ON DIFFERENTIAL SANDWICH THEOREMS FOR CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS USING DZIOK-SRIVASTAVA OPERATOR

T. N. SHANMUGAM, C. RAMACHANDRAN, A. SINGARAVELU

and

M. P. JEYARAMAN

(Received April 4, 2006)

Abstract

Let $q_1(z)$ and $q_2(z)$ be univalent and analytic in the open unit disk $\Delta := \{z: |z| < 1\}$. We give some applications of first order differential subordination and superordination to obtain sufficient conditions for a normalized analytic functions f to satisfy

$$q_1(z) \prec z \left(\frac{H^{l,m}[\alpha_1] f(z)}{z} \right)^{\lambda} \prec q_2(z),$$

where $H^{l,m}[\alpha_1]f$ is the familiar Dziok-Srivastava operator.

1. Introduction

Let \mathcal{H} denote the class of analytic functions in the open unit disk $\Delta := \{z : |z| < 1\}$ and for $a \in \mathbb{C}$ and $n \in \mathbb{N}$, $\mathcal{H}(a, n)$ be the subclass of \mathcal{H} consisting of functions of the form $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots$. Let $\mathcal{A} \subseteq \mathcal{H}$ denote the class of all analytic functions of the form

²⁰⁰⁰ Mathematics Subject Classification: Primary 30C45; Secondary 30C80.

Keywords and phrases: differential subordination, differential superordination, subordinant, dominant, Dziok-Srivastava operator.

 $f(z) = z + a_2 z^2 + \cdots$. If $f, F \in \mathcal{H}$ and F is univalent in Δ , then we say that the function f is *subordinate* to F, written $f(z) \prec F(z)$, if f(0) = F(0) and $f(\Delta) \subseteq F(\Delta)$, then F is said to be *superordinate* to f.

Let $h \in \mathcal{H}$ and let $\phi(r, s, t; z) : \mathbb{C}^3 \times \Delta \to \mathbb{C}$. If p and $\phi(p(z), zp'(z), z^2p''(z); z)$ are univalent and if p satisfies the second order superordination

$$h(z) \prec \phi(p(z), zp'(z), z^2p''(z); z),$$
 (1.1)

then p is the solution of the differential superordination. An analytic function q is called a *subordinant* if $q \prec p$ for all p satisfying (1.1). A univalent subordinant \widetilde{q} that satisfies $q \prec \widetilde{q}$ for all subordinants q of (1.1) is said to be the *best subordinant*. Recently Miller and Mocanu [11] obtained conditions on h, q and ϕ for which the following implication holds:

$$h(z) \prec \phi(p(z), zp'(z), z^2p''(z); z) \Rightarrow q(z) \prec p(z).$$

Using the results of Miller and Mocanu [11], Bulboacă [3] have considered certain classes of first order differential superordinations as well as superordination-preserving integral operators [2].

For $\alpha_j \in \mathbb{C}$ (j = 1, 2, ..., l) and $\beta_j \in \mathbb{C} \setminus \mathbb{Z}_0^- := \{0, -1, -2, ...\}, j = 1, 2, ...$ m, the generalized hypergeometric function ${}_lF_m(\alpha_1, ..., \alpha_l; \beta_1, ..., \beta_m; z)$ is defined by the infinite series

$${}_{l}F_{m}(\alpha_{1}, ..., \alpha_{l}; \beta_{1}, ..., \beta_{m}; z) := \sum_{n=0}^{\infty} \frac{(\alpha_{1})_{n} ... (\alpha_{l})_{n}}{(\beta_{1})_{n} ... (\beta_{m})_{n}} \frac{z^{n}}{n!}$$

$$(l \leq m+1; m \in \mathbb{N}_{0} := \mathbb{N} \cup \{0\}),$$

where $(a)_n$ is the Pochhammer symbol defined by

$$(a)_n := \frac{\Gamma(a+n)}{\Gamma(a)} = \begin{cases} 1, & (n=0); \\ a(a+1)(a+2)\cdots(a+n-1), & (n\in\mathbb{N}). \end{cases}$$

