A NOTE ON FUZZY MAPPINGS

YEOUL-OUK SUNG and MAN-HUI CHO

(Received January 16, 2007)

Abstract

We introduce the concepts of surjective fuzzy mapping, injective fuzzy mapping, bijective fuzzy mapping on a set and we obtain some of their properties.

1. Introduction

Since Zadeh [5] has introduced the notion of fuzzy set on a set, many researchers are engaged in extending the notions of relations to the broader framework of the fuzzy setting. The result that the theory of fuzzy mappings was developed in [2, 3, 4] among several others. Nemitz [2] dealt with the notion of fuzzy equivalence relations and fuzzy functions as fuzzy relations. Ounalli and Jaoua [3] introduced the notion of difunctional relation on a set and investigated its properties. Sidky [4] introduced the concepts of t-fuzzy mapping and t-fuzzy partition. In the present paper, we introduce the concepts of surjective fuzzy mapping, injective fuzzy mapping, bijective fuzzy mapping on a set and we give some more results in connection with fuzzy mappings. Henceforth, without loss of generality, we assume that all fuzzy relations are defined on a fixed universe U.

²⁰⁰⁰ Mathematics Subject Classification: 93C04, 90B02.

Keywords and phrases: surjective fuzzy mappings, injective fuzzy mappings, bijective fuzzy mappings.

2. Preliminaries

In this section, we review some basic definitions and results from [2, 3] for reference purposes.

Definition 1. The scalars sets of a fuzzy relation R, written $\Phi(R)$, is defined as follows:

$$\Phi(R) = \{\alpha \neq 0 \mid \exists (x, y) \in U \times U, R(x, y) = \alpha\}.$$

Definition 2. Let R be a fuzzy relation and $a \in \Phi(R)$. The α -cut relative to R, written R_{α} , is a crisp relation such that for all $x, y \in U$:

$$R_{\alpha}(x, y) = \begin{cases} 1, & \text{if } R(x, y) \ge \alpha \\ 0, & \text{otherwise.} \end{cases}$$

Definition 3. A fuzzy relation R is fuzzy difunctional if and only if it satisfies condition $RR^{-1}R \subseteq R$, which is equivalent to $RR^{-1}R = R$.

Definition 4. Let R be a crisp relation on U. The *image set of* $x \in U$, written xR, is defined by $xR = \{y \mid (x, y) \in R\}$. R is diffunctional if and only if, for all $x, y \in U$, $xR \cap yR \neq \emptyset \Rightarrow xR = yR$.

Definition 5. A fuzzy function is a *fuzzy relation* R such that for all $a \in \Phi(R)$, R_a is a crisp function.

Definition 6. Let *R* be a fuzzy function. We say that

- 1. R is injective if for all $\alpha \in \Phi(R)$, R_{α} is injective.
- 2. R is surjective if for all $\alpha \in \Phi(R)$, R_{α} is surjective.
- 3. R is bijective if for all $\alpha \in \Phi(R)$, R_{α} is bijective.

3. Main Results

In this section, we study properties of fuzzy functions and related topics in details.

Theorem 1. Let S and R be two fuzzy relations. For two fuzzy relations R and S, we have $(S \circ R)_{\alpha} = S_{\alpha} \circ R_{\alpha}$ for all $\alpha \in \Phi(R)$.

Proof. We must prove that $(S \circ R)_{\alpha}(x, y) = (S_{\alpha} \circ R_{\alpha})(x, y)$ for all $x, y \in U$. If $(S \circ R)_{\alpha}(x, y) = 1$, then $(S \circ R)(x, y) \geq \alpha$. This means that there exists $z_0 \in U$ such that $R(x, z_0) \wedge S(z_0, y) \geq \alpha$. This implies that $R(x, z_0) \geq \alpha$ and $S(z_0, y) \geq \alpha$. Hence, we have $R_{\alpha}(x, z_0) = 1$ and $S_{\alpha}(z_0, y) = 1$. On the other hand, we note that

$$(S_{\alpha} \circ R_{\alpha})(x, y) = \bigvee_{z \in U} [R_{\alpha}(x, z) \wedge S_{\alpha}(z, y)]$$

