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Abstract

For an integer m > 1, a combinatorial manifold M is defined to be a
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of d-pathwise connected, homotopy classes, fundamental d-groups in
topology and tangent vector fields, tensor fields, connections, Minkowski
norms in differential geometry on these finitely combinatorial manifolds
are introduced. Some classical results are generalized to finitely
combinatorial manifolds. Euler-Poincaré characteristic is discussed and
geometrical inclusions in Smarandache geometries for various
geometries are also presented by the geometrical theory on finitely

combinatorial manifolds in this paper.
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1. Introduction

As a model of spacetimes in physics, various geometries such as those
of Euclid, Riemannian and Finsler geometries are established by
mathematicians. Today, more and more evidences have shown that our
spacetime 1s not homogenous. Thereby models established on classical
geometries are only unilateral. Then are there some kinds of overall
geometries for spacetimes in physics? The answer is YES. Those are just
Smarandache geometries established in last century but attract more
one’s attention now. According to the summary in [4], they are formally
defined following.

Definition 1.1 [4, 17]. A Smarandache geomeiry is a geometry which
has at least one Smarandachely denied axiom (1969), i.e., an axiom
behaves in at least two different ways within the same space, i.e.,
validated and invalided, or only invalided but in multiple distinct ways.

A Smarandache n-manifold is an n-manifold that support a
Smarandache geometry.

For verifying the existence of Smarandache geometries, Kuciuk and
Antholy gave a popular and easily understanding example on an Euclid
plane in [4]. In [3], Iseri firstly presented a systematic construction for
Smarandache geometries by equilateral triangular disks on Euclid
planes, which are really Smarandache 2-dimensional geometries (see also
[5]). In references [6, 7, 13], particularly in [7], a general constructing way
for Smarandache 2-dimensional geometries on maps on surfaces, called
map geometries was introduced, which generalized the construction of
Iseri. For the case of dimensional number > 3, these pseudo-manifold

geometries are proposed, which are approved to be Smarandache
geometries and containing these Finsler and Kihler geometries as
sub-geometries in [12].

In fact, by the Definition 1.1 a general but more natural way for
constructing Smarandache geometries should be seeking for them on a
union set of spaces with an axiom validated in one space but invalided in
another, or invalided in a space in one way and another space in a
different way. These unions are so-called Smarandache multi-spaces.
This is the motivation for this paper. Notice that in [8], these multi-metric
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spaces have been introduced, which enables us to constructing
Smarandache geometries on multi-metric spaces, particularly, on
multi-metric spaces with a same metric.

~

Definition 1.2. A multi-metric space A is a union of spaces Aj,
Ay, ..., A, for an integer m > 2 such that each A; is a space with

metric p; for i, 1 <i < m.

Now for any integer n, these n-manifolds M" are the main objects in
modern geometry and mechanics, which are locally Euclidean spaces R"
satisfying the T, separation axiom in fact, i.e., for p, ¢ € M", there are

local charts (Up,, ¢,) and (U,, ¢4) such that U, NU, =< and
¢, :U, »> B", ¢, : U, - B", where

B" = {(x;, x9, ..., xn)|x12 + x% RGP x% <1}

1s an open ball.

These manifolds are locally Euclidean spaces. In fact, they are also
homogenous spaces. But the world is not homogenous. Whence, a more
important thing is considering these combinations of different
dimensions, i.e., combinatorial manifolds defined following and finding
their good behaviors for mathematical sciences besides just to research
these manifolds. Two examples for these combinations of manifolds with

different dimensions in R® are shown in Figure 1.1, in where,
(a) represents a combination of a 3-manifold, a torus and a 1-manifold,
and (b) a torus with 4 bouquets of 1-manifolds.

Jd Eleeor

(a) (=)

Figure 1.1

For an integer s > 1, let ny, ng, ..., ny be an integer sequence with

0 < ny < ng < - < ng. Choose s open unit balls B, By?, ..., By, where
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S
ﬂBini #@ in R™M*2%" %"  Then a unit open combinatorial ball of
i=1

degree s is a union
S
~ .
B(ny, ng, ..., ng) = UBi i,
=1

Definition 1.3. For a given integer sequence ny, ng, ..., iy, m =1
with 0 < n; < ng < - < n,,, a combinatorial manifold M is a Hausdorff
space such that for any point p € M , there is a local chart (U,, ¢ p) of p,

lLe., an open neighborhood U, of p in M and a homoeomorphism
0p 1 Uy = B(my(p), na(p), ... ng(py(p)  with  {ny(p), na(p), ... ng(p)(p)}

c {ny, ng, s nptand i (p), na(p), - ns(p)(P)} = {1, ma, s
peM

denoted by M (nq, ng, ..., n,,) or M on the context and
'74 = {(U ’ (Pp)|P € M(n]_, ng, ..., nm)}

an atlas on M(ny, ng, ..., n,,). The maximum value of s(p) and the

s(p)
dimension $(p) of ﬂ Bini are called the dimension and the intersectional
i=1

dimensional of M(nl, ng, ..., n,,) at the point p, respectively.

A combinatorial manifold M is called finite if it is just combined by

finite manifolds.
S
Notice that Bin i # & by the definition of unit combinatorial balls of
i=1
degree s. Thereby, for p e ]rl(nl, ng, ..., Ng), either it has a neighborhood

U, with ¢,:U, - R% ¢e{ny, ng, .., ngj or a combinatorial ball

B(ty, 19, ..., 1;) with 0op:Up - B(ty, 19, .y 1), [ < s and {11, 19, ..., T/}

c {ny, ng, ..., ng} hold.
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The main purpose of this paper is to characterize these finitely
combinatorial manifolds, such as those of topological behaviors and
differential structures on them by a combinatorial method. For these
objectives, topological and differential structures such as those of
d-pathwise connected, homotopy classes, fundamental d-groups in
topology and tangent vector fields, tensor fields, connections, Minkowski
norms in differential geometry on these combinatorial manifolds are
introduced. Some results in classical differential geometry are
generalized to finitely combinatorial manifolds. As an important
invariant, Euler-Poincaré characteristic is discussed and geometrical
inclusions in Smarandache geometries for various existent geometries
are also presented by the geometrical theory on finitely combinatorial

manifolds in this paper.

For terminologies and notations not mentioned in this section, we
follow [1-2] for differential geometry, [5, 7] for graphs and [14, 18] for
topology.

2. Topological Structures on Combinatorial Manifolds

By a topological view, we introduce topological structures and

characterize these finitely combinatorial manifolds in this section.
2.1. Pathwise connectedness

On the first, we define d-dimensional pathwise connectedness in a

finitely combinatorial manifold for an integer d, d > 1, which is a natural

generalization of pathwise connectedness in a topological space.

Definition 2.1. For two points p, g in a finitely combinatorial
manifold M(nl, ng, ..., n,,), if there is a sequence Bj, By, ..., By of

d-dimensional open balls with two conditions following hold.

(1) B; € M(ny, ng, ..., n,) for any integer i, 1 <i<s and p € B,

q € By;

(2) The dimensional number dim(B; N B;,;)>d for i,1<i <s-1.
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Then points p, g are called d-dimensional connected in M(nl, N9,y ey Npy)

and the sequence B;, Bg, ..., B, a d-dimensional path connecting p and
q, denoted by P%(p, q).
If each pair p, ¢ of points in the finitely combinatorial manifold

M(ny, ny, ..., n,,) is d-dimensional connected, then M(n;, no, ..., n,,) is

called d-pathwise connected and say its connectivity > d.

Without loss of generality, we consider only finitely combinatorial
manifolds with a connectivity > 1 in this paper. Let M (nq, ng, ..., n,,) be
a finitely combinatorial manifold and d, d > 1 an integer. We construct a

labelled graph G[M(ny, ng, ..., ny,)] by
V(GM(ny, ny, oo ) = Vi| Ve,

where V| = {n; -manifolds M™ in M(ny,ng,....,ny)|1<i<m} and Vy=

{isolated intersection points O nj of M" , M" in M(ny,ng, ..., ny)

M"Y M
for 1 <, j < m}. Label n; for each n;-manifold in V; and 0 for each

vertex in Vy and

EG[M(m, ny, ., ny)) = Bi| ) Bs,
where Ey = {(M", M")|dim(M" N M) >d,1<i, j<m} and Ey =

{(OMnl M

(0] njforlsi,jﬁm}.

M" M
@) (D
O—~0@——@

(a)

{b)
0 (v
o oo Josd]
© (d) ©

Figure 2.1

njs M™), (O njs M")M" tangent M'/ at the point

M"Y, M
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For example, these correspondent labelled graphs gotten from finitely
combinatorial manifolds in Figure 1.1 are shown in Figure 2.1, where
d=1 for (a) and (b), d =2 for (¢) and (d). By this construction,

properties following can be easily gotten.

Theorem 2.1. Let G*[M(ny, no, ..., n,,)] be a labelled graph of a

finitely combinatorial manifold Z\Nl(nl, ng, ..., n,, ). Then
(1) Gd[Z\NJ(nl, ng, ..., Ny, )] is connected only if d < ny.

