )
( ) ( ) ll

ll

kkkk dxdsdxdx
x

ςσςσ
ςσςσ

νµ
µν

ψµνµ ∧∧β∧∧∧
∂

α∂
=

νµ
11

11
1111
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( ) ( ) ( )
( ) ( ) llllkk

kk
dxdx

x
dxdxk ςσςσ

µν
ςσςσνµ

ψµνµ ∧
∂

β∂
∧∧α−+

νµ
111111

11
1

( ) β∧α−+β∧α= dd k ~
1

~

and (1) is verified. For (3), symmetry of the second partial derivatives
shows that

( ) ( ) ( ) .0
~~ 111111

2

=∧∧∧∧∧
∂∂

α∂
=α ςσςσνµ

σςµν
ψµνµ νµ

llkkkk dxdxdxdx
xx

dd

Thus, in every local chart [ ]( ),; ϕU  (3.3) defines an operator d
~

 satisfying

(1)-(3). It remains to be shown that d
~

 really defines an operator d
~

 on

any open set and (4) holds. To do so, it suffices to show that this definition

is chart independent. Let d ′
~

 be the operator given by (3.3) on a local

chart [ ]( ),; ϕ′′U  where .∅≠′UU ∩  Since d
~′  also satisfies (1)-(3) and the

local uniqueness has already been proved, α=α′ dd
~~

 on .UU ′∩  Whence,

(4) thus follows.

Corollary 3.2. Let ( )mnnnMM ...,,,
~~

21=  be a smoothly

combinatorial manifold and ( ) ( )MMd kk
M

1: +Λ→Λ  the unique exterior

differentiation on M with conditions following hold for ( [ ( ,~
1nMGVM l∈

)]),...,,2 mnn  where { }....,,,min1 21 mnnnl ≤≤

(1) Md  is linear, i.e., for ( ) ,,, R∈λΛ∈ψϕ M

( ) .ψλ+ϕ=λψ+ϕ MMM ddd

(2) For ( ) ( ),, MMr Λ∈ψΛ∈ϕ

( ) ( ) .1 ψ∧ϕ−+ϕ=ψ∧ϕ M
r

MM ddd

(3) For ( ) fdMf M,0Λ∈  is the differentiation of f.

(4) .02 =⋅= MMM ddd

Then

.
~

MM dd =|
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Proof. By Theorem 2.4.5 in [1], Md  exists uniquely for any smoothly

manifold M. Now since d
~

 is a local operator on ,
~

M  i.e., for any open

subset ,
~

MU ⊂µ  ( ) ( )
µµ

|α=|α UU dd
~~

 and there is an index set J such that

∪
J
UM

∈µ
µ= ,  we finally get that

MM dd =|
~

by the uniqueness of d
~

 and .Md

Theorem 3.6. Let ( ).~1 MΛ∈ω  Then for ( ),~
, MYX X∈

( ) ( )( ) ( )( ) [ ]( ).,,
~

YXXYYXYXd ω−ω−ω=ω

Proof. Denote by ( )YX ,α  the right hand side of the formula. We

know that ( ).~~~: MCMM ∞→×α  It can be checked immediately that α is

bilinear and for ( ) ( ),~,~, MCfMYX ∞∈∈X

( ) ( )( ) ( )( ) [ ]( )YfXfXYYfXYfX ,, ω−ω−ω=α

( )( ) ( )( ) [ ] ( )( )XfYYXfXfYYfX −ω−ω−ω= ,

( )YXf ,α=

and
( ) ( ) ( ) ( )YXfXYfXfYfYX ,,,, α=α−=α−=α

by definition. Accordingly, α is a differential 2-form. We only need to

prove that for a local chart [ ]( ),, ϕU

.
~

UU d |ω=|α

In fact, assume .µν
µνω=|ω dxU  Then

( ) ( ) µνσς
σς
µν ∧

∂

ω∂
=|ω=|ω dxdx

x
dd UU
~~

.
2
1 µνσς

µν
ςτ

σς
µν ∧









∂

ω∂
−

∂

ω∂
= dxdx

xx
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On the other hand, ,,
2
1 µνσς