Corresponding to the function

$$\Psi(\alpha_1, ..., \alpha_l; \beta_1, ..., \beta_m; z) := z \, {}_{l}F_m(\alpha_1, ..., \alpha_l; \beta_1, ..., \beta_m; z),$$

the Dziok-Srivastava operator [6] (see also [17]) $H^{l,m}(\alpha_1,...,\alpha_l;\beta_1,...,\beta_m;z)$ is defined by the Hadamard product

$$H^{l, m}(\alpha_{1}, ..., \alpha_{l}; \beta_{1}, ..., \beta_{m}; z) f(z)$$

$$:= \Psi(\alpha_{1}, ..., \alpha_{l}; \beta_{1}, ..., \beta_{m}; z) * f(z)$$

$$= z + \sum_{n=2}^{\infty} \frac{(\alpha_{1})_{n-1} ... (\alpha_{l})_{n-1}}{(\beta_{1})_{n-1} ... (\beta_{m})_{n-1}} \frac{a_{n}z^{n}}{(n-1)!}.$$
(1.2)

It is well known [6] that

$$\alpha_{1}H^{l,m}(\alpha_{1}+1,...,\alpha_{l};\beta_{1},...,\beta_{m};z)f(z)$$

$$=z[H^{l,m}(\alpha_{1},...,\alpha_{l};\beta_{1},...,\beta_{m};z)f(z)]'$$

$$+(\alpha_{1}-1)H^{l,m}(\alpha_{1},...,\alpha_{l};\beta_{1},...,\beta_{m};z)f(z).$$
(1.3)

To have a simpler notation, we write $H^{l,m}(\alpha_1,...,\alpha_l;\beta_1,...,\beta_m;z)f(z)$ as $H^{l,m}[\alpha_1]f(z)$.

Special cases of the Dziok-Srivastava linear operator includes the Hohlov linear operator [7], the Carlson-Shaffer linear operator [4], the Ruscheweyh derivative operator [14], the generalized Bernardi-Libera-Livingston linear integral operator (cf. [1], [8], [9]) and the Srivastava-Owa fractional derivative operators (cf. [12], [13]).

The multiplier transformation of Srivastava [17] on \mathcal{A} is the operator $I(r, \mu)$ on \mathcal{A} defined by the following infinite series

$$I(r, \mu)f(z) := z + \sum_{k=2}^{\infty} \left(\frac{k+\mu}{1+\mu}\right)^r a_k z^k.$$
 (1.4)

A straightforward calculation shows that the multiplier operator satisfies

$$(1 + \mu)I(r + 1, \mu)f(z) = z[I(r, \mu)f(z)]' + \mu I(r, \mu)f(z). \tag{1.5}$$

The operator I(r, 0) is the Sălăgean derivative operators [15]. The

operator $I_{\mu}^{r} := I(r, \mu)$ was studied recently by Cho and Kim [5]. The operator $I_{r} := I(r, 1)$ was studied by Uralegaddi and Somanatha [18].

In this paper unless otherwise mentioned δ and γ are complex numbers.

2. Preliminaries

In our present investigation, we need the following definition and results to prove our main results.

Definition 2.1 [11, Definition 2, p. 817]. Let Q be the set of all functions f that are analytic and injective on $\overline{\Delta} - E(f)$, where

$$E(f) := \{ \zeta \in \partial \Delta : \lim_{z \to \zeta} f(z) = \infty \}$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial \Delta - E(f)$.

Lemma 2.2 [10, Theorem 3.4h, p. 132]. Let q be univalent in the unit disk Δ and θ and ϕ be analytic in a domain D containing $q(\Delta)$ with $\phi(\omega) \neq 0$ when $\omega \in q(\Delta)$.

Set
$$\xi(z) = zq'(z)\phi(q(z))$$
, $h(z) = \theta\{q(z)\} + \xi(z)$. Suppose that,

(1) $\xi(z)$ is starlike univalent in Δ and

(2)
$$\operatorname{Re}\left\{\frac{zh'(z)}{\xi(z)}\right\} > 0 \text{ for } z \in \Delta.$$

If p is analytic in Δ with $p(\Delta) \subseteq D$, and

$$\theta(\{p(z)\} + zp'(z)\phi(p(z)) < \theta\{q(z)\} + zq'(z)\phi(q(z)), \tag{2.1}$$

then $p \prec q$ and q is the best dominant.

