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Abstract

Let ¢1(z) and g¢g9(z) be univalent and analytic in the open unit disk
A=z |z| < 1}. We give some applications of first order differential

subordination and superordination to obtain sufficient conditions for a

normalized analytic functions f to satisfy

I,m A
ae) < [Mj < 43(2),

z

where Hl’m[al]f is the familiar Dziok-Srivastava operator.
1. Introduction

Let H denote the class of analytic functions in the open unit disk

A={z:|z|<1} and for a € C and n € N, H(a, n) be the subclass of

H consisting of functions of the form f(z) = a + @,2" + a,,12" " +---.

Let A < H denote the class of all analytic functions of the form
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fz)=2z+ a222 +... If f, F e H and F is univalent in A, then we say

that the function fis subordinate to F, written f(z) < F(z), if f(0) = F(0)
and f(A) ¢ F(A), then F'is said to be superordinate to f.

Let A e H and let §(r, s, t; 2): C2 x A —> C. If p and §(p(2), zp'(z),

22p"(z); z) are univalent and if p satisfies the second order

superordination

h(z) < §(p(2), 2p'(2), 2p"(2); 2), (1.1)

then p is the solution of the differential superordination. An analytic
function q is called a subordinant if g < p for all p satisfying (1.1). A

univalent subordinant q that satisfies ¢ < ¢ for all subordinants g of

(1.1) is said to be the best subordinant. Recently Miller and Mocanu [11]
obtained conditions on A, ¢ and ¢ for which the following implication
holds:

h(z) < §(p(2), 20'(2), 2°p"(2); 2) = a(2) < p(2).

Using the results of Miller and Mocanu [11], Bulboaca [3] have
considered certain classes of first order differential superordinations as

well as superordination-preserving integral operators [2].

For ajeC(j=1,2,..1) and Bj e C\Zy :=1{0,-1,-2,..}, j=1,2,..
m, the generalized hypergeometric function | F, (o, ..., az; B1, e, By 2) 18

defined by the infinite series

Fp (g, vy 05 Brs voss Bos 2) 1= Z (([?11)) gxrrlt)) i'

(I<m+1;meNy:=NU{0}),
where (a), is the Pochhammer symbol defined by

o Hesm_f o)

I'(a) al@+1)(@+2)(@a+n-1), (neN).
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Corresponding to the function
W(0yy v O3 Brsees B 2) = 2 1Fp (0, oy 075 Bly oor B 2)5

the Dziok-Srivastava operator [6] (see also [17D
Hl’m(ocl, ey 073 B1s oo Bps 2) 18 defined by the Hadamard product

Hl’ m((xl, ceey QL5 Bl’ (S Bm> Z)f(Z)

= W(0g, wey A3 B1s ooer Bns 2) * f(2)

=2t B Gy G T (-2
It is well known [6] that
alﬂl’m(al +1, ey a3 Bry oo Brs 2)f(2)
= 2[HY ™ (0y, oy g3 By s B 2)f (2]
+ (o = 1) H™ (0, cery 05 Brs eons Bras 2)f(2)- (1.3)
To have a simpler notation, we write H"™(ay, ..., az; Bis - Bms 2)f(2) as

H""[a;]f(2).

Special cases of the Dziok-Srivastava linear operator includes the
Hohlov linear operator [7], the Carlson-Shaffer linear operator [4], the
Ruscheweyh derivative operator [14], the generalized Bernardi-Libera-
Livingston linear integral operator (cf. [1], [8], [9]) and the Srivastava-

Owa fractional derivative operators (cf. [12], [13]).

The multiplier transformation of Srivastava [17] on A is the operator

I(r, u) on A defined by the following infinite series

I(r, Wf(z) =z + i(k h “jrakzk. (1.4)

o 1+p

A straightforward calculation shows that the multiplier operator satisfies
A+ I +1, wWf(z) = 2[I(r, Wf(2)] +pul(r, Wf(2) (1.5)

The operator I(r, 0) is the Salagean derivative operators [15]. The
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operator I := I(r, u) was studied recently by Cho and Kim [5]. The
operator I, := I(r, 1) was studied by Uralegaddi and Somanatha [18].

In this paper unless otherwise mentioned 6 and y are complex

numbers.
2. Preliminaries

In our present investigation, we need the following definition and

results to prove our main results.