σςµν
∧








∂
∂

∂
∂α=|α dxdx

xx
U  where















∂

∂−
∂

∂ω−















∂

∂ω
∂

∂−















∂

∂ω
∂

∂=







∂

∂

∂

∂α
σςµνσςµνµνσςσςµν xxxxxxxx

,

.
µν
σς

σς
µν

∂

ω∂
−

∂

ω∂
=

xx

Therefore, .||
~

UUd α=ω

3.3. Connections on tensors

We introduce connections on tensors of smoothly combinatorial

manifolds by the next definition.

Definition 3.8. Let M
~

 be a smoothly combinatorial manifold. A

connection on tensors of M
~

 is a mapping ( ) MTMTMD r
s

r
s

~~~:~ →×X

with ( )τ=τ ,~~
XDDX  such that for ( ) R∈λ∈πτ∈ ,~,,~, MTMYX r

sX  and

( ),~
MCf ∞∈

(1) ;
~~~ τ+τ=τ+ YXfYX DfDD  and ( ) ;

~~~ πλ+τ=λπ+τ XXX DDD

(2) ( ) ;
~~~ π⊗σ+π⊗τ=π⊗τ XXX DDD

(3) for any contraction C on ( ),~
MT r

s

( )( ) ( ).~~ τ=τ XX DCCD

We get results following for these connections on tensors of smoothly

combinatorial manifolds.

Theorem 3.7. Let M
~

 be a smoothly combinatorial manifold. Then

there exists a connection D
~

 locally on M
~

 with a form

( ) UXD |τ~

( )( ) ( ) ( )
( )( ) ( ) ss

rr
rr
ss

dxdx
xx

X λκλκ
νµνµ

νµνµνµ
µνλκλκλκ

σς ⊗⊗⊗
∂

∂⊗⊗
∂

∂τ= 11
11

2211
2211 ,
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for ( )MY
~X∈  and ( ),~

MT r
s∈τ  where

( )( ) ( ) ( )
( )( ) ( ) ( )( ) ( )

( )( ) ( )

µν

νµνµνµ
λκλκλκνµνµνµ

µνλκλκλκ ∂

τ∂
=τ

x

rr
ssrr

ss

2211
22112211

2211 ,

( )( ) ( )
( ) ( )( )( ) ( )

( )( )∑
=

νµ
µνσς

νµνµσςνµνµ
λκλκλκ Γτ+ ++−−

r

a

aarraaaa
ss

1

111111
2211

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )∑
=

σς
µνςσ

νµνµνµ
λκςσµνλκλκ Γτ−

++−−

s

b
bb

rr
ssbbbb

1

2211
111111

and ( ) ( )
κλ

µνσςΓ  is a function determined by

( ) ( ) σς
κλ

µνσςσς
∂

∂
∂

∂Γ=
∂

∂

µν xx
D

x

~

on ( [ ]) ( )µν=ϕ xUU ppp ;;  of a point ,
~

Mp ∈  also called the coefficient on

a connection.

Proof. We first prove that any connection D
~

 on smoothly

combinatorial manifolds M
~  is local by definition, namely for ∈21, XX

( )M
~X  and ( ),~, 21 MT r

s∈ττ  if UU XX |=| 21  and ,21 UU |τ=|τ  then

( ) ( ) .
~~

21 21 UXUX DD τ=τ  For this objective, we need to prove that

( ) ( )UXUX DD 21 11
~~ τ=τ  and ( ) ( ) .~~

11 21 UXUX DD τ=τ  Since their proofs are

similar, we check the first only.