(2) there exists an integer d, d < n, such that G [M(ny, ny, ..., ny)]

is connected.
Proof. By definition, there is an edge (M"™, M'/) in Gd[ﬂzf(nl, ng,
v Ny)] for 1<i,j<m if and only if there is a d-dimensional

path P? (p, q) connecting two points p € M™ and q € M"7. Notice that

(P (p, g\M") = M"Y and (P*(p, g\M") ¢ M™.
Whence,
d < min{n;, n;}. 2.1)
Now if G?[M(ny, ng, ..., n,,)] is connected, then there is a d-path
P(M™, M") connecting vertices M™ and M" for M",M"
V(G4 [M(ny, ng, ..., n,y)]). Without loss of generality, assume
P(M", M) = MM M2 ... M1 M"
Then we get that
d < min{n;, 81, Sg, ..., §_1, nj} (2.2)

by (2.1). However, according to Definition 1.4, we know that

U {nl(p)’ n2(p)’ o ns(p)(p)} = {nl’ g, wes nm} (2.3)

peM
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Therefore, we get that
d < min U {n(p), ng(p), s ng(p)(P)} = mining, ny, ..., nyt =m

peM

by combining (2.2) with (2.3). Notice that points labelled with 0 and 1 are
always connected by a path. We get the conclusion (1).

For the conclusion (2), notice that any finitely combinatorial manifold
is always pathwise 1l-connected by definition. Accordingly, Gl[Z\NJ (nq,

ny,...,n,, )| is connected. Thereby, there are at least one integer, for

instance d =1 enabling G%[M(ny, ng, ..., n,,)] to be connected. This

completes the proof.

According to Theorem 2.1, we get immediately two following

corollaries.

Corollary 2.1. For a given finitely combinatorial manifold ]\~4, all

connected graphs Gd[l\7[] are isomorphic if d < n;, denoted by G[M].

Corollary 2.2. If there are k 1-manifolds intersect at one point p in a

finitely combinatorial manifold M, then there is an induced subgraph

K*1 in G[M)].
Now we define an edge set E¢(M) in G[M] by

E4(M) = E(GYMN\NEG*[M)).

Then we get a graphical recursion equation for graphs of a finitely

combinatorial manifold M as a by-product.

Theorem 2.2. Let M be a finitely combinatorial manifold. Then for

any integer d, d > 1, there is a recursion equation
G [M] = GU[M] - E*(M)
for graphs of M.

Proof. It can be obtained immediately by definition.
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For a given integer sequence 1<n; <ng<---<n,, m >1, denote
by Hd(nl, ng, .., n, ) all these finitely combinatorial manifolds
M(ny, ny, ..., n,,) with connectivity > d, where d <n; and G(ny, ng, ..., n,y)
all these connected graphs Giny, ng, ..., n, | with vertex labels

0, ny, ng, ..., B, and conditions following hold.

(1) The induced subgraph by vertices labelled with 1 in G is a union of
complete graphs;

(2) All vertices labelled with O can only be adjacent to vertices labelled
with 1.

Then we know a relation between sets H%(ny, ng, ..., n,) and

G(ny, ng, .., Ny ).
Theorem 2.3. Let 1 < n; <ng <..<n,, mz21 be a given integer

sequence. Then every finitely combinatorial manifold M
H%(ny, ng, ..., n,,) defines a labelled connected graph Glny, ng, ..., ny,]
e G(ny, ng, ..., n,,). Conversely, every labelled connected graph

G[ny, ng, ..., ny, 1 € G(ny, ng, ..., n,,) defines a finitely combinatorial

manifold M e Hd(nl, ng, ..., Ny, ) for any integer 1 < d < ny.

Proof. For M e Hd(nl, ng, ..., n,,), there is a labelled graph

Glny, ng, ..., ny,] € G(ny, ng, ..., n,;) correspondent to M is already
verified by Theorem 2.1. For completing the proof, we only need to
construct a finitely combinatorial manifold M e Hd(nl, Ng, ..., Ny, ) for
Glny, ng, ..., ny,] € G(ny, na, ..., n,,). Denoted by I(u) = s if the label of a
vertex u € V(G[ny, ng, ..., n,,]) is s. The construction is carried out by

the following programming.

Step 1. Choose | G[ny, ng, ..., n,,]| —| Vo | manifolds correspondent to
each vertex u with a dimensional n; if I(u)=n;, where
Vo = {ulu € V (G[ny, ng, ..., n,,]) and Il(u) = 0}. Denoted by V5; all

these vertices in G[n;, ng, ..., n,, | with label > 1.
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Step 2. For u; eV, with l(u)=n;, if its neighborhood set

1 .2 . 1 2
NGl g, )0) N Var = (o, oF, o o} with 10]) = muy, 1) =
nyg, ..., (v (ul)) =ny14(y, ), then let the manifold correspondent to the vertex
u; with an intersection dimension > d with manifolds correspondent to

(1)

vertices vf, vZ, ..., vV and define a vertex set Ay = {uy}.

Step 3. If the vertex set A; = {u;, us, ..., u;} < V5; has been defined
and Vo1 \A; = &, let uyyy € Vo1 \A; with alabel n; . Assume

(N, ng, ... n 1) N Vo) NA; = {vhq, Vg, oy 050

: 1 2 s(u,
with {(v7,1) = ngyp1, W) = ngga,es - l(vlfrl”l)) = 41 5(uy,,)- Then let
the manifold correspondent to the vertex u;,; with an intersection

dimension > d with manifolds correspondent to these vertices vll 1 vlz+1,

s(ug41)

oy U171 and define a vertex set Az; = A; U iy}

Step 4. Repeat steps 2 and 3 until a vertex set A, = V51 has been
constructed. This construction is ended if there are no vertices w € V(G)
with l(w) = 0, i.e., V51 = V(G). Otherwise, go to the next step.

Step 5. For w € V(G[ny, ng, ..., np, )\Vsq, assume Ngpy, g, ... n,,] (W)
= {wy, wy, ..., w,}. Let all these manifolds correspondent to vertices

wy, Wy, ..., W, intersects at one point simultaneously and define a vertex
set Ay, = A, U {w}.
Step 6. Repeat Step 5 for vertices in V(G[ny, ng, ..., n, )\Vsq.

This construction is finally ended until a vertex set A, =

V(G[ny, ng, ..., n,,]) has been constructed.

As soon as the vertex set Aj,;, has been constructed, we get a

finitely combinatorial manifold M. Tt can be easily verified that

M e H%(ny, ng, ..., n,;) by our construction way.
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2.2. Combinatorial equivalence

For a finitely combinatorial manifold M in H%(ny, ng, ..., ny),
denoted by G[M(ny, ny, ..., n,,)] and G[M] the correspondent labelled
graph in G(ng, ng, ..., n,) and the graph deleted labels on

G[M(ny, ny, ..., n,,)], C(n;) all these vertices with a label n; for

1 < i < m, respectively.

Definition 2.2. Two finitely combinatorial manifolds Ml(nl,
gy ooy )y Mo(Ry, ko, ..., k;) are called equivalent if these correspondent
labelled graphs

G[]\Zfl(nl, no, ..., nm)] = G[Mz(kl, k2, N kl)]

Notice that if M;(ny, ng, ..., ny), My(ky, kg, ..., k;) are equivalent,
then we can get that {ny, ng, .., n,} = {k, kg, ..., k;} and G[M;]=
G[]\7.f2]. Reversing this idea enables us classifying finitely combinatorial

manifolds in H? (nq, ng, ..., n,,) by the action of automorphism groups of

these correspondent graphs without labels.

Definition 2.3. A labelled connected graph G[M(n;, ng, ..., n,,)] is
combinatorially unique if all these correspondent finitely combinatorial

manifolds M(ny, ng, ..., n,) are equivalent.

A labelled graph G[ny, ng, ..., n,,| is called class-transitive if the
automorphism group AutG is transitive on {C(n;), 1 <i < m}. We find a
characteristic for combinatorially unique graphs.

Theorem 2.4. A labelled connected graph Gny, ng, ..., n,| is
combinatorially unique if and only if it is class-transitive.

Proof. For two integers i, j, 1 < i, j < m, re-label vertices in C(n;) by
n;j and vertices in C(n;) by n; in G[ny, ng, ..., n,,]. Then we get a new
labelled graph G'[n;, ng, ..., ny,] in G[ng, ng, ..., n,]. According to

Theorem 2.3, we can get two finitely combinatorial manifolds
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M;(ny, ng, ..., ny) and Moy(ky, ko, ..., k) correspondent  to

G[ny, ng, ..., ny,] and G'[ny, ng, ..., ny, |-

Now if G[ny, ng, ..., n,,] 1s combinatorially unique, we know
M;(ny, ng, ..., n,,) is equivalent to My(ky, kg, ..., k;), ie., there is an

automorphism 06 € Aut G such that Ce(ni) =C(n;) for i, j, 1<i, j<m.

On the other hand, if G[n;, ny, ..., n,,] is class-transitive, then for
integers i,j, 1 < i, j < m, there is an automorphism t € AutG such that
C*(n;) = C(nj). Whence, for any re-labelled graph G'[ny, ng, ..., n,,], we

find that
Glny, ng, ..., ny 1= G'lny, na, ..., n,1,

which implies that these finitely combinatorial manifolds correspondent
to G[my, ng, ..., n,] and G'[ng, ng, ..., n,] are combinatorially

equivalent, i.e., G[ny, ng, ..., n,,| is combinatorially unique.