Definition 2.1 [11, Definition 2, p. 817]. Let @ be the set of all

functions f that are analytic and injective on A — E(f), where
E(f)={¢ € oA : lim f(z) = o}
z—>C¢

and are such that f'({) # 0 for € 6A — E(f).

Lemma 2.2 [10, Theorem 3.4h, p. 132]. Let q be univalent in the unit
disk A and 0 and ¢ be analytic in a domain D containing q(A) with

d(o®) = 0 when o € q(A).
Set &(z) = 2q'(2)d(q(2)), h(z) = 06{q(2)} + &(z). Suppose that,

(1) &(2) is starlike univalent in A and

2h'(2) > 0 for z
(2) Re{ 26) } 0 f € A
If p is analytic in A with p(A) ¢ D, and
6({p(2)} + 2p'(2)8(p(2)) < Ola(2)} + zq'(z)d(q(2)), 2.1)

then p < q and ¢ is the best dominant.

2q'(2) .,

q(2)

Lemma 2.3 [10]. Let q be univalent in A with q(0) =1 and

starlike univalent in A and satisfying

(i, 50E) @)
R{1e S -G o @2
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If p is analytic in A, with p(A) € D and

2q'(2)

q(z) ’

5+ y 22

p(z)

then p < q and q is the best dominant.

<d+y

Lemma 2.4 [3]. Let q be univalent in A, 8 and ¢ be analytic in a
domain D containing q(A). Suppose that

e —S,(Q(Z)) or 2 n
W R [cp(q<z)>} >0 for z € A, and

(2) &(z) = 2¢'(2)0(q(2)) is starlike univalent function in A.

If peH[q(0),1]NQ, with p(A)c D, and 3(p(z))+2zp'(z)e(p(2)) is univalent
in A, and

8(q(2)) + 29'(2)9(q(2)) < 9(p(2)) + 2p'(2) 9(p(2)), (2.3)
then q < p and q is the best subordinant.

Lemma 2.5 [11, Theorem 8, p. 822]. Let q be convex univalent in A

z) . .
) is univalent

p(z)

and satisfying Re[y]> 0. If p e H[q(0),1]NQ and 5+ zp(z

in A, then

TR T ”Zﬁé(zz))’

implies q < p and q is the best subordinant.

3. Subordination and Superordination for Analytic Functions

By making use of Lemma 2.3, we obtain the following results.

Theorem 3.1. Let 0 = q(z) be univalent in A with q(0) =1, and

satisfying
Re(l L 206) Mj > 0. 3.1)
qd'(z)  q(2)
If f € A satisfies

JH oy +11(@) 2q'(2)
6”{1”‘ 1{ 2" (e 1(2) 1H<6” a@)
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then

< q(2),

Z( H”’"[al]f(Z)Jk

and q is the best dominant.

Proof. Define the function p(z) by

m A
p(z) = Z[MJ . (3.2)

By taking the logarithmic derivative of p(z) given by (3.2), we get

ap'(z) _ 2(HY[oy]f(2)
p(z) 1+k{ Hl’m[al]f(z) 1}. (3.3)

By using the identity
2(H""]£(2) = o H "o +11f(2) ~ (o ~ DH"™[0]f(2),
and (3.2) in (3.3), we obtain

PG _ g ml{Hl’m[al +1fe) 1}.

p(z) H""[o4]f(z)
Now, our result follows as an application of Lemma 2.3. 0
1+ Az .
For q(z) = (-1 < B < A <£1) in Theorem 3.1, reduces to

1+ Bz

Corollary 3.2. Let q be univalent in A with q(0) =1. If f € A and

H""[oq +1]f(z) (A-B)z
S+ v{l + ?»ocl{ Hl”"[locj]f(z) - 1H <8+7 07 490+ B2)"

then
A
B Hoy1f(2) J1+4z
z 1+ Bz
nd 1+ is the best dominant
1+ Bz )
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In particular, we have

o+ y{l + kal{Hl’m[al +11f(z) - 1H <8+ 2z

H""™[0;]f(2) 1-2%
implies
I A
Z[H’m[ocl]f(z)] Jlrz
z 1-z
and 1 t z is the best dominant.

Taking [ =2, m =1 and o9 =1 in Theorem 3.1, we get

Corollary 3.3. Let q be univalent in A with q(0) =1. If f € A and

Loy +1.B1/E) V] 5, ,22)
5”[“"“1{ Lo, BIG) 1H SR

then

Z(L(al’ 51)f(2))k < q(2),

where L(ay, By)f is the familiar Carlson-Shaffer operator and q is the

best dominant.