In fact, if ,0=τ  then .τ−τ=τ  By the definition of connection,

( ) .0
~~~~ =τ−τ=τ−τ=τ XXXX DDDD

Now let .Up ∈  Then there is a neighborhood pV  of p such that V  is

compact and .UV ⊂  By a result in topology, i.e., for two open sets UVp ,

of 
( ) ( ) ( ) ( )psnnpspsps +++− 1ˆˆ

R  with compact pV  and ,UVp ⊂  there exists a

function ( ( ) ( ) ( ) ( ) )psnnpspsps
Cf

+++−∞∈ 1ˆˆ
R  such that 10 ≤≤ f  and
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( ) ( ) ( ) ( ) ,0,1
\1ˆˆ ≡|≡| +++−

UV psnnpspspsp
ff

R
 we find that ( ) .012 =τ−τ⋅f

Whence, we know that

(( ( ))) ( ) ( ) ( ).~~~0 1212112 111
τ−τ+τ−τ=τ−τ⋅= XXX DDffXfD

As a consequence, we get that ( ) ( ) ,~~
21 11 VXVX DD τ=τ  particularly,

( ) ( ) .
~~

21 11 pXpX DD τ=τ  For the arbitrary choice of p, we get that

( ) ( )UXUX DD 21 11
~~ τ=τ  finally.

The local property of D
~

 enables us to find an induced connection

( ) ( ) ( )UTUTUD r
s

r
s

U →×X:~  such that ( ) ( ) UXU
U
X DD

U
|τ=|τ|

~~  for ∈X

( )M
~X  and .

~
MT r

s∈τ  Now for ( ) ( )MTMXX r
s

~,,~, 2121 ∈ττ∀∈X  with

pp VV XX |=| 21  and ,21 pp VV |τ=|τ  define a mapping ( ) ( )UTUD r
s

U ×X:~

( )UT r
s→  by

( ) ( )
pp VXVX DD |τ=|τ 21 11

~~

for any point .Up ∈  Then since D
~

 is a connection on ,
~

M  it can be

checked easily that UD
~

 satisfies all conditions in Definition 3.8. Whence,
UD

~
 is indeed a connection on U.

Now we calculate the local form on a chart ( [ ])ppU ϕ,  of p. Since

( ) ( ) ,
~

σς
κλ

µνσς
∂

∂
∂

∂Γ=
µν x

D

x

it can find immediately that

( ) ( )
σςκλ

µνσς
κλ

∂

∂ Γ−=
µν

dxdxD

x

~

by Definition 3.8. Therefore, we find that

( ) UXD |τ~

( )( ) ( ) ( )
( ) ( ) ( ) ss

rr
rr
ss

dxdx
xx

X λκλκ
νµνµ

νµνµνµ
µνλκλκλκ

σς ⊗⊗⊗
∂

∂⊗⊗
∂

∂τ= 11
11

2211
2211 ,
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with

( ) ( ) ( ) ( )
( ) ( ) ( )rr

ss

νµνµνµ
µνλκλκλκτ

2211
2211 ,

( ) ( ) ( )
( ) ( ) ( )

µν

νµνµνµ
λκλκλκ

∂

τ∂
=

x

rr
ss

2211
2211

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )∑
=

νµ
µνσς

νµνµσςνµνµ
λκλκλκ Γτ+ ++−−

r

a

aarraaaa
ss

1

111111
2211

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )∑
=

σς
µνςσ

νµνµνµ
λκςσµνλκλκ Γτ−

++−−

s

b
bb

rr
ssbbbb

1

.2211
111111

This completes the proof.

Theorem 3.8. Let M
~

 be a smoothly combinatorial manifold with a

connection .
~
D  Then for ( ),~, MYX X∈

( ) [ ]YXXDYDYXT YX ,
~~

,
~ −−=

is a tensor of type ( )2,1  on .~
M

Proof. By definition, it is clear that ( ) ( ) ( )MMMT
~~~:~ XXX →×  is