Now assume that for parameters t;, {3, ..., t;;, we have known an
enufunction
ti b 4
CMn'i [xil, Xi9, ] = Z ni(til, tiZ’ veey tis)xiilxilzz -~xifj
ti1, 69, oo g
for n;-manifolds, where n;(t;, ¢, ..., t;;) denotes the number of non-
homeomorphic n;-manifolds with parameters ¢;;, ¢;9, ..., {;s. For instance
the enufunction for compact 2-manifolds with parameter genera is
Cplx](2) =1+ Zw.
p=1
Consider the action of AutG[n;, ng, ..., n,,] on G[ny, ng, ..., n,,]. If the
number of orbits of the automorphism group AutG[n;, ng, ..., n,,] action
on {C(n;),1<i<m} is my, then we can only get m,! non-equivalent

combinatorial manifolds correspondent to the labelled graph
G[ny, ng, ..., n,,] similar to Theorem 2.4. Calculation shows that there

are [! orbits action by its automorphism group for a complete

(sy + sg + -+ sy)-partite graph K(k', ky?, ..., k'), where k denotes
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that there are s; partite sets of order k; in this graph for any integer
i, 1 <1 < [, particularly, for K(n;, no, ..., n,,) with n; = n; fori,j, 1 <1,
J < m, the number of orbits action by its automorphism group is m!.
Summarizing all these discussions, we get an enufunction for these
finitely combinatorial manifolds M(ny, ng, ..., n,,) correspondent to a

labelled graph G[ny, ng, ..., n,,] in G(ny, no, ..., n,,) with each label > 1.

Theorem 2.5. Let Gny, ng, ..., n,| be a labelled graph in
G(nq, ng, ..., n,,) with each label > 1. For an integer i, 1 < i < m, let the

enufunction of non-homeomorphic n;-manifolds with given parameters

h,ta, .., be Cp o [xi1, x;9, ...] and my the number of orbits of the
automorphism group AutGln;, ng, ..., n,,] action on {C(n;),1 <1 < m},
then the enufunction of combinatorial manifolds M(nl, N9y vy Npy)
correspondent to a labelled graph Glny, ng, ..., n,,| is
m
Cjz (%) = nO!HCMni [xi1, 22, -],
i=1

particularly, if Glny, ng, .., ny,]= K(k', k32, ..., k) such that the

number of partite sets labelled with n; is s; for any integer i, 1 <i < m,

then the enufunction correspondent to K(kfl, k;z, ey By s
m
Cy(x) = m!HCM”i [x;1, %9, -]
=1

and the enufunction correspondent to a complete graph K,, is
m

Cir®) = [ [ €, plvins xizs )

=1

Proof. Notice that the number of non-equivalent finitely
combinatorial manifolds correspondent to G[ny, ng, ..., n,,| is

m
7t01_[ nitin, tig, s tis)
i=1
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for parameters t;, t;9, ..., tig, 1 <i<m by the product principle of

enumeration. Whence, the enufunction of combinatorial manifolds

M(nl, ng, ..., N, ) correspondent to a labelled graph G[ny, ng, ..., n,,] is
m
Cy(x) = Z 7T01_[ it tigs s tig) Hx ‘1951’22 XS
11,89, tig =1 =1

m
= TC()! | I CM”i [xil, Xi9, ]
i=1

2.3. Homotopy classes

Denote by f =g two homotopic mappings f and g. Following the

same pattern of homotopic spaces, we define homotopically combinatorial
manifolds in the next.

Definition 2.4. Two finitely combinatorial manifolds M (ky, kg, ..., Bp)

and M(nl, ng, ..., n,,) are said to be homotopic if there exist continuous

maps
f : M(k]_, kQ, .. Q kl) - M(nl, no, ..., nm),

g: M(ny, ng, ..., ny) = M(ky, ko, ..., )

such that  gf ~identity : M(ky, kg, ..., kj) —> M(ky, ko, ., k;)  and
fg =identity : M(ny, ng, ..., ny,) = M(ny, ng, .., ny,).
For equivalent homotopically combinatorial manifolds, we know the

following result under these correspondent manifolds being homotopic.
For this objective, we need an important lemma in algebraic topology.

Lemma 2.1 (Gluing Lemma, [16]). Assume that a space X is a finite

union of closed subsets: X = UXi- If for some space Y, there are
=1

continuous maps f;:X; > Y that agree on overlaps, i.e.,

f; ‘XiﬂXj: fi ‘XiﬂXj for all i, j, then there exists a unique continuous

f:X >Y with f|Xi=f,-foralli.
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Theorem 2.6. Let M(ny, ny, ..., n,,) and M(ky, kg, ..., k;) be finitely
combinatorial manifolds with an equivalence ® : G[M(nl, ng, oy Ny )] >
G[M(ky, kg, ..., k). If for My, My e V(G[M(ny, ng, ..., ny,))), M; s
homotopic to w(M;) with homotopic mappings fu; » M; - w(M;),
gm; : ©(M;) > M; such that fy; lm;nm;= m; \minm;> 8m; I, =
gm; lm;nm; providing (M;, M;) e E(G[M(ny, ng, ..., ny)]) for 1<i,
j < m, then M(ny, ng, ..., n,,) is homotopic to M(ky, kg, ..., k).

Proof. By the Gluing Lemma, there are continuous mappings

f:M(ng, ng, ..., ny) = M(ky, ko, ..., k)
and

g: M(kl, ko, ..., ky) > M(nl, N,y vy Mpy)
such that

fly=fm and glgm)= 8o(m)
for M e V(G[M(ny, ng, ..., ny)]). Thereby, we also get that

gf = identity : M(ky, kg, ..., k) > M(ky, kg, ..., k)
and
fg = identity : M(ny, ng, ..., ny) = M(ny, ng, ..., ny)

as a result of gyfy =identity : M — M, fy gy = identity : (M) —
w(M).

We have known that a finitely combinatorial manifold M (nq,
ng, ..., Ny, ) is d-pathwise connected for some integers 1 < d < n;. This

consequence enables us considering fundamental d-groups of finitely

combinatorial manifolds.

Definition 2.5. Let M(ny, ng, ..., n,,) be a finitely combinatorial

manifold. Then for an integer d, 1 < d < n; and x € M(nl, N9, vy Nyy), &
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fundamental d-group at the point x, denoted by nd(Z\NJ(nl, N9, ey Ny, ), X)

is defined to be a group generated by all homotopic classes of closed
d-paths based at x.

Ifd =1 and M(nl, ng, ..., Ny, ) is just a manifold M, we get that
1 (M(ny, ng, ..., ny,), x) = n(M, x).

Whence, fundamental d-groups are a generalization of fundamental
groups in topology. We obtain the following characteristics for

fundamental d-groups of finitely combinatorial manifolds.

Theorem 2.7. Let M(ny, ny, .., n,) be a d-connected finitely

combinatorial manifold with 1 < d < ny. Then

(1) for x € M(nl, N9, «uy Ny,

Wy, ng, e m), 2 = (@ 2(M) @ (G,
Mev(G?)
d _ ~di d d
where G = G*[M(ny, ny, ..., n,,)], n%(M), ®(G?) denote the fundamental

d-groups of a manifold M and the graph Gd, respectively and
2) for x, y M(nl, N9,y vy Ny,

d/ny d/ng
(M (ny, ng, ..., nyy,), x) = t%(M(ny, ng, ..., ny), ¥).

Proof. For proving the conclusion (1), we only need to prove that for
any cycle C in ]\zf(nl, ng, ..., N, ), there are elements ClM, Céw, ey CZZ(WM)

e n(G?) and integers o, b; for M e V(G?)

ETCd(M), A, 09, ..y AL 1 2 Yj

B(G?)
and 1<i<I(M), 1< j<cG?) <p(G?) such that

(M) (GY)

C = Z ZaiMCiM+ ijcxj(modZ)

MEV(Gd) =1 Jj=1
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and it is unique. Let CM, CcM, . CA{M) be a base of n%(M) for

M e V(Gd). Since C is a closed trail, there must exist integers kiM, L,

1<i<bM), 1< j<BG?) and hp for an open d-path on C such that

b(M) BG?)
C= 2 D rich+ Zl](x] > hpP,
MEV(Gd) =1 PeA

where hp = 0(mod 2) and A denotes all of these open d-paths on C. Now
let
(aMi1<i<iM))={EMEM =0and1<i<bM),

;1< j<c(GN =11 #0,1<j<pG).