For oy =n+1 and B; =1 in Corollary 3.3, we get the following
corollary.
Corollary 3.4. Let g be univalent in A. If f € A and

5+ {1 +A(n+1) {—g Zj; 8 - 1H <5+ y—zgéz)) ,

then

n+ A
Z[MJ < q(2),

4

where D" f is the Ruscheweyh operator and q is the best dominant.

Theorem 3.5. Let q be convex univalent in A and Re[y] > 0. If f € A,

. Hl””[ou]f(Z)T il { } {Hlym[al 1) H
[ 2 H[L, 11N Q, § + v|1 + Aoy Hl’m[ocl]f(z) 1
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is univalent in A, then

gl
(05} <

implies
A
b

q(z) < z(—HZ,m[Zl]f(z)]

and q is the best subordinant.

Proof. Define the function p(z) by

A
H"™[o,]f(z
ol2) = 2{ [ 1( )J .
z
Then a simple computation shows that

B 1) ] )
6”{1”‘”{ T ) IH_M ON

An application of Lemma 2.5 gives the result.

Combining the results of subordination and superordination we get

the following Sandwich theorem.

Theorem 3.6. Let g; and gy be convex univalent in A satisfying

I,m A
Re[y] > 0 and (2.2) respectively. If 0 = 2{%} e H[1,1]N Q,

I,m
S+ y{l + kal{H ; Egl +1fle) 1H is univalent in A and
H""[04]f(2)

24i(2) H""[ay +1]f(2) 2¢5(2)
S+ qll(z) <8+ y{l + kal{ Hl’m[locl]f(z) - IH <8+y q;(z) ’

then

q(2) < 2 < g5(2),

(Iaﬂ"“[oq]f(z»}x

where q1(z) and q9(z) are respectively the best subordinant and best

dominant.
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4. Application to Multiplier Transformation

Theorem 4.1. Let 0 = q(z) be univalent in A with q(0)=1. If fe A

and
I(r +1, wf(z) 2q'(2)
R ol IRRA e =
then
A
Z(I(’", i)f(z)j < q(z),
and q(z) is the best dominant.
Proof. Define the function p(z) by
A
p(z) = Z(W) ) (4.1)
By taking the logarithmic derivative of p(z) given by (4.1), we get
(@) _ 20D
oz T *( 10, W/(e) 1} “2

By using the identity

210, WiE)] = @+ +1, W) - ulIr, WiE)
and (4.1) in (4.2), we obtain

zp'(z) Ir+1, n)f(z)
oS = e D )

Now, our result follows as an application of Lemma 2.3. N

We state the results pertaining to the superordination, using the
duality between the subordination and the superordination.

Theorem 4.2. Let q be convex univalent in A and q(0) =1. If f € A,

Z(MJX e H[1,1]NQ, and 3+ y[l + A1+ p) {% - 1H
is univalent in A, then

<o fiomon ]
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implies

q(z) < z(—l(r’ Z_)f(z))k,

and q is the best subordinant.

Combining the results of subordination and superordination, we state
the following Sandwich theorem.

Theorem 4.3. Let g; and g9 be convex univalent in A satisfying
A
R[y] > 0 and (2.2) respectively. If f € A, z(%j e H[1,1]NQ

and § + y[l + M1+ p) {% - IH is univalent in A, then

v 3G <ot iRl <o 208,

implies

A
ae) < o LBLE < g,

where q; and q9 are respectively the best subordinant and best dominant
For

1+ Az
qz) = —%

-1< By < A £1),
1+312 ( 1 1 )

1+ A2Z
Z) =
q2( ) 1+ BQZ

(—1SBZ<A2§1),

we have the following corollary.

Corollary 4.4. If f € A,

o u)f(Z)j ML 1N Q

and

6”{1”(““){%;)(1‘2()2)_1}}
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is univalent in A, then

StV AT A2)( + B2)

g R RS LRI e T SR

(Ag — By)z
+ A22)(1 + BZZ) ’

<8+y(1

implies

. 1
The functions

1+&z<zﬂnwﬂ@k<l+Aﬂ
1+ Bz z 1+ Byz’

+ AIZ an 1+ AzZ
1+ Bz 1+ Byz

are respectively the best subordinant

and best dominant.
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