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Abstract

We introduce the concepts of surjective fuzzy mapping, injective fuzzy
mapping, bijective fuzzy mapping on a set and we obtain some of their

properties.
1. Introduction

Since Zadeh [5] has introduced the notion of fuzzy set on a set, many
researchers are engaged in extending the notions of relations to the
broader framework of the fuzzy setting. The result that the theory of
fuzzy mappings was developed in [2, 3, 4] among several others. Nemitz
[2] dealt with the notion of fuzzy equivalence relations and fuzzy
functions as fuzzy relations. Ounalli and Jaoua [3] introduced the notion
of difunctional relation on a set and investigated its properties. Sidky [4]
introduced the concepts of ¢{-fuzzy mapping and ¢-fuzzy partition. In the
present paper, we introduce the concepts of surjective fuzzy mapping,
injective fuzzy mapping, bijective fuzzy mapping on a set and we give
some more results in connection with fuzzy mappings. Henceforth,
without loss of generality, we assume that all fuzzy relations are defined

on a fixed universe U.
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2. Preliminaries
In this section, we review some basic definitions and results from [2,
3] for reference purposes.
Definition 1. The scalars sets of a fuzzy relation R, written ®(R), is
defined as follows:
®O(R) ={a # 0|3(x, y) e U x U, R(x, y) = a}.
Definition 2. Let R be a fuzzy relation and a € ®(R). The o -cut

relative to R, written R, is a crisp relation such that for all x, y € U:

1, if R(x, y)> a
R, (x’ Y ) = .
0, otherwise.
Definition 3. A fuzzy relation R is fuzzy difunctional if and only if it
satisfies condition RR™'R ¢ R, which is equivalent to RR™'R = R.

Definition 4. Let R be a crisp relation on U. The image set of x € U,
written xR, is defined by xR = {y|(x, y) € R}. R is difunctional if and
only if, for all x, ye U, xR yR # & = xR = yR.

Definition 5. A fuzzy function is a fuzzy relation R such that for all
a € ®(R), R, is a crisp function.

Definition 6. Let R be a fuzzy function. We say that
1. R is injective if for all o € ®(R), R, is injective.
2. R is surjective if for all o € ®(R), R, is surjective.

3. R is bijective if for all o € ®(R), R, is bijective.

3. Main Results
In this section, we study properties of fuzzy functions and related
topics in details.

Theorem 1. Let S and R be two fuzzy relations. For two fuzzy
relations R and S, we have (S o R), = S, o R, for all a.€ ®(R).
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Proof. We must prove that (S R),(x, ¥) = (S o Ry)(x, y) for all
x,yeU. If (SoR),(x,y)=1, then (SoR)(x, y) > a. This means that
there exists zy € U such that R(x, zp) A S(z, ¥) > o. This implies that
R(x, zp) 2 o and S(zg, y) > . Hence, we have R,(x,zy)=1 and
Sy (29, ¥) = 1. On the other hand, we note that

(Sa ° Ra)(x’ y) = Z\E/U[Ra(x’ 2) A S(x(z’ y)]

v

Ry (x, 20) A Sq (20, ¥)

= 1.
This implies (S, o Ry )(x, ¥) =1. Next, let (S, o R,)(x, ¥) = 0. Then,
VU[Ra(x, z2) A 8S,(z, y)] = 0. So, for all ze U, R,(x,z)A Sy(z, y)=0.
ze

This implies, for all z € U, R, (x,z)=0 or S,(z, ¥) = 0. On the other

hand, we note that

(8 o By (x. 3) = M [Bolx. 2) 7 8,2, 9] = 0.

Hence, (S o R), = S, ° R,. This completes the proof.

Theorem 2. Let R and S be two fuzzy functions. If R and S are
injective, then S o R is injective.

Proof. Let o€ ®(R) be fixed, and let (S R),(x;,2)=1 and
(S o R),(x9, 2) = 1. Then, (S R),(x;, 2) =1 implies (S o R)(x;, 2) > a.
So, by the definition of composition, (S o R)(x;, z2) > o means there

exists y € U such that R(x;, y) A S(y, 2) = o

Similarly, we see that (S o R),(xg, 2) =1 means there exists y' € U
such that R(x9, y')A S(y, 2) 2 a. Hence, above inequalities entail
S(y,z) 2 a and S(y, z) = a. So Sy(y,z)=1 and S, (), z) = 1. Since S
is injective, we get y = 3y. On the other hand, from inequalities
R(x;, y) 2 o and R(xg, ') = o, we have R(x;, y) > o and R(xy, y) > a.
This implies R, (x;, y)=1 and Ry (x9, y)=1. Hence, since R is

injective, we have x; = x9. This completes the proof.
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Theorem 3. Let R and S be two fuzzy functions. If R and S are

surjective, then S o R is surjective.

Proof. It is sufficient to show that (S R), is surjective for all
a € ®(R). Now, for fixed oo € ®(R), let z € U be any given. Since S is
surjective, S, is surjective. Hence, for this z € U, there exists y e U
such that S,(y, z) = 1. Also, for this y € U, since R is surjective, R, is

surjective. This entails there exists x € U such that R, (x, y) = 1.
On the other hand,

(S(x ° Ra)(x’ Z)

y\e/U[Ra(x, Y) A Su(y, 2)]

v

R(X(x’ y)/\ SO((y’ Z)

=1.
Hence, (S, © Ry)(x, z) = 1. Therefore S o R is surjective. This completes
the proof.