Then we get that

(M) o(G%)
= > Za}”CiM + ) bjoj(mod 2). (2.4)
Mev(G?) i= Jj=1

If there is another decomposition

I'(M) (G%)
= > DaMes Zb aj(mod 2),
Mev(g?) i=1

without loss of generality, assume ['(M) < (M) and c¢'(M) < ¢(M), then

we know that

M o(G%)

)
Z Z(aiM —aMycM + Z(bj ~b)aj =0,
Mev(GY) =1 =1

12

where o™ =0 if i > I'(M), b} =0 if j'> ¢'(M). Since CM,1<i<b(M)
and a;,1<j< B(G?) are bases of the fundamental group m(M) and

n(G?), respectively, we must have

oM = aM 1< i< M) and b; = bj,1<j<c(GY).
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Whence, the decomposition (2.4) is unique.
For proving the conclusion (2), notice that M (nq, ng, ..., n,,) 1is

pathwise d-connected. Let pd (x, ¥) be a d-path connecting points x and

yin M(ny, ng, ..., n,,). Define
0.(C) = P4(x, )C(P?) 7 (x, )
for C € M(ny, ng, ..., n,,). Then it can be checked immediately that

o, : 1 (M(ny, ng, ..., ny), x) > 1¢(M(ny, ng, .., ny), ¥)
1s an isomorphism.
A d-connected finitely combinatorial manifold M(ny, ng, ..., ny,) is
said to be simply d-connected if n%(M(ny, ng, ..., ny,), x) is trivial. As a
consequence, we get the following result by Theorem 2.7.

Corollary 2.3. A d-connected finitely combinatorial manifold M(nl,

N9, ..., Ny, ) is simply d-connected if and only if
(1) for M e V(G [M(ny, ng, ..., ny)]), M is simply d-connected and
©2) G4 M(ny, ng, ..., ny)] is a tree.

Proof. According to the decomposition for n%(M(ny, ny, ..., Np), X)
in Theorem 2.7, it is trivial if and only if ©(M) and n(G%) both are trivial

for M e V(G4 [M(ny, ng, ..., ny)]), i.e, M is simply d-connected and G¢ is

a tree.

For equivalent homotopically combinatorial manifolds, we also get a
criterion under a homotopically equivalent mapping in the next.

Theorem 2.8. If f: M(ny,ng, ..., ny, ) — M(ky, ks, ..., k) is @ homotopic
equivalence, then for any integer d, 1 < d < ny and x € M(nl, N9y .oy Ny ),

1 (M(ny, ng, ..., ny), x) = 1 (M(ky, kg, ..., k), f(x)).
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Proof. Notice that f can naturally induce a homomorphism
fr: 7 (M(ny, ng, ooy ny), %) = 78 (M(ky, kg, ..oy ky), f(x))
defined by f.(g) = (f(g)) for g e 7 (M(ny, ngy, ..., n,,), x) since it can be
easily checked that f,(gh) = f,()f.(h) for g, hen?(M(ny, ng,....npy), ).

We only need to prove that f; is an isomorphism.

By definition, there is also a homotopic equivalence g : M (K,
ko, ... k) = M(ny, ng, ..., n,y,) such  that  gf = identity : M(n,,

gy s My ) = M(ny, ng, ..., Ny ). Thereby, g fo = (gf), = n(identity)_ :
1 (M(ny, ng, ..., n,,), x) > 7°(M(ny, ng, ..., ny), ),

where p is an isomorphism induced by a certain d-path from x to gf(x) in

M(ny, ngy, ..., n,,). Therefore, g.f, is an isomorphism. Whence, f, is a

monomorphism and g, is an epimorphism.
Similarly, apply the same argument to the homotopy
fg = identity : M(ky, ko, ..., kj) — M(ky, kg, ..., k;),
we get that f,g. = (fg), = v(identity), :
1 (M(ky, kg, .y ky), x) > 7°(M(ky, kg, ..., kp), %),
where v is an isomorphism induced by a d-path from fg(x) to x in
M(kl, ko, ..., k7). So g, is a monomorphism and f, is an epimorphism.
Combining these facts enables us to conclude that f : nd(ﬂ (nq,

gy vy Ny ), %) = n(M(Ry, ko, ..., k), f(x)) is an isomorphism.

Corollary 2.4. If f: M(ny, ny, .., ny) = M(ky, ks, ... k) is a
homeomorphism, then for any integer d, 1<d <n; and x € M(nl,

N9, ey Nyy,)

1 (M(ny, ng, ..., ny), x) = 1 (M(ky, ko, ..., k), f(x)).
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2.4. Euler-Poincaré characteristic

It is well-known that the integer

x(m) = > (1o
1=0
with o; the number of i-dimensional cells in a CW-complex 9 is defined

to be the Euler-Poincaré characteristic of this complex. In this subsection,
we get the KEuler-Poincaré characteristic for finitely combinatorial

manifolds. For this objective, define a clique sequence {CI(i)};5; in the

graph G[J\Nl ] by the following programming.
Step 1. Let CIG[M]) = ly. Construct
Cllly) = {KP, KY, ..., K |K » G[M] and K NK? = 2,
or a vertex € V(G[M]) for i # j,1<i, j < p}.

Step 2.Let G, = | JK® and CUGIMNG;) = 1. Construct
K cci(iy)

Clly) = {K}!, Ky, .., K} |[K' = G[M] and K' N K} = &

or a vertex € V(G[M]) for i # j,1<i, j <q}.

Step 3. Assume we have constructed Cl(l;,_;) for an integer %k > 1.

Let G, = UKlk*1 and CIG[MN\(G; U---U G})) = I,. We construct
Kh1ccny, )

Cl(lk) = {Klk, Kék, ey K,l.k |Kllk - G[M] and Kilk N Kjk - g,

~

or a vertex € V(G[M]) for i # j,1<i, j <r}.
Step 4. Continue Step 3 until we find an integer ¢t such that there are

t
no edges in G[M]\U G;.
=1
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By this clique sequence {Cl(i)};;, we can calculate the Euler-Poincaré

characteristic of finitely combinatorial manifolds.

Theorem 2.9. Let M be a finitely combinatorial manifold. Then

()= Y > (-0 (M, NN M),

Kk ecur), k=2 MijeV(Kk),lﬁjSSSk
Proof. Denoted the numbers of all these i-dimensional cells in a
combinatorial manifold M or in a manifold Mby &; and o;(M). If G[M]

is nothing but a complete graph K" with V(G[M]) = {M;, M, ...,
M}, k>2, by applying the inclusion-exclusion principle and the

definition of Euler-Poincaré characteristic we get that

(i)=Y 15,
=0

=31 >, (- 1oy (M NN M)
i=0 MijeV(Kk),lészSk

Z (- 1)S+1i (- (M; NN M)
=0

M;; cV(KR),1<j<s<k

> CUTM NN M),
MijeV(Kk),lsjgsgk
for instance, x(M) = x(M;)+ x(My)-x(M; N My) if G[M]=K? and
V(G[M]) = {M;, My}. By the definition of clique sequence of G[M], we

finally obtain that

()= Y > () (M, NN M),

K*eCl(k), k>2 MijeV(Kk),lgjgsgk

If G[Z\7[ ] is just one of some special graphs, we can get interesting

consequences by Theorem 2.9.
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Corollary 2.5. Let M be a finitely combinatorial manifold. If G[M]
is K° -free, then

()= D - D My N My),

MeV(G[i]) (My, M3)<E(G[3])
Particularly, if dim(M; N My) is a constant for any (M, My) e
E(G[M)), then

()= D xH(M) - My N My)| E(GIM])|
MeV(G[M])

Proof. Notice that G[M] is K> -free, we get that

()= DT (M) + u(My) - x(My N M)
(My, My)<E(G[M])

=Y e Y (M NMy)

(M1, M) E(G[M]) (My, M) E(G[M])
= D - D My N My).
MeV(G[M]) (M, M3)e E(G[M])

Since the Euler-Poincaré characteristic of a manifold M is 0 if
dim M = 1(mod 2), we get the following consequence.

Corollary 2.6. Let M bea finitely combinatorial manifold with odd
dimension number for any intersection of k manifolds with k > 2. Then

W)= D (M),

MeV(G[M])
3. Differential Structures on Combinatorial Manifolds

We introduce differential structures on finitely combinatorial
manifolds and characterize them in this section.
3.1. Tangent vector fields

Definition 3.1. For a given integer sequence 1 < n; < ng < - < n,y,

a combinatorially C" differential manifold (M (ny, ng, woy Ny ); Zl) is a
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finitely combinatorial manifold M(nl, N9y ooy Ny )s M(nl, N9,y ey Nyy)

=|JU;, endowed with an atlas A={Uy; 9,) eI} on
iel

M (ny, ng, ..., n,,) for an integer h, h > 1 with conditions following hold.
(1) {U,; a € I} is an open covering of M(nl, N,y ey My );

(2) For a, B e I, local charts (Uy; ¢,) and (Up; ¢p) are equivalent,
Le., U, NUp =@ or U, NUg # & but the overlap maps

0o 03" 90Uy, NUp) — 93(Up) and gy : 9p(Uy NUp) - 0, (U,,)
are C" mappings;

(3) A is maximal, i.e., if (U; @) is a local chart of Z\Nl(nl, N9, ey Myy)

equivalent with one of local charts in A, then (U; ¢) € A.

Denote by (M(ny, ng, ..., n,); A) a combinatorially differential
manifold. A finitely combinatorial manifold M(ny, no, ..., n,) is said to

be smooth if it is endowed with a C® differential structure.

