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Abstract

For a commutative ring (with identity) R and an R-module M, we
introduce the notions of product and dual product of submodules of M
and obtain some related results.

1. Introduction

Throughout this paper R denotes a commutative ring with identity

and for a submodule N of an R-module M, ( )Nk
RAnn  denotes

( )( ) .Ann k
R N  Also Z  denotes the ring of integers.

Now let M be an R-module. In this paper, the concepts of product and
coproduct of submodules of M are introduced and they are used to define
nilpotent, conilpotent, naturally prime, and naturally coprime

submodules. It is shown, among other results, that (see (2.1) (b), 3.9, and
3.10) every naturally prime (resp. naturally coprime) submodule of M is
prime (resp. coprime). In this case, we show that the converse is also true
when M is a multiplication (resp. comultiplication) module. Also it is
proved that (see 3.14) if M is a Noetherian comultiplication R-module,
then M has only a finite number of minimal submodules. Finally we
obtain a characterization (see (2.1) (f), 3.15, and 3.16) for faithful
multiplication domains (resp. comultiplication codomains).
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2. Auxiliary Results

Definition 2.1. (a) An R-module M is said to be a multiplication

module if for every submodule N of M there exists an ideal I of R such

that .IMN =

(b) An R-module M is said to be a comultiplication module (see [2]) if

for every submodule N of M there exists an ideal I of R such that =N

( ).:0 IM

(c) A proper submodule N of an R-module M is said to be prime if for

any Rr ∈  and any Mm ∈  with ,Nrm ∈  we have Nm ∈  or ∈r

( ).: MN R  This implies that ( )MN R:  is a prime ideal of R.

(d) A non-zero submodule N of an R-module M is said to be second

(see [5]) if for each Ra ∈  the homothety NN
a
→  is either surjective or

zero. This implies that ( )NRAnn  is a prime ideal of R.

(e) Let M be an R-module. The dual notion of ( ),MZ  the set of zero

divisors of M, is denoted by ( )MW  and defined by

( ) { }.surjectivenotishomothetythe: MMRaMW a→∈=

(f) An R-module M is said to be a domain (resp. codomain) (see [4]) if

( ) ( )( ).0resp.0 == MWMZd

(g) Let N be a non-zero (resp. proper) submodule of an R-module M.

Then N is said to be large (resp. small) submodule of M (see [1]) if for

every non-zero (resp. proper) submodule L of M, 0≠LN ∩  (resp.

).MNL ≠+

Example 2.2 (see [2]). Let p be a prime number. Then ( )∞= pM Z  is

a comultiplication Z -module but Z  (as a Z -module) is not a
comultiplication module.

Example 2.3. Let p be a prime number. Then the Z -module ( )∞pZ
is a codomain.
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3. Main Results

Definition 3.1. Let M be an R-module and let T be the set of all

submodules of M. Consider the map TTT →×φ :  defined by

( ) ( ) ( ) .::, MMKMNKN RR6

Then ( )KN ,φ  is denoted by NK and called the product of N and K.

Definition 3.2. Let M be an R-module and let T be the set of all

submodules of M. Consider the map TTT →×φ :  defined by

( ) ( ) ( )( ).AnnAnn:0, KNKN RRM6

Then ( )KN ,:φ  is denoted by ( )NKC  and called the coproduct of N and

K.

Example 3.3. For submodules Z2  and Z3  of Z  (as a Z -module), we

have ( ) ( ) ,632 ZZZ =  and ( ) ( )( ) .32 ZZZ =C

Definition 3.4. Let M be an R-module. Then a submodule N of M is

said to be nilpotent (resp. conilpotent) if there exists a positive integer k

such that 0=kN  ( ( ) ),.resp MNC k =  where kN  ( ( ))kNCresp.  means

the product (resp. coproduct) of N, k times.

Example 3.5. Let p be a prime number and consider ( )∞pZ  as a

Z -module. Then the submodule ( )ZZ += pN 1  of ( )∞pZ  is nilpotent

but it is not conilpotent. Also the submodule Z2  of Z  is conilpotent but it

is not nilpotent.

Theorem 3.6. Let M be an R-module and let N, H and K be

submodules of M. Then we have the following:

(a) ( )KNHHKHN +⊆+  and if M is a multiplication R-module,

then the equality holds.

(b) ( )( ) ( ) ( )HKCHNCKNHC ∩∩ ⊆  and if M is a comultiplication

R-module, then the equality holds.
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(c) If M is a multiplication module and N is a nilpotent submodule of

M, then N is a small submodule of M.

(d) If M is a comultiplication module and N is a conilpotent

submodule of M, then N is a large submodule of M.

(e) If R is an Artinian ring, then ( )MRad  ( )( )MSocresp.  is nilpotent

(resp. conilpotent). (Here ( )MRad  denotes the intersection of all maximal

submodules of M.)