Lemma 2.3 [10]. Let q be univalent in Δ with q(0) = 1 and $\frac{zq'(z)}{q(z)}$ be starlike univalent in Δ and satisfying

$$\operatorname{Re}\left(1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right) > 0.$$
 (2.2)

If p is analytic in Δ , with $p(\Delta) \subseteq D$ and

$$\delta + \gamma \frac{zp'(z)}{p(z)} \prec \delta + \gamma \frac{zq'(z)}{q(z)},$$

then $p \prec q$ and q is the best dominant.

Lemma 2.4 [3]. Let q be univalent in Δ , ϑ and φ be analytic in a domain D containing $q(\Delta)$. Suppose that

(1)
$$\operatorname{Re}\left[\frac{\vartheta'(q(z))}{\varphi(q(z))}\right] > 0 \text{ for } z \in \Delta, \text{ and }$$

(2) $\xi(z) = zq'(z)\varphi(q(z))$ is starlike univalent function in Δ .

If $p \in \mathcal{H}[q(0),1] \cap Q$, with $p(\Delta) \subset D$, and $\vartheta(p(z)) + zp'(z)\varphi(p(z))$ is univalent in Δ , and

$$\vartheta(q(z)) + zq'(z)\varphi(q(z)) \prec \vartheta(p(z)) + zp'(z)\varphi(p(z)), \tag{2.3}$$

then $q \prec p$ and q is the best subordinant.

Lemma 2.5 [11, Theorem 8, p. 822]. Let q be convex univalent in Δ and satisfying $\text{Re}[\overline{\gamma}] > 0$. If $p \in \mathcal{H}[q(0),1] \cap Q$ and $\delta + \gamma \frac{zp'(z)}{p(z)}$ is univalent in Δ , then

$$\delta + \gamma \frac{zq'(z)}{q(z)} \prec \delta + \gamma \frac{zp'(z)}{p(z)},$$

implies $q \prec p$ and q is the best subordinant.

3. Subordination and Superordination for Analytic Functions

By making use of Lemma 2.3, we obtain the following results.

Theorem 3.1. Let $0 \neq q(z)$ be univalent in Δ with q(0) = 1, and satisfying

$$\operatorname{Re}\left(1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right) > 0.$$
 (3.1)

If $f \in A$ satisfies

$$\delta + \gamma \left[1 + \lambda \alpha_1 \left\{ \frac{H^{l,m}[\alpha_1 + 1]f(z)}{H^{l,m}[\alpha_1]f(z)} - 1 \right\} \right] \prec \delta + \gamma \frac{zq'(z)}{q(z)},$$

then

$$z \left(\frac{H^{l,m}[\alpha_1] f(z)}{z} \right)^{\lambda} \prec q(z),$$

and q is the best dominant.

Proof. Define the function p(z) by

$$p(z) := z \left(\frac{H^{l,m}[\alpha_1] f(z)}{z} \right)^{\lambda}. \tag{3.2}$$

By taking the logarithmic derivative of p(z) given by (3.2), we get

$$\frac{zp'(z)}{p(z)} = 1 + \lambda \left\{ \frac{z(H^{l,m}[\alpha_1]f(z))'}{H^{l,m}[\alpha_1]f(z)} - 1 \right\}.$$
(3.3)

By using the identity

$$z(H^{l,m}[\alpha_1]f(z))^{'}=\alpha_1H^{l,m}[\alpha_1+1]f(z)-(\alpha_1-1)H^{l,m}[\alpha_1]f(z),$$

and (3.2) in (3.3), we obtain

$$\frac{zp'(z)}{p(z)} = 1 + \lambda \alpha_1 \left\{ \frac{H^{l,m}[\alpha_1 + 1]f(z)}{H^{l,m}[\alpha_1]f(z)} - 1 \right\}.$$

Now, our result follows as an application of Lemma 2.3.

For
$$q(z) = \frac{1 + Az}{1 + Bz}$$
 (-1 \le B < A \le 1) in Theorem 3.1, reduces to

Corollary 3.2. Let q be univalent in Δ with q(0) = 1. If $f \in A$ and

$$\delta + \gamma \left[1 + \lambda \alpha_1 \left\{ \frac{H^{l,m} [\alpha_1 + 1] f(z)}{H^{l,m} [\alpha_1] f(z)} - 1 \right\} \right] \prec \delta + \gamma \frac{(A - B)z}{(1 + Az)(1 + Bz)},$$

then

$$z\left(\frac{H^{l,m}[\alpha_1]f(z)}{z}\right)^{\lambda} \prec \frac{1+Az}{1+Bz}$$

and $\frac{1+Az}{1+Bz}$ is the best dominant.