Let A be an atlas on M(nl, ng, ..., Ny, ). Then choose a local chart
- s(p)
U;w) in A For pe(Ue), if w,:U, » [JB"?) and ip)=
i=1

s(p)
dim( ﬂ Bni(p)], the following s(p) x ng(,) matrix [@(p)]
=1

x11 xls(p)

13(p)+1) ... ,lm 0
T X7 G L 2n
e@l=| 5@ " sm) " o "
xS(P)1 £5(P)3(p) SO xs(p)ns(p)—l xs(p)ns(p)
L s(p) s(p) -
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with % = 2/ for 1<i,j<s(p),1<s<38(p) is called the coordinate

matrix of p. For emphasize w is a matrix, we often denote local charts

in a combinatorially differential manifold by (U;[w]). Using the
coordinate matrix system of a combinatorially differential manifold
(Z\7I(n1, N9, vy Ny ); .Zl), we introduce the conception of C* mappings and

functions in the next.
Definition 3.2. Let M, (ny, ng, ..., ny,), My(ky, kg, ..., k;)  be
smoothly combinatorial manifolds and

f: Ml(nl, NG, vy Ny ) = M2(k1, ko ...y ky)

be a mapping, p € M;(ny, ng, ..., n,, ). If there are local charts Up; [w,])

of p on M(ny, ng, ..., n,,) and (Vepys logp)]) of f(p) with f(U,) < Vi)

such that the composition mapping

~

f=logplefelop]™ : [0,]U,) > [opp)] (Vi)

isa C" mapping, then fis called a ch mapping at the point p. If fis ch
at any point p of Ml(nl, ng, ..., Ny, ), then f is called a c" mapping.
Particularly, if Mz(kl, ko, ..., k;) = R, then f is called a ch function on
Ml(nl, N9, ..., Ny ). In the extreme h = «, these terminologies are called
smooth mappings and functions, respectively. Denote by .2, all these c”

functions at a point p e M(ny, ng, ..., n,y ).

For the existence of combinatorially differential manifolds, we know

the following result.

Theorem 3.1. Let M(nl, ng, ..., N,) be a finitely combinatorial
manifold and d, 1<d <ny an integer. If YM e V(G [M(ny, ny, ..., n,y,)])
is C" differential and V(M;, My)e E(G%[M(ny,ny, ..., n,,)]) there exist
atlas

Ay ={(Vy; 0)IVx € My}, Ag = {(W,; v,)|Vy € My}
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such that @, |VxﬂWy: vy |VxﬂWy for x € My, y € My, then there is a
differential structures

A = {Uy; [w,))|Vp € M(ny, ng, ..., )}
such that (M(ny, ng, ..., n,,); A) is a combinatorially C" differential
manifold.

Proof. By definition, we only need to show that we can always choose

a neighborhood U, and a homoeomorphism [@ p] for each pe
M(nl, ng, ..., N, ) satisfying these conditions (1)-(3) in Definition 3.1.

By assumption, each manifold VM e V(G¢[M(ny, ng, ..., ny,)]) is C*
differential, accordingly there is an index set 1[I;; such that

{U,; o« € Iy} is an open covering of M, local charts (U,; ¢,) and

(Up; @p) of M are equivalent and A = {(U; ¢)} is maximal. Since for

p e M(ny, ng, ..., n,y,), there is a local chart (Up; [@,]) of p such that

s(p)
[@,]: U, > UBni(p), ie, p is an intersection point of manifolds
i=1

M"i(p),lgigs(p). By assumption each manifold MnP) s ch
differential, there exists a local chart (V; (pfu) while the point

p e M"?) syuch that (pr — B"(P), Now we define

Then applying the Gluing Lemma again, we know that there is a

homoeomorphism [@,] on U, such that

[mp] |M"i(P) = (P;)
for any integer i, 1 < i < s(p). Thereafter,

A = {U,; [mp])Wp € J\Zf(nl, N9,y oy Ny )}
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is a C" differential structure on M (ny, ng, ..., n,,) satisfying conditions
(1)-(3). Thereby (M (nq,n9,..., n,,); Zl) is a combinatorially C” differential
manifold.

Definition 3.3. Let (M(ny, ng, ..., n,, ), A) be a smoothly combinatorial

manifold and pe M(nl, ny,..., N, ). A tangent vector v at p is a mapping

v : .2, - R with conditions following hold.
(1) Vg, he 2,, V1 eR,u(h+1h)=v(g)+rv(h);
(2) Vg, he . 2;,v(gh)=v(g)h(p)+g(p)u(h).

Denoted all tangent vectors at pe M(ny,ng,..,n,) by Tpﬂ(nl,

ny,..,n, ) and define addition + and scalar multiplication - for

u,ve Tpﬂ(nl, ng, ..., Ny), L € R and fe .2, by
(@ +v)(f) =ul(f)+v(f), Au)(f) = - u(f).

Then it can be shown immediately that Tpﬂ (nq, ng, ..., n,,) is a vector

space under these two operations + and -.

Theorem 3.2. For any point p € M(ny, ngy, ..., n,,) with a local chart

(Up;lepl), the dimension of TpM(nl, N9, «uy Nyy,) 18

s(p)
dim T, M(ny, ng, .., ny) = 8(p)+ Y (n; = &(p))
=1
with a basis matrix
B
0x S(P)an(p)
1 o 1 0 o .0 o |
s(p) ax! s(p) ax'5p) oy l6(P11) ox'™
1 o 1 0 0 0 0
s(p) ax?! s(p) ax25p) oy 2E(0)H) 5,209
1 a Y 1 a a Y e a a
s(p) axsP)T  s(p) gxs(P)S(P) gy s(p)(3(p)+1) axs(P)(ns(p)*l) axs(P)ns(p)J
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l

where x% =x7' for 1<i,j<s(p),1<1<5(p), namely there is a smoothly

functional matrix [Uij] such that for any tangent vector v at a

s(p)xns(p)

point p of ]rl(nl, N9y eees Ny ),

_ 0
7= Loy | 75

i

:|s(p)><ns(p)
k1
where [a;; ], © [bys ey = D D aibij-
i=1j=1
Proof. For f € .2;, let f=f [0, Ite ,@[;pp](p). We only need to prove
that f can be spanned by elements in

s(p) m
%lpuwp)}u[u 0 lpug,.gs}} o

i=1 j=§(p)+1

for a given integer h, 1 < h < s(p), namely (3.1) is a basis of Tpﬂ(nl,
Ng, ..., Ny, ). In fact, for x € [¢,](U,), since f is smooth, we know that
~ ~ 1 d ~._ L
F@) - T(0) = | 5T (o + (% - %))t
0 at
s(p) n; =

. i i 1 b _ o
il 6 - ) j i axfif (% + (T - Xp))dt

{..
Il

—
(-
I

—

in a spherical neighborhood of the point p in

[0,]U,) c REP)-5(R)3(p)em ng b

with [¢,](p) = Xy, where

1 . . A
j —, 1if1<j<s(p),
i) = 15(p) . (»)
1, otherwise.

Define
L3

8y = [ Ty (o + 1z -z
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and g;; = &jj - [¢,]. Then we find that

gij(p) gzj(xO) O)
%(W@»:%@

Therefore, for g € U, there are g;;, 1 <i < s(p), 1 < j < n; such that

o
fl@)= )+ D > i@ —x8)e;(p).
i=1 j=1

Now let UeTpM (ny,ng,...,n,,). Application of the condition (2) in
Definition 3.1 shows that

u(f(p)) = 0, and v(n? ) =0

3(p)0

Accordingly, we obtain that

s(p) n 3
o(f) = v[f(p) + ZZnS & = xéf)gij(p)J

i=1 j=1

s(p) n
. v[f(p) £ Z o(nf (=" — = )giJ-(p))J

i=1 j=
s(p) n .
ZZ(ns(p)glxp)v(x‘f —x) + (¥ (p) - 5§ )0, )& (P))
=1 j=1
s(p) 1
ZZns(p) s (p)vi (xlj)
1=1 j=1
s(p) ny
= (¥ 0
;]Zlv(x ) s(p) |p (f) [Uzj]s(p)xns(p) |:a‘f:|s(p)><ns(p) |p (f)

Therefore, we get that

0

v = [Uij]s(p)xns(p) © |:a—§ (3.2)

Lp)xns(p) '
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The formula (3.2) shows that any tangent vector v in TpZ\NJ (ny,

ny, ..., N, ) can be spanned by elements in (3.1).

Notice that all elements in (3.1) are also linearly independent.

Otherwise, if there are numbers a?,1 < i < s(p), 1 £ j < n; such that

R "
$(p) ny s(p) ny )
Za W 7 lp=0
j=1 Ox i=1 j=$(p)+1 ox

then we get that

; $(p) w0 sp) R ;
a]:{2a1m+z Z a? J(x/):o

ij
= i1 jos(p)e1 0%

for 1 <i <s(p),1<j<n;. Therefore, (3.1) is a basis of the tangent

vector space Tpﬂ(nl, Ng, ..., Ny ) at the point p e (M(ny, ng, ..., ny ); A).

By Theorem 3.2, if s(p) = 1 for any point p € (Z\Nl(nl, N9y ey Ny ); A),
then dim TpZ\NJ(nl, Mg, ..., Ny ) = ny. This can only happens while M(n;,

ng, ..., N, ) is combined by one manifold. As a consequence, we get a

well-known result in classical differential geometry again.

