A NOTE ON FUZZY MAPPINGS

YEOUL-OUK SUNG and MAN-HUI CHO

(Received January 16, 2007)

Abstract

We introduce the concepts of surjective fuzzy mapping, injective fuzzy mapping, bijective fuzzy mapping on a set and we obtain some of their properties.

1. Introduction

Since Zadeh [5] has introduced the notion of fuzzy set on a set, many researchers are engaged in extending the notions of relations to the broader framework of the fuzzy setting. The result that the theory of fuzzy mappings was developed in [2, 3, 4] among several others. Nemitz [2] dealt with the notion of fuzzy equivalence relations and fuzzy functions as fuzzy relations. Ounalli and Jaoua [3] introduced the notion of difunctional relation on a set and investigated its properties. Sidky [4] introduced the concepts of t-fuzzy mapping and t-fuzzy partition. In the present paper, we introduce the concepts of surjective fuzzy mapping, injective fuzzy mapping, bijective fuzzy mapping on a set and we give some more results in connection with fuzzy mappings. Henceforth, without loss of generality, we assume that all fuzzy relations are defined on a fixed universe U.

[^0]
2. Preliminaries

In this section, we review some basic definitions and results from [2, 3] for reference purposes.

Definition 1. The scalars sets of a fuzzy relation R, written $\Phi(R)$, is defined as follows:

$$
\Phi(R)=\{\alpha \neq 0 \mid \exists(x, y) \in U \times U, R(x, y)=\alpha\}
$$

Definition 2. Let R be a fuzzy relation and $a \in \Phi(R)$. The $\alpha-c u t$ relative to R, written R_{α}, is a crisp relation such that for all $x, y \in U$:

$$
R_{\alpha}(x, y)= \begin{cases}1, & \text { if } R(x, y) \geq \alpha \\ 0, & \text { otherwise }\end{cases}
$$

Definition 3. A fuzzy relation R is fuzzy difunctional if and only if it satisfies condition $R R^{-1} R \subseteq R$, which is equivalent to $R R^{-1} R=R$.

Definition 4. Let R be a crisp relation on U. The image set of $x \in U$, written $x R$, is defined by $x R=\{y \mid(x, y) \in R\}$. R is difunctional if and only if, for all $x, y \in U, x R \cap y R \neq \varnothing \Rightarrow x R=y R$.

Definition 5. A fuzzy function is a fuzzy relation R such that for all $a \in \Phi(R), R_{a}$ is a crisp function.

Definition 6. Let R be a fuzzy function. We say that

1. R is injective if for all $\alpha \in \Phi(R), R_{\alpha}$ is injective.
2. R is surjective if for all $\alpha \in \Phi(R), R_{\alpha}$ is surjective.
3. R is bijective if for all $\alpha \in \Phi(R), R_{\alpha}$ is bijective.

3. Main Results

In this section, we study properties of fuzzy functions and related topics in details.

Theorem 1. Let S and R be two fuzzy relations. For two fuzzy relations R and S, we have $(S \circ R)_{\alpha}=S_{\alpha} \circ R_{\alpha}$ for all $\alpha \in \Phi(R)$.

Proof. We must prove that $(S \circ R)_{\alpha}(x, y)=\left(S_{\alpha} \circ R_{\alpha}\right)(x, y)$ for all $x, y \in U$. If $(S \circ R)_{\alpha}(x, y)=1$, then $(S \circ R)(x, y) \geq \alpha$. This means that there exists $z_{0} \in U$ such that $R\left(x, z_{0}\right) \wedge S\left(z_{0}, y\right) \geq \alpha$. This implies that $R\left(x, z_{0}\right) \geq \alpha$ and $S\left(z_{0}, y\right) \geq \alpha$. Hence, we have $R_{\alpha}\left(x, z_{0}\right)=1$ and $S_{\alpha}\left(z_{0}, y\right)=1$. On the other hand, we note that

$$
\begin{aligned}
\left(S_{\alpha} \circ R_{\alpha}\right)(x, y) & =\bigvee_{z \in U}\left[R_{\alpha}(x, z) \wedge S_{\alpha}(z, y)\right] \\
& \geq R_{\alpha}\left(x, z_{0}\right) \wedge S_{\alpha}\left(z_{0}, y\right) \\
& =1 .
\end{aligned}
$$