In particular, we have

$$\delta + \gamma \left[1 + \lambda \alpha_1 \left\{ \frac{H^{l,m}[\alpha_1 + 1]f(z)}{H^{l,m}[\alpha_1]f(z)} - 1 \right\} \right] \prec \delta + \frac{2\gamma z}{1 - z^2},$$

implies

$$z\left(\frac{H^{l,m}[\alpha_1]f(z)}{z}\right)^{\lambda}\prec\frac{1+z}{1-z}\,,$$

and $\frac{1+z}{1-z}$ is the best dominant.

Taking l=2, m=1 and $\alpha_2=1$ in Theorem 3.1, we get

Corollary 3.3. Let q be univalent in Δ with q(0) = 1. If $f \in A$ and

$$\delta + \gamma \left[1 + \lambda \alpha_1 \left\{ \frac{L[\alpha_1 + 1, \beta_1] f(z)}{L[\alpha_1, \beta_1] f(z)} - 1 \right\} \right] \prec \delta + \gamma \frac{zq'(z)}{q(z)},$$

then

$$z \left(\frac{L(\alpha_1, \, \beta_1) f(z)}{z} \right)^{\lambda} \, \prec \, q(z),$$

where $L(\alpha_1, \beta_1)f$ is the familiar Carlson-Shaffer operator and q is the best dominant.

For $\alpha_1 = n+1$ and $\beta_1 = 1$ in Corollary 3.3, we get the following corollary.

Corollary 3.4. Let q be univalent in Δ . If $f \in A$ and

$$\delta + \gamma \left[1 + \lambda(n+1) \left\{ \frac{D^{n+2} f(z)}{D^{n+1} f(z)} - 1 \right\} \right] \prec \delta + \gamma \frac{zq'(z)}{q(z)},$$

then

$$z\left(\frac{D^{n+1}f(z)}{z}\right)^{\lambda} \prec q(z),$$

where $D^n f$ is the Ruscheweyh operator and q is the best dominant.

Theorem 3.5. Let q be convex univalent in Δ and $\text{Re}[\overline{\gamma}] > 0$. If $f \in A$,

$$z\left(\frac{H^{l,m}[\alpha_1]f(z)}{z}\right)^{\lambda} \in \mathcal{H}[1,1] \cap Q, \ \delta + \gamma \left[1 + \lambda \alpha_1 \left\{\frac{H^{l,m}[\alpha_1+1]f(z)}{H^{l,m}[\alpha_1]f(z)} - 1\right\}\right]$$

is univalent in Δ , then

$$\delta + \gamma \frac{zq'(z)}{q(z)} \prec \delta + \gamma \left[1 + \lambda \alpha_1 \left\{ \frac{H^{l,m}[\alpha_1 + 1]f(z)}{H^{l,m}[\alpha_1]f(z)} - 1 \right\} \right],$$

implies

$$q(z) \prec z \left(\frac{H^{l,m}[\alpha_1]f(z)}{z} \right)^{\lambda},$$

and q is the best subordinant.

Proof. Define the function p(z) by

$$p(z) := z \left(\frac{H^{l,m}[\alpha_1] f(z)}{z} \right)^{\lambda}.$$

Then a simple computation shows that

$$\delta + \gamma \left[1 + \lambda \alpha_1 \left\{ \frac{H^{l,m}[\alpha_1 + 1]f(z)}{H^{l,m}[\alpha_1]f(z)} - 1 \right\} \right] = \delta + \gamma \frac{zp'(z)}{p(z)}.$$

An application of Lemma 2.5 gives the result.

Combining the results of subordination and superordination we get the following Sandwich theorem.