Proof. (a) It is clear that ( ).KNHHN +⊆  This in turn implies that

( ).KNHHKHN +⊆+  If M is a multiplication module, then we have

( ) ( ) ( )( )MMKMMNMHHKHN RRR ::: +=+

 ( ) ( )KNMH R += :

 ( ).KNH +=

(b) It is clear that ( )( ) ( ).HNCKNHC ⊆∩  This in turn implies that

( )( ) ( ) ( ).HKCHNCKNHC ∩∩ ⊆

If M is a comultiplication module, then

( ) ( ) ( ) ( ) ( )( )( )KNHHKCHNC RRRM AnnAnnAnn:0 +=∩

 ( ) ( )( )KNH RRM ∩AnnAnn:0=

 ( )( ).KNHC ∩=

(c) Let N be a nilpotent submodule of multiplication R-module M and

let ,MKN =+  where K is a submodule of M. Since N is nilpotent, there

exists a positive integer n such that .0=nN  Now we have =+ 2NKN

NM  by part (a). Since M is a multiplication module, .2 NNKN =+  So

.2 MKN =+  This in turn implies that .MKN n =+  Thus KM =  as

desired.

(d) Let N be a conilpotent submodule of comultiplication R-module M

and let ,0=KN ∩  where K is a submodule of M. Since N is conilpotent
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there exists a positive integer n such that ( ) .MNC n =  Now we have

( ) ( ) ( )02 NCNCKNC =∩  by part (b). Since M is a comultiplication

module, ( ) ( ) .2 NNCKNC =∩  So ( ) .02 =KNC ∩  This in turn implies

that ( ) .0=KNC n ∩  Thus 0=K  as desired.

(e) Since R is an Artinian ring, there exists a positive integer n such

that ( )( ) .0=nRJ  Further we have ( ) ( )MRJM =Rad  by [1, 15.18]. Thus

( )( ) ( )( ) ( )( ) ( )( ) .0::RadRad ==== MRJMMMRJMMMM nn
R

n
R

n

To see the second assertion, we have ( ) ( )( )RJM MR :0Soc =  by

[1, 15.17]. Hence

( ( )( ) ) ( ( )( ))MMC n
RM

n SocAnn:0Soc =

( ( )( ))RJM
n
RM :0Ann:0=

 ( ( )( ) ) .:0 MRJ n
M ==

So the proof is completed.

Lemma 3.7. Let M be an R-module. Then the following statements are

equivalent:

(a) 0 is the only nilpotent submodule of M.

(b) For all submodules N, K of M with ,0=NK  we have .0=KN ∩

Proof. (a) ⇒ (b) If N and K are submodules of M with ,0=NK  then

( ) ( ) ( ) ( ) .0::: 22 ==⊆= NKMMKMNMMKNKN RRR∩∩

Thus ( ) .02 =KN ∩  Hence by (a), we have .0=KN ∩

(b) ⇒ (a) This is clear.

Lemma 3.8. Let M be an R-module. Then the following statements are

equivalent:

(a) M is the only conilpotent submodule of M.

(b) For all submodules N, K of M with ( ) ,MNKC =  we have KN +

.M=
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Proof. (a) ⇒ (b) If N and K are submodules of M with ( ) ,MNKC =

then

( ) ( ( ))KNKNC RM +=+ 22 Ann:0

( ) ( )( )KN RRM AnnAnn:0⊇

( ) .MNKC ==

Thus ( ) .2 MKNC =+  Hence by (a), we have .MKN =+

(b) ⇒ (a) This is clear.

Definition 3.9. Let M be an R-module. Then a proper (resp. non-
zero) submodule H of M is said to be naturally prime (resp. naturally

coprime), if for submodules N and K of M, the relation HNK ⊆

( )( )NKCH ⊆.resp  implies that HN ⊆  ( )NH ⊆resp.  or HK ⊆

( ).resp. KH ⊆

Theorem 3.10. Let M be an R-module. Then we have the following:

(a) If P is a naturally prime submodule of M, then P is a prime

submodule of M. Furthermore, if M is a multiplication R-module, then the

converse is true.

(b) If S is a naturally coprime submodule of M, then S is a second

submodule of M. Furthermore, if M is a comultiplication R-module, then

the converse is true.

Proof. (a) Suppose that ,Prm∈  where ,Rr∈  .Mm∈  Then .PrRm ⊆

Hence ( ) .: PrMMRm R ⊆  Thus ( ) ( ) .:: PMMrMMRm RR ⊆  This

implies that PRm ⊆  or PrM ⊆  because P is naturally prime.

Therefore, Pm∈  or ( )MPr R:∈  as desired. Now assume that M is a

multiplication module and P is a prime submodule of M. Suppose that

,PNK ⊆  where N and K are submodules of M and .PK {  Hence there

exists Kx ∈  such that .Px ∉  Now ( ) PRxMN R ⊆:  implies that

( ) ( ) .:: MMPMMN RR ⊆  Thus PN ⊆  as desired.