Theorem 4. Let S and R be two fuzzy functions. If S o R is injective,

then R is injective.

Proof. Let o € ®(R) be fixed. Then, we show that R, is injective.
Now, let R, (x1, ¥) =1 = R, (x3, y). Then, for this y € U, since R, is an
ordinary function, there exists z € U such that S, (y, z) = 1. This means

that

(S o R)y(x1, 2) = (Sq ° Re,) (%1, 2)
= VBa(@1, 9) A So(y, 2)]

> Ry (x1, y) A So(y, 2)

=1.
Thus (S R),(x1, 2) = 1. Similarly, we get easily that (S o R),(xg, 2)
= 1. Hence, we have (S R),(x1,2) =1 = (S R),(xg, 2). Since (S R)

is injective, this entails x; = x9. Therefore, R is injective.
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Theorem 5. Let R and S be two fuzzy functions. If S o R is surjective,
then S is surjective.

Proof. Let z € U be any given. Since (S o R), is surjective, there
exists x € U such that (S o R),(x, 2) = (S, © Ry )(x, 2) = 1. This means
that there exists y € U such that R (x, y) A Sy(y, z) =1. Hence, we
have R, (x, y)=1 and S,(y, z) = 1. Therefore, S, is surjective. This
completes the proof.

Theorem 6. Let R and S be two fuzzy functions. If S o R is injective
and R is surjective, then S is injective.

Proof. Let a € ®(R) be fixed. Then, we show that S, is injective.
Now, let S, (y1,2)=1= Sy(y9, z). Since R, is surjective, for these
¥1, ¥9 € U there exist x1, xg € U such that R,(x;, ¥1) =1 = R, (xg, ¥9)-
So

(S o R),(x1, 2) = (Sq, © Ry) (%1, 2)

V [Bo(x1, ¥) A Saly, 2)]

\Y

Ry (x1, 31) A Sy (1, 2)

=1.
This implies (S o R),(x1, z) = 1. Similarly, we see that (S o R),(xs, 2)
=1. Since (SoR), is injective, we have x; =xy =x. Also, from
Ry (x1, y1) =1 = Ry (xg, y2), we get Ry(r,)=1=Ry(x, y). This

entails that y; = yo. Therefore, S, is injective. This completes the proof.

Theorem 7. Let R and S be two fuzzy functions. If S o R is surjective
and S is injective, then R is surjective.

Proof. Let o € ®(R) be fixed. Then, we show that R, is surjective.
Now, let y € U be any given. Since S, is an ordinary function, there
exists z€ U such that S,(y, z) =1. By hypothesis, since So R is
surjective, (S o R), is surjective. Hence, for this z € U, there exists x €

U such that (S R),(x, z) =1. This implies that there exists y € U
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such that R, (x, ') A S, (%', z) = 1. This means that S (y’, z) = 1. Since
S, 1s injective, the equalities S, (y, z) =1 =S, (), z) imply y =y’
Hence, we have R (x, y) = R, (x, ) = 1. Therefore, R is surjective. This
completes the proof.

Theorem 8. Let a fuzzy relation R be reflexive. If R is fuzzy
difunctional and R, is anti-symmetric for all o. € ®(R), then R is a fuzzy

function.

Proof. Let oo € ®(R) be fixed. Then, we show that R, is an ordinary
function. Now, let x € U be any given. Since R is reflexive, R(x, x) =1,
and so, R(x, x) =1 > o.. This implies that R, (x, x) =1 for all o € ®(R).
Next, let Ry(x, y;) =1 and R,(x, y9) = 1. Since R is reflexive, R, is
reflexive. Hence, we have Ry(y;,y1)=1 and Ry (y9, y2)=1. So
xR, Ny R, # D and xR, N yoR, # <. Since R is fuzzy difunctional, we
get xR, = y1R, and xR, = ysR,. This means that y;R, = yoR,, and
s0, ¥; € yoR, and y9 € y R, from which it follows that (y;, y3)€ R,
and (y9, ;)€ R,. Since R, is anti-symmetric, we have y; = ys.

Therefore, R, is an ordinary function. This completes the proof.

Theorem 9. If R is a fuzzy function, then R is fuzzy difunctional.

Proof. Let oo € ®(R) be fixed. Suppose that xR, N yR, # & and x, y
€ U. Let zexR,. Then R,(x,z)=1. xR, N yR, # @ implies there
exists 2’ € U such that 2’ € xR, | yR,. This means that R,(x, 2’) =1
and R,(y, 2’)=1. Since R is a fuzzy function, R, is an ordinary
function. Thus, we have z = z'. This means that R,(y, z) =1, and so,
z € yR,. Hence, we have xR, c yR,. Similarly, if z e yR,, then
R,(y,z)=1. Since xR, N yR, # &, there exists z’€ U such that
z' € xR, N yR,, which implies that R,(x,2)=1 and R,(y, 2')=1.
Combining R,(y,z)=1 and Ry (y,2z)=1, we get z =2, and so,
R,(x,z)=1 and R,(x, 2’)=1. This leads z € xR,. Hence, we have

yR, < xR,. Therefore, xR, = yR,. This complete the proof.
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Theorem 10. Let a fuzzy relation R be reflexive and let R, be
difunctional and anti-symmetric for all o€ ®(R). Then R is fuzzy

difunctional if and only if R is a fuzzy function.

Proof. It follows from Theorems 8 and 9.
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