Theorem 3.6. Let q_1 and q_2 be convex univalent in Δ satisfying

$$\operatorname{Re}[\overline{\gamma}] > 0$$
 and (2.2) respectively. If $0 \neq z \left(\frac{H^{l,m}[\alpha_1]f(z)}{z}\right)^{\lambda} \in \mathcal{H}[1,1] \cap Q$,

$$\delta + \gamma \left[1 + \lambda \alpha_1 \left\{ \frac{H^{l,m}[\alpha_1 + 1]f(z)}{H^{l,m}[\alpha_1]f(z)} - 1 \right\} \right]$$
 is univalent in Δ and

$$\delta + \gamma \frac{zq_1'(z)}{q_1(z)} \prec \delta + \gamma \left[1 + \lambda \alpha_1 \left\{ \frac{H^{l,m}[\alpha_1 + 1]f(z)}{H^{l,m}[\alpha_1]f(z)} - 1 \right\} \right] \prec \delta + \gamma \frac{zq_2'(z)}{q_2(z)},$$

then

$$q_1(z) \prec z \left(\frac{H^{l,m}[\alpha_1]f(z)}{z} \right)^{\lambda} \prec q_2(z),$$

where $q_1(z)$ and $q_2(z)$ are respectively the best subordinant and best dominant.

4. Application to Multiplier Transformation

Theorem 4.1. Let $0 \neq q(z)$ be univalent in Δ with q(0) = 1. If $f \in \mathcal{A}$ and

$$\delta + \gamma \left[1 + \lambda (1 + \mu) \left\{ \frac{I(r+1, \mu) f(z)}{I(r, \mu) f(z)} - 1 \right\} \right] \prec \delta + \gamma \frac{zq'(z)}{q(z)},$$

then

$$z\left(\frac{I(r, \mu)f(z)}{z}\right)^{\lambda} \prec q(z),$$

and q(z) is the best dominant.

Proof. Define the function p(z) by

$$p(z) := z \left(\frac{I(r, \mu)f(z)}{z}\right)^{\lambda}. \tag{4.1}$$

By taking the logarithmic derivative of p(z) given by (4.1), we get

$$\frac{zp'(z)}{p(z)} = 1 + \lambda \left(\frac{z(I(r, \mu)f(z))'}{I(r, \mu)f(z)} - 1 \right). \tag{4.2}$$

By using the identity

$$z[I(r, \mu)f(z)]' = (1 + \mu)I(r + 1, \mu)f(z) - \mu[I(r, \mu)f(z)]$$

and (4.1) in (4.2), we obtain

$$\frac{zp'(z)}{p(z)} = 1 + \lambda(1 + \mu) \left\{ \frac{I(r+1, \mu)f(z)}{I(r, \mu)f(z)} - 1 \right\}.$$

Now, our result follows as an application of Lemma 2.3.

We state the results pertaining to the superordination, using the duality between the subordination and the superordination.

Theorem 4.2. Let q be convex univalent in Δ and q(0) = 1. If $f \in A$,

$$z\left(\frac{I(r, \mu)f(z)}{z}\right)^{\lambda} \in \mathcal{H}[1, 1] \cap Q, \ and \ \delta + \gamma\left[1 + \lambda(1 + \mu)\left\{\frac{I(r + 1, \mu)f(z)}{I(r, \mu)f(z)} - 1\right\}\right]$$

is univalent in Δ , then

$$\delta + \gamma \frac{zq'(z)}{q(z)} \prec \delta + \gamma \left[1 + \lambda(1+\mu) \left\{ \frac{I(r+1,\mu)f(z)}{I(r,\mu)f(z)} - 1 \right\} \right],$$

implies

$$q(z) \prec z \left(\frac{I(r, \mu)f(z)}{z}\right)^{\lambda},$$

and q is the best subordinant.

Combining the results of subordination and superordination, we state the following Sandwich theorem.

Theorem 4.3. Let q_1 and q_2 be convex univalent in Δ satisfying $\Re[\overline{\gamma}] > 0$ and (2.2) respectively. If $f \in \mathcal{A}$, $z \left(\frac{I(r, \mu)f(z)}{z} \right)^{\lambda} \in \mathcal{H}[1, 1] \cap Q$ and $\delta + \gamma \left[1 + \lambda(1 + \mu) \left\{ \frac{I(r+1, \mu)f(z)}{I(r, \mu)f(z)} - 1 \right\} \right]$ is univalent in Δ , then $\delta + \gamma \frac{zq_1'(z)}{q_1(z)} \prec \delta + \gamma \left[1 + \lambda(1 + \mu) \left\{ \frac{I(r+1, \mu)f(z)}{I(r, \mu)f(z)} - 1 \right\} \right] \prec \delta + \gamma \frac{zq_2'(z)}{q_2(z)},$

implies

$$q_1(z) \prec z \left(\frac{I(r, \mu)f(z)}{z}\right)^{\lambda} \prec q_2(z),$$

where q_1 and q_2 are respectively the best subordinant and best dominant.