antisymmetrical and bilinear. We only need to check it is also linear on

each element in ( )MC
~∞  for variables X or Y. In fact, for ( ),~

MCf ∞∈

( ) ( ) [ ]YfXfXDYDYfXT YfX ,~~,~ −−=

( ( ) )XDfXfYYDf YX
~~ +−=

[ ] ( )( ) ( )YXTfXfYYXf ,~, =−−

and

( ) ( ) ( ) ( ).,
~

,
~

,
~

,
~

YXTfXYTfXfYTfYXT =−=−=

Notice that

µν
∂

∂σς
∂

∂σςµν ∂

∂−
∂

∂=







∂

∂

∂

∂

σςµν x
D

x
D

xx
T

xx

~~, ( ( ) ( ) ( ) ( ) ) κλ
κλ

µνσς
κλ

σςµν ∂

∂Γ−Γ=
x
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under a local chart ( [ ])ppU ϕ;  of a point .
~

Mp ∈  If ,0, ≡







∂

∂

∂

∂
σςµν xx

T

we call T torsion-free. This enables us getting the next useful result.

Theorem 3.9. A connection D
~

 on tensors of a smoothly combinatorial

manifold M
~  is torsion-free if and only if ( ) ( ) ( ) ( ).

κλ
µνσς

κλ
σςµν Γ=Γ

Now we turn our attention to the case of .1== rs  Similarly, a

combinatorially Riemannian geometry is defined in the next definition.

Definition 3.9. Let M
~

 be a smoothly combinatorial manifold and

( ) ( )∪
Mp

MpTMAg
~

0
2

2 .~,~

∈

=∈  If g is symmetrical and positive, then M
~  is

called a combinatorially Riemannian manifold, denoted by ( ).,~
gM  In

this case, if there is a connection D
~

 on ( )gM ,
~

 with equality following

holds

( )( ) ( ) ( ),~,,~, YDXgYXDgYXgZ ZZ += (3.4)

then M
~  is called a combinatorially Riemannian geometry, denoted by

( ).~,,~
DgM

We get a result for connections on smoothly combinatorial manifolds

similar to that of Riemannian geometry.

Theorem 3.10. Let ( )gM ,
~

 be a combinatorially Riemannian

manifold. Then there exists a unique connection D
~

 on ( )gM ,
~

 such that

( )DgM
~

,,
~

 is a combinatorially Riemannian geometry.

Proof. By definition, we know that

( ) ( )( ) ( ) ( )YDXgYXDgYXgZYXgD ZZZ
~

,,
~

,,
~ −−=

for a connection D
~

 on tensors of M
~  and ( ).~

MZ X∈∀  Thereby, the

equality (3.4) is equivalent to that of 0
~ =gDZ  for ( ),~

MZ X∈  namely D
~

is torsion-free.
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Without loss of generality, assume ( ) ( )
σςµν

σςµν= dxdxgg  in a local

chart ( [ ])ppU ϕ;  of a point p, where ( ) ( ) ., 







∂
∂

∂
∂=

σςµνσςµν
xx

gg  Then we

find that

( )( )
( )( ) ( )( ) ( )( ) ( )( ) .~ κλσςµνζη

κλσςζηµν
ζη

σςµνσςζηκλ
σςµν ⊗⊗








Γ−Γ−

∂

∂
= dxdxdxgg

x

g
gD

Therefore, we get that

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ζη
κλσςζηµν

ζη
σςµνσςζηκλ

σςµν Γ+Γ=
∂

∂
gg

x

g
(3.5)