Corollary 3.1 [2]. Let (M"; A) be a smooth manifold and p € M".
Then

dim TpMn =n

0 .

Definition 3.4. For p e (M(nl, N9, ooy Ny ); .71), the dual space

with a basis

T;M(nl, ng, ..., N, ) is called a co-tangent vector space at p.

Definition 3.5. For fe .2, ,de T;M(nl, ng,..,n,) and v € TpZ\NJ(nl,
ng, ..., N, ), the action of d on f, called a differential operator d: 25 > R,

is defined by
df = v(f).
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Then we immediately obtain the result following.

Theorem 3.3. For p e (M(ny, ny, ..., ny);, A) with a local chart

(Up; [op)), the dimension of T;M(nl, Ny, vy Ny, ) 18

s(p)
dim T3 M (ny, ng, ..o i) = 8(p) + Y (1 = 8(p))
i=1

with a basis matrix

s(p)an(p)
& aGen) g o |
s(p) s(p)
) dx21 dx28(p) dxz(g(p)+1) ---dx2n2 0
=1 s(p) s(p) ’
P a6 L gt P g o)
L s(p) s(p) ]

l

where x' =x7' for 1<i,j<s(p),1<1<3(p), namely for any co-tangent

vector d at a point p of Z\Zf(nl, Ny, ..., N, ), there is a smoothly functional

matrix [w; ] p)s(p) Such that
d= [uij]s(p)xns(p) © [dX]y(p)wng )
3.2. Tensor fields
Definition 3.6. Let M(nl, ng, ..., n,,) be a smoothly combinatorial

manifold and p e M(nl, ng, ..., N, ). A tensor of type (r, s) at the point p

on M(ny, ng, ..., ny,) is an (r + s)-multilinear function 1,

where Tp]\7[ = Tpﬂ(nl, ng, ..., n,,) and T;M = T;Z\NJ(nl, N9, vy Ny )-
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Denoted by Ty (p, M ) all tensors of type (r, s) at a point p of

M(nl, ng, ..., Ny, ). Then we know its structure by Theorems 3.2 and 3.3.

Theorem 3.4. Let M(ny, ng, ..., n,,) be a smoothly combinatorial

manifold and p e M(ny, ng, ...,n,, ). Then

TI(p, M) =T,M ® -+ @ T,M @ TyM ® --- ® Ty M,

r S

where TpZ\NJ = Tpﬂ(nl, ng, ..., N,y,) and T;M = T;M(nl, N9, wey Ny, ),

particularly,

S(p) r+s
dmﬂmMFF@+Zw—w@.

i=1

Proof. By definition and multilinear algebra, any tensor ¢ of type

(r, s) at the point p can be uniquely written as

=) i 0, @00 |, ®dhl @ @ dylsh
s gt ox'rir

for smooth components tﬁl’ on a neighborhood U, according to
S
Theorems 3.2 and 8.3, where 1 < ij,, kj, < s(p) and 1< jj, <ip,1<1, <k,
for 1 < h < r. As a consequence, we obtain that
TI(p, M)=T,M ® - @ T,M ® ToM ® - ® Ty M.

r S

- - s(p)
Since dimT,M =dimT,M =$(p)+ Y (n; —$(p)) by Theorems 3.2 and 3.3,
i=1

we also know that

N s(p) r+s
dmﬂthF@+Zw—w@.

i=1
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Definition 38.7. Let T7(M)= UTsr(p, M) for a smoothly
peM

combinatorial manifold M = M(nl, ng, ..., N,,). A tensor field of type
(r, s) on M(ny, ny, ..., n,,) is a mapping t : M(ny, ng, ..., n,,) = TT (M)
such that ©(p) € TV (p, M) for p € M(ny, ns, ..., ny).
A k-form on M(ny, ng, ..., n,,) is a tensor field € T (M). Denoted
all k-form of M(ny, ng, ..., n,,) by A*(M) and
$(p)-s(p)s(p)+ L8 mi
- by ~ .
A(B) = kG:r)O N (BT, 2 (D) = Qﬁgp.
pe

Similar to the classical differential geometry, we can also define
operations ¢ Ay for ¢, y € TV (M), [X, Y] for X, Y € 2(M) and obtain

a Lie algebra under the commutator. For the exterior differentiations on
combinatorial manifolds, we find results following.

Theorem 3.5. Let M be a smoothly combinatorial manifold. Then

there is a unique exterior differentiation d - A(M) - A(M) such that for

any integer k > 1, d(A*) ¢ A**(M) with conditions following hold.
(1) d is linear, i.e., for ¢, v e A(]\7[), A e R,
g((p+7»w):c§(p/\\u+kc7\|J
and for ¢ € N*(M), y € A(M),
d(p Ay) = do+ (-1 A dy.
(2) For f € A°(M), df is the differentiation of f.
(3 d?=d-d =0.

(4) d is a local operator, i.e., if UcV < M are open sets and

a e A¥(V), then d(aly) = (do)|y-
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s(p)
Proof. Let (U; [¢]), where [o]: p — Llj[(p](p) = [p(p)], be a local
=1

chart for a point p e M and o = a(u1V1)-~~(ukwk)dx”1V1 Ao A dxMRVE with

1<v;<n, for 1<p; <s(p), 1<i<k We first establish the

oo

oxMY

uniqueness. If & = 0, the local formula da = dx"¥ applied to the

coordinates x"V with 1<v; < ny, for 1 <y; <s(p), 1<i<k shows that

the differential of x"¥ is 1-form dx"¥. From (3), d(x"¥)=0, which

combining with (1) shows that d(dx""! A --- A dx"#k) = 0. This, again

by (1),

~

Go = JHVD ) gy g g (3.3)
oxMY

and d is uniquely determined on U by properties (1)-(3) and by (4) on

any open subset of M.

For existence, define on every local chart (U; [¢]) the operator d by

(8.3). Then (2) is trivially verified as is R-linearity. If B =

Bloyey)--(o1) XL A - A dx®TL € A(U), then

d(a A B)

HEVE
dx' M A oA dax

= (O uyvy ) (g Blorer) (o1 A dxE A A dxE)

60L( vy )+ )
) (% B(orcy)-(ors)  Hagvy )-(upwr)

0 HEVE
y B(G1<;1)HV(GIGZ) dxMV A oo A d A dx15 A oo A dxClS
ox

_ Oy vn) g gt

G161 . ()[4
v A B(orgy)(og) @8 A A d
oxM
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)dx“lvl N dx“k\’k A aB(Glgl)“'(Glgl) dxC1%l ... A dxCl!

k
+(=1) o ey

vy (Rewe

=danp+(-1)fandp

and (1) is verified. For (3), symmetry of the second partial derivatives
shows that

HEVE
Adx®ISL A o A dxC = 0.

2
(@) = M) Gvn) gt gy
oxM¥ 0x°6

Thus, in every local chart (U; [¢]), (3.3) defines an operator d satisfying

~

(1)-(3). It remains to be shown that d really defines an operator d on

any open set and (4) holds. To do so, it suffices to show that this definition
1s chart independent. Let d' be the operator given by (3.3) on a local
chart (U'; [¢']), where U N U’ # &. Since d' also satisfies (1)-(3) and the

local uniqueness has already been proved, d'o =da on UNU. Whence,
(4) thus follows.

Corollary 8.2. Let M = M(ny, ny, .., n,) be a smoothly
combinatorial manifold and dj; : A (M) — A**Y(M) the unique exterior

differentiation on M with conditions following hold for M e V(Gl[ﬂ(nl,

ng, ..., Ny, )|), where 1 <1 < min{ny, ng, ..., Ny, }.
(1) dyps is linear, i.e., for ¢, y € A(M), . € R,
dy (@ +2y) = dyo + Adyv.
(2) For 9 € N'(M), y € A(M),
dy (0 A ) =dyo+ (1) Adyy.
(3) For f e A°(M), dyf is the differentiation of f.
(4) d3; =dy; -dy = 0.

Then

dly=dy.
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Proof. By Theorem 2.4.5 in [1], dj; exists uniquely for any smoothly
manifold M. Now since d is a local operator on M , le., for any open

subset U, c M, d(o |Uu) = (do) lu, and there is an index set o/ such that

M = U U,, we finally get that
ped

dy=dy
by the uniqueness of d and dy-
Theorem 3.6. Let © € A'(M). Then for X, Y e 2(M),
do(X, Y) = X(Y)) - Y(o(X)) - o[ X, Y)).
Proof. Denote by o(X, Y) the right hand side of the formula. We

know that o : M x M — C*(M). It can be checked immediately that o is

bilinear and for X, Y € 2(M), f € C*(M),
a(fX, Y) = fX(o(Y)) - Y(o(fX)) - o(fX, Y])
= X(o(Y)) - Y(fo(X)) - o(f[X, Y] - Y(f)X)
= fa(X, Y)

and

X, fY) = ~a(fY, X) = ~fa(¥, X) = fu(X, Y)

by definition. Accordingly, a is a differential 2-form. We only need to
prove that for a local chart (U, [¢]),

aly=doly.