This implies $\left(S_{\alpha} \circ R_{\alpha}\right)(x, y)=1$. Next, let $\left(S_{\alpha} \circ R_{\alpha}\right)(x, y)=0$. Then, $\underset{z \in U}{\vee}\left[R_{\alpha}(x, z) \wedge S_{\alpha}(z, y)\right]=0$. So, for all $z \in U, \quad R_{\alpha}(x, z) \wedge S_{\alpha}(z, y)=0$.
This implies, for all $z \in U, R_{\alpha}(x, z)=0$ or $S_{\alpha}(z, y)=0$. On the other hand, we note that

$$
(S \circ R)_{\alpha}(x, y)=\underset{z \in U}{\bigvee}\left[R_{\alpha}(x, z) \wedge S_{\alpha}(z, y)\right]=0
$$

Hence, $(S \circ R)_{\alpha}=S_{\alpha} \circ R_{\alpha}$. This completes the proof.
Theorem 2. Let R and S be two fuzzy functions. If R and S are injective, then $S \circ R$ is injective.

Proof. Let $\alpha \in \Phi(R)$ be fixed, and let $(S \circ R)_{\alpha}\left(x_{1}, z\right)=1$ and $(S \circ R)_{\alpha}\left(x_{2}, z\right)=1$. Then, $(S \circ R)_{\alpha}\left(x_{1}, z\right)=1$ implies $(S \circ R)\left(x_{1}, z\right) \geq \alpha$. So, by the definition of composition, $(S \circ R)\left(x_{1}, z\right) \geq \alpha$ means there exists $y \in U$ such that $R\left(x_{1}, y\right) \wedge S(y, z) \geq \alpha$.

Similarly, we see that $(S \circ R)_{\alpha}\left(x_{2}, z\right)=1$ means there exists $y^{\prime} \in U$ such that $R\left(x_{2}, y^{\prime}\right) \wedge S\left(y^{\prime}, z\right) \geq \alpha$. Hence, above inequalities entail $S(y, z) \geq \alpha$ and $S\left(y^{\prime}, z\right) \geq \alpha$. So $S_{\alpha}(y, z)=1$ and $S_{\alpha}\left(y^{\prime}, z\right)=1$. Since S is injective, we get $y=y^{\prime}$. On the other hand, from inequalities $R\left(x_{1}, y\right) \geq \alpha$ and $R\left(x_{2}, y^{\prime}\right) \geq \alpha$, we have $R\left(x_{1}, y\right) \geq \alpha$ and $R\left(x_{2}, y\right) \geq \alpha$. This implies $R_{\alpha}\left(x_{1}, y\right)=1$ and $R_{\alpha}\left(x_{2}, y\right)=1$. Hence, since R is injective, we have $x_{1}=x_{2}$. This completes the proof.

Theorem 3. Let R and S be two fuzzy functions. If R and S are surjective, then $S \circ R$ is surjective.

Proof. It is sufficient to show that $(S \circ R)_{\alpha}$ is surjective for all $\alpha \in \Phi(R)$. Now, for fixed $\alpha \in \Phi(R)$, let $z \in U$ be any given. Since S is surjective, S_{α} is surjective. Hence, for this $z \in U$, there exists $y \in U$ such that $S_{\alpha}(y, z)=1$. Also, for this $y \in U$, since R is surjective, R_{α} is surjective. This entails there exists $x \in U$ such that $R_{\alpha}(x, y)=1$.

On the other hand,

$$
\begin{aligned}
\left(S_{\alpha} \circ R_{\alpha}\right)(x, z) & =\bigvee_{y \in U}\left[R_{\alpha}(x, y) \wedge S_{\alpha}(y, z)\right] \\
& \geq R_{\alpha}(x, y) \wedge S_{\alpha}(y, z) \\
& =1
\end{aligned}
$$

Hence, $\left(S_{\alpha} \circ R_{\alpha}\right)(x, z)=1$. Therefore $S \circ R$ is surjective. This completes the proof.

Theorem 4. Let S and R be two fuzzy functions. If $S \circ R$ is injective, then R is injective.

Proof. Let $\alpha \in \Phi(R)$ be fixed. Then, we show that R_{α} is injective. Now, let $R_{\alpha}\left(x_{1}, y\right)=1=R_{\alpha}\left(x_{2}, y\right)$. Then, for this $y \in U$, since R_{α} is an ordinary function, there exists $z \in U$ such that $S_{\alpha}(y, z)=1$. This means that

$$
\begin{aligned}
(S \circ R)_{\alpha}\left(x_{1}, z\right) & =\left(S_{\alpha} \circ R_{\alpha}\right)\left(x_{1}, z\right) \\
& =\bigvee_{y \in U}\left[R_{\alpha}\left(x_{1}, y\right) \wedge S_{\alpha}(y, z)\right] \\
& \geq R_{\alpha}\left(x_{1}, y\right) \wedge S_{\alpha}(y, z) \\
& =1
\end{aligned}
$$

Thus $(S \circ R)_{\alpha}\left(x_{1}, z\right)=1$. Similarly, we get easily that $(S \circ R)_{\alpha}\left(x_{2}, z\right)$ $=1$. Hence, we have $(S \circ R)_{\alpha}\left(x_{1}, z\right)=1=(S \circ R)_{\alpha}\left(x_{2}, z\right)$. Since $(S \circ R)$ is injective, this entails $x_{1}=x_{2}$. Therefore, R is injective.