if 0
~ =gDZ  for ( ).~

MZ X∈  The formula (3.5) enables us to get that

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

2
1










∂

∂
−

∂

∂
+

∂

∂
=Γ

ζη
σςµν

µν
σςζη

σς
ζηµνζηκλκλ

σςµν x

g

x

g

x

g
g

where ( ) ( )ζηκλg  is an element in the matrix inverse of [ ( ) ( )].σςµνg

Now if there exists another torsion-free connection ∗D
~

 on ( )gM ,
~

with

( ) ( ) ,~
κλ

κλ∗
µνσς

∗

∂

∂
∂
∂Γ=

µν x
D

x

then we must get that

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

2
1










∂

∂
−

∂

∂
+

∂

∂
=Γ

ζη
σςµν

µν
σςζη

σς
ζηµνζηκλκλ∗

σςµν x

g

x

g

x

g
g

Accordingly, .~~ ∗= DD  Whence, there are at most one torsion-free

connection D
~

 on a combinatorially Riemannian manifold ( ).,~
gM

For the existence of torsion-free connection D
~

 on ( ),,~
gM  let

( ) ( ) ( ) ( )
κλ

µνσς
κλ

σςµν Γ=Γ  and define a connection D
~

 on ( )gM ,
~

 such that

( ) ( ) ,
~

κλ
κλ

µνσς
∂

∂
∂
∂Γ=

µν x
D

x

then D
~

 is torsion-free by Theorem 3.9. This completes the proof.
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Corollary 3.3 [2]. For a Riemannian manifold ( ),, gM  there exists

only one torsion-free connection D, i.e.,

( ) ( )( ) ( ) ( ) 0,,,, ≡−−= YDXgYXDgYXgZYXgD ZZZ

for ( ).,, MZYX X∈

3.4. Minkowski norms

These Minkowski norms are the fundamental in Finsler geometry.

Certainly, they can be also generalized on smoothly combinatorial

manifolds.

Definition 3.10. A Minkowski norm on a vector space V is a function

R→VF :  such that

(1) F is smooth on { }0\V  and ( ) 0≥vF  for ;Vv ∈

(2) F is 1-homogenous, i.e., ( ) ( )vFvF λ=λ  for ;0>λ

(3) for all { },0\Vy ∈  the symmetric bilinear form R→× VVgy :

with

( ) ( )∑ ∂∂

∂=
ji

jiy
yy

yF
vug

,

2
,

is positive definite for u, .Vv ∈

Denoted by ∪
Mp

pMTMT
~

.
~~

∈

=  Similar to Finsler geometry, we

introduce combinatorially Finsler geometries on a Minkowski norm

defined on .
~

MT

Definition 3.11. A combinatorially Finsler geometry is a smoothly

combinatorial manifold M
~

 endowed with a Minkowski norm F
~

 on ,
~

MT

denoted by ( ).~;~
FM

Then we get the following result.

Theorem 3.11. There are combinatorially Finsler geometries.
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Proof. Let ( )mnnnM ...,,,
~

21  be a smoothly combinatorial manifold.

We construct Minkowski norms on ( )....,,,~
21 mnnnMT  Let mnnn +++ 21R

be a Euclidean space. Then there exists a Minkowski norm ( ) xxF =  in

mnnn +++ 21R  at least, in here x  denotes the Euclidean norm on

.21 mnnn +++R  According to Theorem 3.2, MTp
~ ( )mnnn ...,,, 21  is

homeomorphic to 
( ) ( ) ( ) ( ) .1ˆˆ

psii nnpspsps +++−
R  Whence there are Minkowski

norms on ( )mp nnnMT ...,,,~
21  for ,pUp ∈  where ( [ ])ppU ϕ;  is a local

chart.