For

$$q_1(z) = \frac{1 + A_1 z}{1 + B_1 z} \quad (-1 \le B_1 < A_1 \le 1),$$

$$q_2(z) = \frac{1 + A_2 z}{1 + B_2 z} \quad (-1 \le B_2 < A_2 \le 1),$$

we have the following corollary.

Corollary 4.4. If $f \in A$,

$$z \left(\frac{I(r, \, \mathbf{m}) f(z)}{z} \right)^{\lambda} \in \, \mathcal{H}[1, \, 1] \cap Q$$

and

$$\delta + \gamma \left[1 + \lambda(1 + \mu) \left\{ \frac{I(r+1, \mu)f(z)}{I(r, \mu)f(z)} - 1 \right\} \right]$$

is univalent in Δ , then

$$\delta + \gamma \frac{(A_1 - B_1)z}{(1 + A_1z)(1 + B_1z)} \prec \delta + \gamma \left[1 + \lambda(1 + \mu) \left\{ \frac{I(r+1, \mu)f(z)}{I(r, \mu)f(z)} - 1 \right\} \right]$$
$$\prec \delta + \gamma \frac{(A_2 - B_2)z}{(1 + A_2z)(1 + B_2z)},$$

implies

$$\frac{1 + A_1 z}{1 + B_1 z} \prec z \left(\frac{I(r, \mu) f(z)}{z} \right)^{\lambda} \prec \frac{1 + A_2 z}{1 + B_2 z}.$$

The functions $\frac{1+A_1z}{1+B_1z}$ and $\frac{1+A_2z}{1+B_2z}$ are respectively the best subordinant and best dominant.

References

- [1] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
- [2] T. Bulboacă, A class of superordination-preserving integral operators, Indag. Math. (N.S.) 13(3) (2002), 301-311.
- [3] T. Bulboacă, Classes of first-order differential superordinations, Demonstratio Math. 35(2) (2002), 287-292.
- [4] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15(4) (1984), 737-745.
- [5] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40(3) (2003), 399-410.
- [6] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct. 14 (1) (2003), 7-18.
- [7] Ju. E. Hohlov, Operators and operations on the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat. 10(197) (1978), 83-89.
- [8] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
- [9] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966), 352-357.
- [10] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, No. 225, Marcel Dekker, New York, 2000.
- [11] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl. 48(10) (2003), 815-826.

- [12] S. Owa, On the distortion theorems, I, Kyungpook Math. J. 18(1) (1978), 53-59.
- [13] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39(5) (1987), 1057-1077.
- [14] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
- [15] G. Ş. Sālāgean, Subclasses of univalent functions, Complex analysis-fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), pp. 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.
- [16] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, Aust. J. Math. Anal. Appl. 3 (2006), no. 1, Art. 8, 11 pp. (electronic).
- [17] H. M. Srivastava, Some families of fractional derivative and other linear operators associated with analytic, univalent, and multivalent functions, Analysis and its Applications (Chennai, 2000), pp. 209-243, Allied Publ., New Delhi, 2001.
- [18] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, Current Topics in Analytic Function Theory, pp. 371-374, World Sci. Publ., River Edge, NJ, 1992.

T. N. Shanmugam

Department of Mathematics
College of Engineering, Anna University
Chennai 600 025, Tamilnadu, India
e-mail: shan@annauniv.edu; drtns@yahoo.com

A. Singaravelu
Department of Mathematics
Valliammai Engineering College
Chennai 603 203, Tamilnadu, India
e-mail: asing-59@yahoo.com

C. Ramachandran and M. P. Jeyaraman
Department of Mathematics
Easwari Engineering College
Ramapuram, Chennai 600 089
Tamilnadu, India
e-mail: crjsp2004@yahoo.com
jeyaraman-mp@yahoo.com