In fact, assume o= co“vdx“v. Then

~ ~ 0w
(do)ly=d(oy) = i;/ dx® A dx™
ox

_ l[a‘”_w . %)d o dehY
2\ ox%  oxM
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On the other hand, a ;= %a(i, i) dx® A dx"V, where

oxMY  ox°e
e R G e e G o | I e )
o , = ® - ® - -
oxHY  0x°s 0x°° oxHY ox™Y 0x°° oxHY  ox°°
_ 0wy, O

% o
Therefore, do ly=oly.

3.3. Connections on tensors

We introduce connections on tensors of smoothly combinatorial

manifolds by the next definition.

Definition 3.8. Let M be a smoothly combinatorial manifold. A
connection on tensors of M is a mapping D : .2(M)x T;M - T;M
with Dyt = D(X, 1) such that for X, Y ¢ 2M, 1, n € T7(M), » € R and
feC”(M),

(1) .5X+fy’l7 = Dyt + fDyt; and Dy(t + An) = Dyt + ADym;

2) Dx(t®n)= Dxy1®n+0® Dym;

(3) for any contraction C on T, (M ),

Dy (C(x)) = C(Dx)-

We get results following for these connections on tensors of smoothly

combinatorial manifolds.

Theorem 3.7. Let M be a smoothly combinatorial manifold. Then

there exists a connection D locally on M witha form

(Dxv)ly

_ o6 (n1v1)(nave) -(n,vy) 0 0 KM g Kehs
X g gt b (gt () gy & 7O oy S AXT © @l
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for Y e 2(M) and t € TI (M), where

ark1vi)(mgve)-(upvy)
V) (wgve)-(urvy) _ _ (grg)(kghg)--(kshs)
(k121)(kghg ) (kshs), () MY

(11 (g 1va-1)(00) (as1Vast k- (Ve rtava
*Z_;deb(mzi--wixs) st T6e)w)

Y 2lavi) (wgva)--(wpvy) oS
(k12 )+ (kp-12p-1) (V) (Sp115p+1 ) (kshs) (opsp) (V)

b=1

KL . . .
and F(Gg)(w) is a function determined by

~ 0 oy 0
D, % -r¢ —£4
5x6HV axGQ (GG)(HV) axGQ

on (Uy; [op]) = Up; V) of a point p € M, also called the coefficient on

a connection.

Proof. We first prove that any connection D on smoothly

combinatorial manifolds M is local by definition, namely for Xy, Xy €
2(M) and 1,19 € (M), if X;|y= X5ly and 1, |y= 12|y, then
(lN)Xltl U = (l~)X2 T9)y. For this objective, we need to prove that
(ﬁlel o = (l~)Xlr2)U and (EX1 1)y = (5X2T1 )iy Since their proofs are
similar, we check the first only.

In fact, if t = 0, then t = t — 1. By the definition of connection,
Dyt = Dy(t-t) = Dyt - Dxt = 0.

Now let p € U. Then there is a neighborhood V), of p such that V is
compact and V cU. By a result in topology, i.e., for two open sets Vp, U

of Ré(p)_s(p)é(p)ml+m+ns(p) with compact Vp and Vp < U, there exists a

function f e C°°(Ré(p)_s(p)é(p)ml+m+ns(p)) such that 0<f<1 and



102 LINFAN MAO
flv,=1, f|R§(p)—8(p)§(p)+n1+-~+ns(p)\UE 0, we find that f-(1g—1)=0.

Whence, we know that

0 =Dy, ((f - (r2 - ) = X,(f) (xg — 1) + f(Dx, 2 — Dx,1p)-

As a consequence, we get that (ZN)Xlrl v = (ﬁXsz )y, particularly,
(IN)Xlrl )p = (l~)Xlr2 ),- For the arbitrary choice of p, we get that
(Dx, )y = (Dx,t2)y finally.

The local property of D enables us to find an induced connection
DY . 2U)x TI(U) - T!(U) such that 55@ (tly) = Dx1)|y for X e
(M) and t e T/M. Now for Xy, Xy € .2(M), Vr, 19 € TT(M) with
Xily,= Xz ly, and 1 |y, = 12y, , define a mapping DY : 2(U)x TI(U)
— TJ(U) by

(Dx,w)ly, = (Dx, %)y,

for any point p € U. Then since D is a connection on M , 1t can be

checked easily that DY satisfies all conditions in Definition 3.8. Whence,

DY is indeed a connection on U.

Now we calculate the local form on a chart (U, [¢ p]) of p. Since

n _ KA 0
D o =Ty 7 oc
oxHY

it can find immediately that

D o dx™ = T
oxM
by Definition 3.8. Therefore, we find that
(Dx )y
— x5 (V) (wgva)-(upvy) 0 .90 @dxM ®...0® dx<sts

(1c121) (kR )+ (icshs ), (uv) OxHv1 OxcHrvr
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with
(1) (wgve)-(upvr)
Yirhy ) (g )-(ieghs ), (uv)
( v )( v ) ( r r)
_ O (eghp (k)
oxMY

+ \ (Hlvl) (Mg-1Va- 1)(G€)(Ha+1va+1) (Hrvr)r*“ava
—~ 1) (ghg )+ (eshs) (56) (nv)

(1) (mgva)--(upvr) o
Y (kb 1001 (V) (416041 )+ (kshs ) (Gbi)(MV)

This completes the proof.

Theorem 3.8. Let M be a smoothly combinatorial manifold with a

connection D. Then for X, Y e .2(M),
T(X,Y)=DxY - DyX - [X, Y]
is a tensor of type (1, 2) on M.

Proof. By definition, it is clear that 7 : 2{M)x .2(M) —» 2(M) is
antisymmetrical and bilinear. We only need to check it is also linear on

each element in C*(M) for variables X or Y. In fact, for f € C*(M),
T(1X,Y) = DyxY - Dy(fX) - [fX. Y]
= fDxY - (Y(HX + fDyX)

- (f[X, Y]-Y(/)X) = fT(X,Y)
and

T(X, 1Y) = -T(fY, X) = —fT(Y, X) = fT(X, Y).

Notice that

o 2\ = o & - o
[axuv ’ 6x°gj =D, oxoS D a = (I, (HV)(GQ (cm)(uV))aka
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under a local chart (Up; [¢,]) of a point p € M. If T( 0 , 0 ) =0,
oxt  ox°°

we call T torsion-free. This enables us getting the next useful result.

Theorem 3.9. A connection D on tensors of a smoothly combinatorial

manifold M is torsion-free if and only if 1"(';}; Yoo) = F(';xg) ()’

Now we turn our attention to the case of s =r =1. Similarly, a

combinatorially Riemannian geometry is defined in the next definition.

Definition 3.9. Let M be a smoothly combinatorial manifold and

g e AZ(M) = UN 73 (p, ]\~4) If g is symmetrical and positive, then M is
peM

called a combinatorially Riemannian manifold, denoted by (M, g). In
this case, if there is a connection D on (Z\Z , &) with equality following
holds

Z(g(X,Y)) = g(DzX, Y) + g(X, DzY), (3.4)
then M is called a combinatorially Riemannian geometry, denoted by
(M, g, D).

We get a result for connections on smoothly combinatorial manifolds

similar to that of Riemannian geometry.

Theorem 38.10. Let (M, g) be a combinatorially Riemannian
manifold. Then there exists a unique connection D on (M, g) such that

(]\7[, g, 5) is a combinatorially Riemannian geometry.
Proof. By definition, we know that

Dyg(X,Y) = Z(g(X, Y)) - g(DzX, Y) - g(X, DyY)

for a connection D on tensors of M and VZ e %(M ). Thereby, the

equality (3.4) is equivalent to that of ﬁzg =0 for Z e %(1\7[), namely D

is torsion-free.
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Without loss of generality, assume g = g(,)(oc)dx" dx® in a local

. . ) B 5
chart (Up; [¢,]) of a point p, where g(,,)(oc) = g(axw ; axcgj. Then we
find that

~ [ 98(u)(og) c : x
Dg - (axT - g(Cﬂ)(GQ)r(;:l)(cg) - g(“")(gn)r(c?g)(xx) dx“v ® deQ ® de .

Therefore, we get that

98 () (o5)

e 8 T (o) (o0 + 8 o) () (3.5)

if Ezg =0 for Z e f&(ﬂ) The formula (3.5) enables us to get that

I g(Kl)(Cn)(ag(HV)(Cn) L %) ag(uv)(og)j,
(w)(og) — 2 xS At axn

where g()(E is an element in the matrix inverse of [8(uv) (00) )

Now if there exists another torsion-free connection D* on (M ,8)

with

as _ KA 0

A = T(oe) (uv) P
oxHY

then we must get that

e 1 g(m)(gn)(@g(HV)(Cn) L %8 6g(uv)(cg)j‘
(uv)(oc) ~ 2 Ox 58 Oty oSN

Accordingly, D = D" Whence, there are at most one torsion-free

connection D on a combinatorially Riemannian manifold (M, g).