$$\geq R_{\alpha}(x, z_{0}) \wedge S_{\alpha}(z_{0}, y)$$

$$= 1.$$

This implies $(S_{\alpha} \circ R_{\alpha})(x, y) = 1$. Next, let $(S_{\alpha} \circ R_{\alpha})(x, y) = 0$. Then, $\bigvee_{z \in U} [R_{\alpha}(x, z) \wedge S_{\alpha}(z, y)] = 0$. So, for all $z \in U$, $R_{\alpha}(x, z) \wedge S_{\alpha}(z, y) = 0$. This implies, for all $z \in U$, $R_{\alpha}(x, z) = 0$ or $S_{\alpha}(z, y) = 0$. On the other hand, we note that

$$(S \circ R)_{\alpha}(x, y) = \bigvee_{z \in U} [R_{\alpha}(x, z) \wedge S_{\alpha}(z, y)] = 0.$$

Hence, $(S \circ R)_{\alpha} = S_{\alpha} \circ R_{\alpha}$. This completes the proof.

Theorem 2. Let R and S be two fuzzy functions. If R and S are injective, then $S \circ R$ is injective.

Proof. Let $\alpha \in \Phi(R)$ be fixed, and let $(S \circ R)_{\alpha}(x_1, z) = 1$ and $(S \circ R)_{\alpha}(x_2, z) = 1$. Then, $(S \circ R)_{\alpha}(x_1, z) = 1$ implies $(S \circ R)(x_1, z) \geq \alpha$. So, by the definition of composition, $(S \circ R)(x_1, z) \geq \alpha$ means there exists $y \in U$ such that $R(x_1, y) \wedge S(y, z) \geq \alpha$.

Similarly, we see that $(S \circ R)_{\alpha}(x_2, z) = 1$ means there exists $y' \in U$ such that $R(x_2, y') \wedge S(y', z) \geq \alpha$. Hence, above inequalities entail $S(y, z) \geq \alpha$ and $S(y', z) \geq \alpha$. So $S_{\alpha}(y, z) = 1$ and $S_{\alpha}(y', z) = 1$. Since $S_{\alpha}(x_1, y_1) \geq \alpha$ and $S_{\alpha}(x_2, y'_1) \geq \alpha$, we have $S_{\alpha}(x_1, y_2) \geq \alpha$ and $S_{\alpha}(x_2, y_1) \geq \alpha$. This implies $S_{\alpha}(x_1, y_1) = 1$ and $S_{\alpha}(x_2, y_2) = 1$. Hence, since $S_{\alpha}(x_1, y_2) = 1$ and $S_{\alpha}(x_2, y_2) = 1$. Hence, since $S_{\alpha}(x_1, y_2) = 1$ is injective, we have $S_{\alpha}(x_1, y_2) = 1$. This completes the proof.

Theorem 3. Let R and S be two fuzzy functions. If R and S are surjective, then $S \circ R$ is surjective.

Proof. It is sufficient to show that $(S \circ R)_{\alpha}$ is surjective for all $\alpha \in \Phi(R)$. Now, for fixed $\alpha \in \Phi(R)$, let $z \in U$ be any given. Since S is surjective, S_{α} is surjective. Hence, for this $z \in U$, there exists $y \in U$ such that $S_{\alpha}(y, z) = 1$. Also, for this $y \in U$, since R is surjective, R_{α} is surjective. This entails there exists $x \in U$ such that $R_{\alpha}(x, y) = 1$.

On the other hand,

$$(S_{\alpha} \circ R_{\alpha})(x, z) = \bigvee_{y \in U} [R_{\alpha}(x, y) \wedge S_{\alpha}(y, z)]$$

$$\geq R_{\alpha}(x, y) \wedge S_{\alpha}(y, z)$$

$$= 1$$

Hence, $(S_{\alpha} \circ R_{\alpha})(x, z) = 1$. Therefore $S \circ R$ is surjective. This completes the proof.

Theorem 4. Let S and R be two fuzzy functions. If $S \circ R$ is injective, then R is injective.