Theorem 5. Let R and S be two fuzzy functions. If $S \circ R$ is surjective, then S is surjective.

Proof. Let $z \in U$ be any given. Since $(S \circ R)_{\alpha}$ is surjective, there exists $x \in U$ such that $(S \circ R)_{\alpha}(x, z)=\left(S_{\alpha} \circ R_{\alpha}\right)(x, z)=1$. This means that there exists $y \in U$ such that $R_{\alpha}(x, y) \wedge S_{\alpha}(y, z)=1$. Hence, we have $R_{\alpha}(x, y)=1$ and $S_{\alpha}(y, z)=1$. Therefore, S_{α} is surjective. This completes the proof.

Theorem 6. Let R and S be two fuzzy functions. If $S \circ R$ is injective and R is surjective, then S is injective.

Proof. Let $\alpha \in \Phi(R)$ be fixed. Then, we show that S_{α} is injective. Now, let $S_{\alpha}\left(y_{1}, z\right)=1=S_{\alpha}\left(y_{2}, z\right)$. Since R_{α} is surjective, for these $y_{1}, y_{2} \in U$ there exist $x_{1}, x_{2} \in U$ such that $R_{\alpha}\left(x_{1}, y_{1}\right)=1=R_{\alpha}\left(x_{2}, y_{2}\right)$. So

$$
\begin{aligned}
(S \circ R)_{\alpha}\left(x_{1}, z\right) & =\left(S_{\alpha} \circ R_{\alpha}\right)\left(x_{1}, z\right) \\
& =\underset{z \in U}{ }\left[R_{\alpha}\left(x_{1}, y\right) \wedge S_{\alpha}(y, z)\right] \\
& \geq R_{\alpha}\left(x_{1}, y_{1}\right) \wedge S_{\alpha}\left(y_{1}, z\right) \\
& =1 .
\end{aligned}
$$

This implies $(S \circ R)_{\alpha}\left(x_{1}, z\right)=1$. Similarly, we see that $(S \circ R)_{\alpha}\left(x_{2}, z\right)$ $=1$. Since $(S \circ R)_{\alpha}$ is injective, we have $x_{1}=x_{2}=x$. Also, from $R_{\alpha}\left(x_{1}, y_{1}\right)=1=R_{\alpha}\left(x_{2}, y_{2}\right)$, we get $R_{\alpha}\left(x, y_{1}\right)=1=R_{\alpha}\left(x, y_{2}\right)$. This entails that $y_{1}=y_{2}$. Therefore, S_{α} is injective. This completes the proof.

Theorem 7. Let R and S be two fuzzy functions. If $S \circ R$ is surjective and S is injective, then R is surjective.

Proof. Let $\alpha \in \Phi(R)$ be fixed. Then, we show that R_{α} is surjective. Now, let $y \in U$ be any given. Since S_{α} is an ordinary function, there exists $z \in U$ such that $S_{\alpha}(y, z)=1$. By hypothesis, since $S \circ R$ is surjective, $(S \circ R)_{\alpha}$ is surjective. Hence, for this $z \in U$, there exists $x \in$ U such that $(S \circ R)_{\alpha}(x, z)=1$. This implies that there exists $y^{\prime} \in U$
such that $R_{\alpha}\left(x, y^{\prime}\right) \wedge S_{\alpha}\left(y^{\prime}, z\right)=1$. This means that $S_{\alpha}\left(y^{\prime}, z\right)=1$. Since S_{α} is injective, the equalities $S_{\alpha}(y, z)=1=S_{\alpha}\left(y^{\prime}, z\right)$ imply $y=y^{\prime}$. Hence, we have $R_{\alpha}(x, y)=R_{\alpha}\left(x, y^{\prime}\right)=1$. Therefore, R is surjective. This completes the proof.

Theorem 8. Let a fuzzy relation R be reflexive. If R is fuzzy difunctional and R_{α} is anti-symmetric for all $\alpha \in \Phi(R)$, then R is a fuzzy function.