For the existence of torsion-free connection D on (M, g), let
F('ﬁ;) (00) = F(‘;kg) () and define a connection D on (M, g) such that
N _ KA 0
D o =Tigeyu) J
oxtY

then D is torsion-free by Theorem 3.9. This completes the proof.
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Corollary 3.3 [2]. For a Riemannian manifold (M, g), there exists

only one torsion-free connection D, i.e.,

Dzg(X,Y) = Z(8(X,Y)) - g(DzX, Y) - g(X, DzY) = 0
for X, Y, Z € 2(M).
3.4. Minkowski norms

These Minkowski norms are the fundamental in Finsler geometry.
Certainly, they can be also generalized on smoothly combinatorial

manifolds.

Definition 3.10. A Minkowski norm on a vector space V is a function
F :V —> R such that

(1) Fis smooth on V\{0} and F(v) > 0 for v e V;
(2) Fis 1-homogenous, i.e., F(Av) = LF(v) for A > 0;

(8) for all y € V\{0}, the symmetric bilinear form g, : VxV — R
with
0*F
gy v) = Y, )
i, J dy oy
is positive definite for u, v € V.

Denoted by ™ = UTpM. Similar to Finsler geometry, we
peM

introduce combinatorially Finsler geometries on a Minkowski norm

defined on TM.

Definition 3.11. A combinatorially Finsler geometry is a smoothly

combinatorial manifold M endowed with a Minkowski norm F on TM ,
denoted by (M; F).
Then we get the following result.

Theorem 3.11. There are combinatorially Finsler geometries.
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Proof. Let M (nq, ng, ..., n,,) be a smoothly combinatorial manifold.

We construct Minkowski norms on TM(n;, ng, ..., n,, ). Let R™ 2% #m

be a Euclidean space. Then there exists a Minkowski norm F(X) =|x | in

+ +...+ . — .
R "m gt least, in here |x| denotes the Euclidean norm on

R™ 27 #'m  According to Theorem 3.2, Tpﬂ (ny, ng, ..., ny) s

Hp)-s(p)s(p)tmi T () . Whence there are Minkowski

homeomorphic to R
norms on TpZ\NJ(nl, N9, ooy Nyy) for p e U,, where (U,; [¢,]) is a local

chart.

Notice that the number of manifolds is finite in a smoothly
combinatorial manifold M(ny, ny, ..., n,,) and each manifold has a finite
cover {(Uy; ¢, )|a € I}, where Iis a finite index set. We know that there

is a finite cover

U Ut o010 ) 1 € Ipg}-
MeV(G[M(ny, ng, ..., ny)])

By the decomposition theorem for unit, we know that there are smooth
functions Ay, a € Iy such that

> Dyt =1 with 0 < g, <1.
MEV(G[M(nL ng, o tip)]) @M

Now we choose a Minkowski norm FM* on T,M, for peUpy.
Define
hMOLﬁMOL

FMa:{ , if peUpyy,

for p e M. Now let

F- 5 S Fore

MeV(G[ZVI(nl, ng, .., ny,)]) €l

0, if p¢ U

Then F is a Minkowski norm on TM(n,, ng, ..., n,,) since it can be

checked immediately that all conditions (1)-(3) in Definition 3.10 hold.
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For the relation of combinatorially Finsler geometries with these

Smarandache geometries, we obtain the next consequence.

Theorem 3.12. A combinatorially Finsler geometry (M(nl, ng, ...,

N ); }7’) is a Smarandache geometry if m > 2.

Proof. Notice that if m > 2, then M(nl, ng, ..., N, ) is combined by
at least two manifolds M™ and M™ with n; # ny. By definition, we
know that

M™M\M™ # @ and M"2\M™ = Q.

Now the axiom there is an integer n such that there exists a
neighborhood homeomorphic to an open ball B” for any point in this

space is Smarandachely denied, since for points in M™ \M"2, each has a
neighborhood homeomorphic to B™, but each point in M™2\M™ has a
neighborhood homeomorphic to B"2.

Theorems 3.11 and 3.12 imply inclusions in Smarandache geometries

for classical geometries in the following.

Corollary 3.4. There are inclusions among Smarandache geometries,

Finsler geometry, Riemannian geometry and Weyl geometry:
{Smarandache geometries} > {combinatorially Finsler geometries}
> {Finsler geometry} and {combinatorially Riemannian geometries}

> {Riemannian geometry} > {Weyl geometry}.

Proof. Let m = 1. Then a combinatorially Finsler geometry (]\71 (nq,

N9, wuy Ny, ); F) is nothing but just a Finsler geometry. Applying
Theorems 3.11 and 3.12 to this special case, we get these inclusions as

expected.

Corollary 3.5. There are inclusions among Smarandache geometries,

combinatorially Riemannian geometries and Kdhler geometry:



GEOMETRICAL THEORY ON COMBINATORIAL MANIFOLDS 109

{Smarandache geometries} > {combinatorially Riemannian geometries}
> {Riemannian geometry}

> { Kdhler geometry}.

Proof. Let m =1 in a combinatorial manifold M(ny, ng, ..., n,,) and
applies Theorems 3.10 and 3.12, we get inclusions

{Smarandache geometries} > {combinatorially Riemannian geometries}

> {Riemannian geometry}.

For the Kihler geometry, notice that any complex manifold M is

equal to a smoothly real manifold M 2" ith a natural base { Gi , il}
ox’ 0oy

for TpMc" at each point p € M. Whence, we get

{Riemannian geometry} > {Kédhler geometry}.
4. Further Discussions

4.1. Embedding problem

Whitney had shown that any smooth manifold M ¢ can be embedded

as a closed submanifold of R%*! in 1936 [1]. The same embedding
problem for finitely combinatorial manifold in a Euclidean space is also

interesting. Since M is finite, by applying Whitney theorem, we know
that there is an integer n(M), n(M) < +» such that M can be embedded

as a closed submanifold in R”(M ). Then what is the minimum dimension

of Euclidean spaces embeddable a given finitely combinatorial manifold
M ? Whether can we determine it for some combinatorial manifolds with

a given graph structure, such as those of complete graphs K", circuits
P" or cubic graphs @™ ?

Conjecture 4.1. The minimum dimension of Euclidean spaces

embeddable a finitely combinatorial manifold M is

2 min{s(p) - s(p)s(p) + g+ M, et nis(p)} +1.
peM
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4.2. D-dimensional holes
For these closed 2-manifolds S, it is well known that

() 2 -2p(S), if S is orientable,
2= q(8), if S is non-orientable,

with p(S) or ¢(S) the orientable genus or non-orientable genus of S,

namely 2-dimensional holes adjacent to S. For general case of

n-manifolds M, we know that

(M) =" (- 1) dim Hy(M),
k=0
where dim H(M) is the rank of these k-dimensional homology groups
Hp(M) in M, namely the number of k-dimensional holes adjacent to the

manifold M. By the definition of combinatorial manifolds, some
k-dimensional holes adjacent to a combinatorial manifold are increased.
Then what is the relation between the Euler-Poincaré characteristic of a

combinatorial manifold M and the i-dimensional holes adjacent to M?
Whether can we find a formula likewise the Euler-Poincaré formula?
Calculation shows that even for the case of n =2, the situation is

complex. For example, choose n different orientable 2-manifolds S,

Sy, ..., S, and let them intersect one after another at n different points

in R%. We get a combinatorial manifold M. Calculation shows that
1(M) = (((Sy) + x(Sz) + -+ + x(Sy)) - n
by Theorem 2.9. But it only increases one 2-holes. What is the relation of
2-dimensional holes adjacent to M?
4.3. Local properties

Although a finitely combinatorial manifold M is not homogenous

in general, namely the dimension of local charts of two points in M
may be different, we have still constructed global operators such

as those of exterior differentiation d and connection D on T, M.
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An operator 9 is said to be local on a subset W < TI M if for any local

chart (U,, [¢,]) of a point p € W,

Oly, (W) =DW)y, .

Of course, nearly all existent operators with local properties on 7y M
in Finsler or Riemannian geometries can be reconstructed in these

combinatorially Finsler or Riemannian geometries and find the local
forms similar to those in Finsler or Riemannian geometries.

Global properties

To find global properties on manifolds is a central task in classical
differential geometry. The same is true for combinatorial manifolds. In
classical geometry on manifolds, some global results, such as those of de
Rham theorem and Atiyah-Singer index theorem, etc. are well known.
Remember that the pth de Rham cohomology group on a manifold M and

the index IndD of a Fredholm operator D : H*(M, E) — L*(M, F) are
defined to be a quotient space

Ker(d : AP(M) — AP*1(M))
Im(d : AP"H(M) - AP(M))

HP(M) =
and an integer

2
IndD = dim Ker(D) - dim{M}

ImD

respectively. The de Rham theorem and the Atiyah-Singer index theorem
respectively conclude that for any manifold M, a mapping

¢ : AP(M) - Hom(I1,(M), R) induces a natural isomorphism
¢ : HP(M) - H"(M; R) of cohomology groups, where I1,(M) is the
free Abelian group generated by the set of all p-simplexes in M and

IndD = Indy(c(D)),

where o(D):T*M — Hom(E, F) and Indp(c(D)) is the topological
index of o(D). Now the questions for these finitely combinatorial

manifolds are given in the following.
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(1) Is the de Rham theorem and Atiyah-Singer index theorem still

true for finitely combinatorial manifolds? If not, what are its modified

forms?

(2) Check other global results for manifolds whether true or get their

new modified forms for finitely combinatorial manifolds.
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