Notice that the number of manifolds is finite in a smoothly

combinatorial manifold ( )mnnnM ...,,,
~

21  and each manifold has a finite

cover {( ) },; IU ∈α|ϕαα  where I is a finite index set. We know that there

is a finite cover

{( ) }
( [ ( )])
∪

mnnnMGVM

MMM IU

...,,,
~

21

.;
∈

αα ∈α|ϕ

By the decomposition theorem for unit, we know that there are smooth

functions MM Ih ∈αα ,  such that

( [ ( )])
∑ ∑

∈ ∈α
αα ≤≤=

m MnnnMGVM I
MM hh

...,,,
~

21

.10with1

Now we choose a Minkowski norm αMF
~

 on αMTp  for .α∈ MUp

Define





∉
∈=

α

α
αα

α
M

M
MM

M
Up

UpFh
F

if,0
,if,

~~

for .
~

Mp ∈  Now let

( [ ( )])
∑ ∑

∈ ∈α
α=

mnnnMGVM I
MFF

..,,,
~

21

.~~

Then F
~  is a Minkowski norm on ( )mnnnMT ...,,,~

21  since it can be

checked immediately that all conditions (1)-(3) in Definition 3.10 hold.
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For the relation of combinatorially Finsler geometries with these

Smarandache geometries, we obtain the next consequence.

Theorem 3.12. A combinatorially Finsler geometry ( ( ...,,,~
21 nnM

) )Fnm
~;  is a Smarandache geometry if .2≥m

Proof. Notice that if ,2≥m  then ( )mnnnM ...,,,
~

21  is combined by

at least two manifolds 1nM  and 2nM  with .21 nn ≠  By definition, we

know that

∅≠21 \ nn MM  and .\ 12 ∅≠nn MM

Now the axiom there is an integer n such that there exists a

neighborhood homeomorphic to an open ball nB  for any point in this

space is Smarandachely denied, since for points in ,\ 21 nn MM  each has a

neighborhood homeomorphic to ,1nB  but each point in 12 \ nn MM  has a

neighborhood homeomorphic to .2nB

Theorems 3.11 and 3.12 imply inclusions in Smarandache geometries

for classical geometries in the following.

Corollary 3.4. There are inclusions among Smarandache geometries,

Finsler geometry, Riemannian geometry and Weyl geometry:

{Smarandache geometries} ⊃ {combinatorially Finsler geometries}

⊃ {Finsler geometry} and {combinatorially Riemannian geometries}

⊃ {Riemannian geometry} ⊃ {Weyl geometry}.

Proof. Let .1=m  Then a combinatorially Finsler geometry ( ( ,~
1nM

) )Fnn m
~;...,,2  is nothing but just a Finsler geometry. Applying

Theorems 3.11 and 3.12 to this special case, we get these inclusions as

expected.

Corollary 3.5. There are inclusions among Smarandache geometries,

combinatorially Riemannian geometries and Kähler geometry:
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{Smarandache geometries} ⊃ {combinatorially Riemannian geometries}

⊃ {Riemannian geometry}

⊃ { Kähler geometry}.

Proof. Let 1=m  in a combinatorial manifold ( )mnnnM ...,,,
~

21  and

applies Theorems 3.10 and 3.12, we get inclusions

{Smarandache geometries} ⊃ {combinatorially Riemannian geometries}

⊃ {Riemannian geometry}.

For the Kähler geometry, notice that any complex manifold n
cM  is

equal to a smoothly real manifold nM 2  with a natural base 








∂
∂

∂
∂

ii yx
,

for n
cpMT  at each point .n

cMp ∈  Whence, we get

{Riemannian geometry} ⊃ {Kähler geometry}.

4. Further Discussions

4.1.  Embedding problem

Whitney had shown that any smooth manifold dM  can be embedded

as a closed submanifold of 12 +dR  in 1936 [1]. The same embedding

problem for finitely combinatorial manifold in a Euclidean space is also

interesting. Since M
~  is finite, by applying Whitney theorem, we know

that there is an integer ( ) ( ) +∞<MnMn
~

,
~

 such that M
~

 can be embedded

as a closed submanifold in ( ).
~

MnR  Then what is the minimum dimension

of Euclidean spaces embeddable a given finitely combinatorial manifold

M
~

? Whether can we determine it for some combinatorial manifolds with

a given graph structure, such as those of complete graphs ,nK  circuits
nP  or cubic graphs nQ ?