Proof. Let $\alpha \in \Phi(R)$ be fixed. Then, we show that R_{α} is injective. Now, let $R_{\alpha}(x_1, y) = 1 = R_{\alpha}(x_2, y)$. Then, for this $y \in U$, since R_{α} is an ordinary function, there exists $z \in U$ such that $S_{\alpha}(y, z) = 1$. This means that

$$(S \circ R)_{\alpha}(x_1, z) = (S_{\alpha} \circ R_{\alpha})(x_1, z)$$

$$= \bigvee_{y \in U} [R_{\alpha}(x_1, y) \wedge S_{\alpha}(y, z)]$$

$$\geq R_{\alpha}(x_1, y) \wedge S_{\alpha}(y, z)$$

Thus $(S \circ R)_{\alpha}(x_1, z) = 1$. Similarly, we get easily that $(S \circ R)_{\alpha}(x_2, z) = 1$. Hence, we have $(S \circ R)_{\alpha}(x_1, z) = 1 = (S \circ R)_{\alpha}(x_2, z)$. Since $(S \circ R)$ is injective, this entails $x_1 = x_2$. Therefore, R is injective.

Theorem 5. Let R and S be two fuzzy functions. If $S \circ R$ is surjective, then S is surjective.

Proof. Let $z \in U$ be any given. Since $(S \circ R)_{\alpha}$ is surjective, there exists $x \in U$ such that $(S \circ R)_{\alpha}(x, z) = (S_{\alpha} \circ R_{\alpha})(x, z) = 1$. This means that there exists $y \in U$ such that $R_{\alpha}(x, y) \wedge S_{\alpha}(y, z) = 1$. Hence, we have $R_{\alpha}(x, y) = 1$ and $S_{\alpha}(y, z) = 1$. Therefore, S_{α} is surjective. This completes the proof.

Theorem 6. Let R and S be two fuzzy functions. If $S \circ R$ is injective and R is surjective, then S is injective.

Proof. Let $\alpha \in \Phi(R)$ be fixed. Then, we show that S_{α} is injective. Now, let $S_{\alpha}(y_1, z) = 1 = S_{\alpha}(y_2, z)$. Since R_{α} is surjective, for these $y_1, y_2 \in U$ there exist $x_1, x_2 \in U$ such that $R_{\alpha}(x_1, y_1) = 1 = R_{\alpha}(x_2, y_2)$. So

$$\begin{split} (S \circ R)_{\alpha}(x_1, z) &= (S_{\alpha} \circ R_{\alpha})(x_1, z) \\ &= \bigvee_{z \in U} [R_{\alpha}(x_1, y) \wedge S_{\alpha}(y, z)] \\ &\geq R_{\alpha}(x_1, y_1) \wedge S_{\alpha}(y_1, z) \\ &= 1. \end{split}$$

This implies $(S \circ R)_{\alpha}(x_1, z) = 1$. Similarly, we see that $(S \circ R)_{\alpha}(x_2, z) = 1$. Since $(S \circ R)_{\alpha}$ is injective, we have $x_1 = x_2 = x$. Also, from $R_{\alpha}(x_1, y_1) = 1 = R_{\alpha}(x_2, y_2)$, we get $R_{\alpha}(x, y_1) = 1 = R_{\alpha}(x, y_2)$. This entails that $y_1 = y_2$. Therefore, S_{α} is injective. This completes the proof.

Theorem 7. Let R and S be two fuzzy functions. If $S \circ R$ is surjective and S is injective, then R is surjective.

Proof. Let $\alpha \in \Phi(R)$ be fixed. Then, we show that R_{α} is surjective. Now, let $y \in U$ be any given. Since S_{α} is an ordinary function, there exists $z \in U$ such that $S_{\alpha}(y, z) = 1$. By hypothesis, since $S \circ R$ is surjective, $(S \circ R)_{\alpha}$ is surjective. Hence, for this $z \in U$, there exists $x \in U$ such that $(S \circ R)_{\alpha}(x, z) = 1$. This implies that there exists $y' \in U$

such that $R_{\alpha}(x, y') \wedge S_{\alpha}(y', z) = 1$. This means that $S_{\alpha}(y', z) = 1$. Since S_{α} is injective, the equalities $S_{\alpha}(y, z) = 1 = S_{\alpha}(y', z)$ imply y = y'. Hence, we have $R_{\alpha}(x, y) = R_{\alpha}(x, y') = 1$. Therefore, R is surjective. This completes the proof.

Theorem 8. Let a fuzzy relation R be reflexive. If R is fuzzy difunctional and R_{α} is anti-symmetric for all $\alpha \in \Phi(R)$, then R is a fuzzy function.