(b) Suppose that S is a naturally coprime submodule of M and .Rr ∈
Then
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( )( )rSrS RM Ann:0⊆

( ) ( )( )rSr RMM Ann::0=

( )( ) ( )( ).Ann:0Ann:0 rSr RMM=

This implies that ( )rS M:0⊆  or .rSS ⊆  Thus 0=rS  or SrS =  as

desired. Now assume that M is a comultiplication module and S is a
second submodule of M. Suppose that ( ),NKCS ⊆  where N and K are

submodules of M and .KS {  These follow that ( ( )) NSKR ⊆Ann  and

( ( )) .0Ann ≠SKR  Now since S is second, ( ( )) .Ann SSKR =  Therefore,

NS ⊆  as desired.

Corollary 3.11. Let M be an R-module. If P is naturally prime (resp.
naturally coprime) submodule of M, then ( )MP R:  ( )( )PAnnresp R.  is a

prime ideal of R.

Proof. Use 3.10 (a) and 2.1 (c) (resp. 3.10 (b) and 2.1 (d)).

Example 3.12. Consider pM ZZ ⊕=  as a Z -module, where p is a

prime number. Then ppN ZZ ⊕=:  is a maximal submodule of M. Hence

N is a prime submodule of M. But N is not naturally prime submodule of
M because

( ) ( ) ,00 222
pp ppp ZZZZZZZ ⊕⊆⊕=⊕=⊕

whereas .0 pp ZZ{Z ⊕⊕

Example 3.13. Let p be a prime number and consider ( )∞= pM Z

Zp⊕  as a Z -module. For a submodule ( )ZZ += pN 1  of ( ),∞pZ  the

submodule 0⊕N  of M is a minimal. Hence 0⊕N  is a second

submodule of M by [5, 1.6]. But 0⊕N  is not naturally coprime

submodule of M because

( ) ( ( ) ) (( ) ),00:00 2ZZZ ZZ pCppN
pp

⊕==⊕⊆⊕
⊕

∞
∞

while �Z{ .00 pN ⊕⊕

Theorem 3.14. Let M be a Noetherian comultiplication R-module.
Then M has only a finite number of minimal submodules.
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Proof. Consider the set of all submodules ∑ =
r
i iK

1
,  where each iK  is

a minimal submodule of M. This set is non-empty by [3, 3.2], so it has a

maximal element, say .
1∑ =

n
i iK  Hence for any minimal submodule N, we

have .
11 ∑∑ ==

=+
n
i i

n
i i KKN  Now by 3.10 (b), N is naturally coprime

because it is a second module by [5, 1.6]. This in turn implies that

iKN ⊆  for some i. Since iK  is minimal, iKN =  and the proof is

completed.

Theorem 3.15. Let M be a faithful multiplication R-module. Then the

following are equivalent:

(a) M is a domain.

(b) 0=KN  implies that 0=N  or ,0=K  where N and K are

submodules of M.

Proof. (a) ⇒ (b) Assume that .0=NK  If ,0=K  then we are done.

If ,0≠K  then there exists ( ) .:0 MMKKm R=∈≠  Now since M is a

domain ( ) 0: =mMN R  implies that ( ) .0: =MN R  Thus 0=N  as desired.

(b) ⇒ (a) Suppose that ( ).0 MZdr ∈≠  Then there exists Mm ∈≠0

such that .0=rm  This in turn implies that ( )( ).0 rMRmRrm ==  Hence

by part (b), 0=Rm  or .0=rM  Since M is faithful, .0=m  This

contradiction shows that ( ) 0=MZd  and the proof is completed.

Theorem 3.16. Let M be a faithful comultiplication R-module. Then

the following are equivalent:

(a) M is a codomain.

(b) ( ) MNKC =  implies that MN =  or ,MK =  where N and K are

submodules of M.

Proof. (a) ⇒ (b) Assume that ( ) .MNKC =  Hence

( ) ( )( ) ( )( ),Ann:AnnAnn:0 KNKNM RMRRM ==
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so that ( ( )) .Ann NMKR ⊆  If ( ( )) ,Ann MMKR =  then MN =  and we

are done. If ( ( )) ,Ann MMKR ≠  then ( ) ( ) .0Ann =⊆ MWKR  Hence

MK =  as desired.

(b) ⇒ (a) Assume that ( ).0 MWr ∈≠  So .MrM ≠  Then we have

( )( )rMrM RM Ann:0=

( ) ( )( )rMr RMM Ann::0=

( )( ) ( )( ).Ann:0Ann:0 rMr RMRM=

Now by part (b), MrM =  or ( ) .:0 MrM =  Since M is faithful, it follows

that MrM =  which is a contradiction. Hence ( ) 0=MW  and the proof

is completed.
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