Conjecture 4.1. The minimum dimension of Euclidean spaces

embeddable a finitely combinatorial manifold M
~

 is

{ ( ) ( ) ( ) ( ) } .1ˆˆmin2
21~ +++++−

∈ psiii
Mp

nnnpspsps
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4.2. D-dimensional holes

For these closed 2-manifolds S, it is well known that

( )
( )

( )



−

−
=χ

,orientable-nonisif,2

,orientableisif,22

SSq

SSp
S

with ( )Sp  or ( )Sq  the orientable genus or non-orientable genus of S,

namely 2-dimensional holes adjacent to S. For general case of

n-manifolds M, we know that

( ) ( ) ( )∑
∞

=

−=χ
0

,dim1
k

k
k MHM

where ( )MHkdim  is the rank of these k-dimensional homology groups

( )MHk  in M, namely the number of k-dimensional holes adjacent to the

manifold M. By the definition of combinatorial manifolds, some

k-dimensional holes adjacent to a combinatorial manifold are increased.

Then what is the relation between the Euler-Poincaré characteristic of a

combinatorial manifold M
~

 and the i-dimensional holes adjacent to M
~

?

Whether can we find a formula likewise the Euler-Poincaré formula?
Calculation shows that even for the case of ,2=n  the situation is

complex. For example, choose n different orientable 2-manifolds ,1S

nSS ...,,2  and let them intersect one after another at n different points

in .3R  We get a combinatorial manifold .
~

M  Calculation shows that

( ) ( ) ( ) ( )( ) nSSSM n −χ++χ+χ=χ 21
~

by Theorem 2.9. But it only increases one 2-holes. What is the relation of

2-dimensional holes adjacent to M
~

?

4.3. Local properties

Although a finitely combinatorial manifold M
~

 is not homogenous

in general, namely the dimension of local charts of two points in M
~

may be different, we have still constructed global operators such

as those of exterior differentiation d
~

 and connection D
~

 on .
~

MT r
s
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An operator O
~

 is said to be local on a subset MTW r
s

~⊂  if for any local

chart ( [ ])ppU ϕ,  of a point ,Wp ∈

( ) ( ) .
~~

pp UU WW OO =|

Of course, nearly all existent operators with local properties on MT r
s

~

in Finsler or Riemannian geometries can be reconstructed in these
combinatorially Finsler or Riemannian geometries and find the local
forms similar to those in Finsler or Riemannian geometries.

Global properties

To find global properties on manifolds is a central task in classical
differential geometry. The same is true for combinatorial manifolds. In
classical geometry on manifolds, some global results, such as those of de
Rham theorem and Atiyah-Singer index theorem, etc. are well known.
Remember that the pth de Rham cohomology group on a manifold M and

the index DInd  of a Fredholm operator ( ) ( )FMLEMH k ,,: 2→D  are

defined to be a quotient space

( ) ( ( ) ( ))
( ( ) ( ))MMd

MMdKer
MH

pp

pp
p

Λ→Λ

Λ→Λ=
−

+

1

1

:Im

:

and an integer

( ) ( ) ,
Im

,dimdimInd
2









−=

D
DD FML

Ker

respectively. The de Rham theorem and the Atiyah-Singer index theorem
respectively conclude that for any manifold M, a mapping

( ) ( ( ) )R,: MHomM p
p Π→Λϕ  induces a natural isomorphism

( ) ( )R;: MHMH np →ϕ∗  of cohomology groups, where ( )MpΠ  is the

free Abelian group generated by the set of all p-simplexes in M and

( )( ),IndInd DT σ=D

where ( ) ( )FEHomMT ,: →σ ∗D  and ( )( )DσTInd  is the topological

index of ( ).Dσ  Now the questions for these finitely combinatorial

manifolds are given in the following.
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(1) Is the de Rham theorem and Atiyah-Singer index theorem still

true for finitely combinatorial manifolds? If not, what are its modified

forms?

(2) Check other global results for manifolds whether true or get their

new modified forms for finitely combinatorial manifolds.
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