Proof. Let $\alpha \in \Phi(R)$ be fixed. Then, we show that R_{α} is an ordinary function. Now, let $x \in U$ be any given. Since R is reflexive, R(x, x) = 1, and so, $R(x, x) = 1 \ge \alpha$. This implies that $R_{\alpha}(x, x) = 1$ for all $\alpha \in \Phi(R)$. Next, let $R_{\alpha}(x, y_1) = 1$ and $R_{\alpha}(x, y_2) = 1$. Since R is reflexive, R_{α} is reflexive. Hence, we have $R_{\alpha}(y_1, y_1) = 1$ and $R_{\alpha}(y_2, y_2) = 1$. So $xR_{\alpha} \cap y_1R_{\alpha} \neq \emptyset$ and $xR_{\alpha} \cap y_2R_{\alpha} \neq \emptyset$. Since R is fuzzy difunctional, we get $xR_{\alpha} = y_1R_{\alpha}$ and $xR_{\alpha} = y_2R_{\alpha}$. This means that $y_1R_{\alpha} = y_2R_{\alpha}$, and so, $y_1 \in y_2R_{\alpha}$ and $y_2 \in y_1R_{\alpha}$, from which it follows that $(y_1, y_2) \in R_{\alpha}$ and $(y_2, y_1) \in R_{\alpha}$. Since R_{α} is anti-symmetric, we have $y_1 = y_2$. Therefore, R_{α} is an ordinary function. This completes the proof.

Theorem 9. If R is a fuzzy function, then R is fuzzy diffunctional.

Proof. Let $\alpha \in \Phi(R)$ be fixed. Suppose that $xR_{\alpha} \cap yR_{\alpha} \neq \emptyset$ and $x, y \in U$. Let $z \in xR_{\alpha}$. Then $R_{\alpha}(x,z)=1$. $xR_{\alpha} \cap yR_{\alpha} \neq \emptyset$ implies there exists $z' \in U$ such that $z' \in xR_{\alpha} \cap yR_{\alpha}$. This means that $R_{\alpha}(x,z')=1$ and $R_{\alpha}(y,z')=1$. Since R is a fuzzy function, R_{α} is an ordinary function. Thus, we have z=z'. This means that $R_{\alpha}(y,z)=1$, and so, $z \in yR_{\alpha}$. Hence, we have $xR_{\alpha} \subseteq yR_{\alpha}$. Similarly, if $z \in yR_{\alpha}$, then $R_{\alpha}(y,z)=1$. Since $xR_{\alpha} \cap yR_{\alpha} \neq \emptyset$, there exists $z' \in U$ such that $z' \in xR_{\alpha} \cap yR_{\alpha}$, which implies that $R_{\alpha}(x,z')=1$ and $R_{\alpha}(y,z')=1$. Combining $R_{\alpha}(y,z)=1$ and $R_{\alpha}(y,z')=1$, we get z=z', and so, $R_{\alpha}(x,z)=1$ and $R_{\alpha}(x,z')=1$. This leads $z \in xR_{\alpha}$. Hence, we have $yR_{\alpha} \subseteq xR_{\alpha}$. Therefore, $xR_{\alpha}=yR_{\alpha}$. This complete the proof.

Theorem 10. Let a fuzzy relation R be reflexive and let R_{α} be difunctional and anti-symmetric for all $\alpha \in \Phi(R)$. Then R is fuzzy difunctional if and only if R is a fuzzy function.

Proof. It follows from Theorems 8 and 9.

References

- D. Dubois and H. Prade, Fuzzy Set and System. Theory and Applications, Academic Press, New York, 1980.
- [2] W. C. Nemitz, Fuzzy relations and fuzzy functions, Fuzzy Sets and Systems 19 (1986), 177-191.
- [3] H. Ounalli and A. Jaoua, On fuzzy difunctional relations, Inform. Sci. 95 (1996), 219-232.
- [4] F. I. Sidky, t-fuzzy mapping, Fuzzy Sets and Systems 76 (1995), 387-393.
- [5] L. A. Zadeh, Fuzzy Sets, Inform and Control 8 (1995), 338-353.

Department of Applied Mathematics Kongju National University Shinkwan-Dong, Kongju-City ChungNam, South Korea e-mail: yosung@kongju.ac.kr