Proof. Let $\alpha \in \Phi(R)$ be fixed. Then, we show that R_{α} is an ordinary function. Now, let $x \in U$ be any given. Since R is reflexive, $R(x, x)=1$, and so, $R(x, x)=1 \geq \alpha$. This implies that $R_{\alpha}(x, x)=1$ for all $\alpha \in \Phi(R)$. Next, let $R_{\alpha}\left(x, y_{1}\right)=1$ and $R_{\alpha}\left(x, y_{2}\right)=1$. Since R is reflexive, R_{α} is reflexive. Hence, we have $R_{\alpha}\left(y_{1}, y_{1}\right)=1$ and $R_{\alpha}\left(y_{2}, y_{2}\right)=1$. So $x R_{\alpha} \cap y_{1} R_{\alpha} \neq \varnothing$ and $x R_{\alpha} \cap y_{2} R_{\alpha} \neq \varnothing$. Since R is fuzzy difunctional, we get $x R_{\alpha}=y_{1} R_{\alpha}$ and $x R_{\alpha}=y_{2} R_{\alpha}$. This means that $y_{1} R_{\alpha}=y_{2} R_{\alpha}$, and so, $y_{1} \in y_{2} R_{\alpha}$ and $y_{2} \in y_{1} R_{\alpha}$, from which it follows that $\left(y_{1}, y_{2}\right) \in R_{\alpha}$ and $\left(y_{2}, y_{1}\right) \in R_{\alpha}$. Since R_{α} is anti-symmetric, we have $y_{1}=y_{2}$. Therefore, R_{α} is an ordinary function. This completes the proof.

Theorem 9. If R is a fuzzy function, then R is fuzzy difunctional.
Proof. Let $\alpha \in \Phi(R)$ be fixed. Suppose that $x R_{\alpha} \cap y R_{\alpha} \neq \varnothing$ and x, y $\in U$. Let $z \in x R_{\alpha}$. Then $R_{\alpha}(x, z)=1 . \quad x R_{\alpha} \cap y R_{\alpha} \neq \varnothing$ implies there exists $z^{\prime} \in U$ such that $z^{\prime} \in x R_{\alpha} \cap y R_{\alpha}$. This means that $R_{\alpha}\left(x, z^{\prime}\right)=1$ and $R_{\alpha}\left(y, z^{\prime}\right)=1$. Since R is a fuzzy function, R_{α} is an ordinary function. Thus, we have $z=z^{\prime}$. This means that $R_{\alpha}(y, z)=1$, and so, $z \in y R_{\alpha}$. Hence, we have $x R_{\alpha} \subseteq y R_{\alpha}$. Similarly, if $z \in y R_{\alpha}$, then $R_{\alpha}(y, z)=1$. Since $x R_{\alpha} \cap y R_{\alpha} \neq \varnothing$, there exists $z^{\prime} \in U$ such that $z^{\prime} \in x R_{\alpha} \cap y R_{\alpha}$, which implies that $R_{\alpha}\left(x, z^{\prime}\right)=1$ and $R_{\alpha}\left(y, z^{\prime}\right)=1$. Combining $R_{\alpha}(y, z)=1$ and $R_{\alpha}\left(y, z^{\prime}\right)=1$, we get $z=z^{\prime}$, and so, $R_{\alpha}(x, z)=1$ and $R_{\alpha}\left(x, z^{\prime}\right)=1$. This leads $z \in x R_{\alpha}$. Hence, we have $y R_{\alpha} \subseteq x R_{\alpha}$. Therefore, $x R_{\alpha}=y R_{\alpha}$. This complete the proof.

Theorem 10. Let a fuzzy relation R be reflexive and let R_{α} be difunctional and anti-symmetric for all $\alpha \in \Phi(R)$. Then R is fuzzy difunctional if and only if R is a fuzzy function.

Proof. It follows from Theorems 8 and 9.

References

[1] D. Dubois and H. Prade, Fuzzy Set and System. Theory and Applications, Academic Press, New York, 1980.
[2] W. C. Nemitz, Fuzzy relations and fuzzy functions, Fuzzy Sets and Systems 19 (1986), 177-191.
[3] H. Ounalli and A. Jaoua, On fuzzy difunctional relations, Inform. Sci. 95 (1996), 219232.
[4] F. I. Sidky, t-fuzzy mapping, Fuzzy Sets and Systems 76 (1995), 387-393.
[5] L. A. Zadeh, Fuzzy Sets, Inform and Control 8 (1995), 338-353.

Department of Applied Mathematics
Kongju National University
Shinkwan-Dong, Kongju-City
ChungNam, South Korea
e-mail: yosung@kongju.ac.kr

[^0]: 2000 Mathematics Subject Classification: 93C04, 90B02.
 Keywords and phrases: surjective fuzzy mappings, injective fuzzy mappings, bijective fuzzy mappings.

