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Abstract

A structure R = (R, <,...) equipped with a dense linear ordering <

without endpoints is said to be o-minimal (weakly o-minimal) if every
definable subset of R is a finite union of intervals (convex sets),

respectively. A weakly o-minimal structure R = (R, <, +, ...) expanding
an ordered group (R, <, +) is said to be non-valuational if for every cut
(C, D) definable in R we have that inf{y-x:xeC, ye D}=0. L.
van den Dries proved that every o-minimal expansion of a real closed

field admits a C” cell decomposition for each positive integer r. In this

paper, we prove the non-valuational weakly o-minimal version of it.
1. Introduction

Weak o-minimality was introduced by Dickmann (see [3]). He showed
that every real closed ring is weakly o-minimal in the language L =
{<, +, - - 0,1, Div}, where the symbol “Div” is interpreted as x Divy
< Jz(y = xz). After that several fundamental results of weakly

o-minimality were proved by Macpherson et al. in [6].

2000 Mathematics Subject Classification: 03C64, 14P10, 14P20.

Keywords and phrases: weakly o-minimal, C" strong cells, C” strong cell decompositions,
real closed fields.
© 2007 Pushpa Publishing House



418 HIROSHI TANAKA and TOMOHIRO KAWAKAMI

Non-valuational weakly o-minimal expansions of ordered groups and
ordered fields were studied by Macpherson et al. in [6], by Wencel in [7],
and by Dolich in [4]. Now, it is known that the model theory of weakly
o-minimal structures does not develop as smoothly as that of o-minimal
structures, see [6]. However non-valuational weakly o-minimal
expansions of ordered groups are very similar to o-minimal structures. In
particular, Wencel showed that every non-valuational weakly o-minimal
expansion of an ordered group admits an o-minimal style cell
decomposition (say strong cell decomposition) in [7].

On the other hand, differentiability and analyticity properties of
definable functions for weakly o-minimal expansions of real closed fields
are scarcely studied (see [6, Open problem 3]). In this paper, we study
differentiability properties of definable functions for non-valuational
weakly o-minimal expansions of real closed fields. Consequently, we
prove that each definable function in one variable for non-valuational
weakly o-minimal expansions of real closed fields is piecewise
differentiable (Proposition 3.1). Moreover, we prove that every non-
valuational weakly o-minimal expansion of a real closed field admits a

C” strong cell decomposition for each positive integer r (Theorem 2.10).
Throughout this paper, “definable” means “definable possibly with
parameters” and we assume that a structure R = (R, <, ...) is a dense

linear ordering < without endpoints. The set of positive integers
is denoted by N. The reader is assumed to be familiar with fundamental

results of o-minimality; see, for example, [5] or [2].
2. Preliminaries and the Main Theorem

In this section, we introduce some definitions and facts for weakly
o-minimal structures and state our main theorem.

A subset A of R is said to be convex if a,be A and ce R with
a<c<b, then ¢c e A. Moreoverif A =@ orinfA, supA e RU {-, +o},

then A is called an interval in R. We say that R is o-minimal (weakly o-
minimal) if every definable subset of R is a finite union of intervals

(convex sets), respectively.
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For any subsets C, D of R, we write C < D if ¢ < d whenever c € C
and d € D. A pair (C, D) of non-empty subsets of R is called a cut in R

if C <D, CUD =R and D has no lowest element. A cut (C, D) is said
to be definable in R if the sets C, D are definable in R. The set of all
cuts definable in R will be denoted by R. Note that we have R = R if
R is o-minimal. We define a linear ordering on R by (Cy, D;)<(Cy, D)
if and only if C; CCy. Then we may treat (R, <) as a substructure of
(R, <) by identifying an element a e R with the definable cut
(-, al, (@, +)). We equip R (R) with the interval topology (the open
intervals form a base), and each product R" (R)") with the
corresponding product topology, respectively.

Recall the notion of definable functions from [7]. Let ne€ N and
A c R" definable. A function f: A — R is said to be definable if the
set T.(f):=1{x, y)e R"™ :x e A, y < f(x)} is definable. A function
f:A— RU |-, +0} is said to be definable if f is a definable function

from Ato R, f(x)= - forall x € A, or f(x) = +e forall x € A.

Lemma 2.1. Let neN and AcR" definable. Suppose that

f:A— R is a function. Then the following conditions are equivalent.
(1) The function f is definable.
(2) The graph T(f) := {(x, y) € R™ : x € A, f(x) = y} is definable.

Proof. (1) = (2) Since A and f are definable, there exist L(R)-
formulas ¢@(x) and wy(x, y) such that A = (R) and T.(f) = y(R). Let
v'(x, ¥) = o(x) A =y(x, y) A Vz(z < y = y(x, 2)). Then we obtain I'(f) =
y'(R), as desired.

(2) = (1) Since I'(f) is definable, there exists some L(R)-formula
0(x, y) such that T'(f) = 6(R). Let 0'(x, y) = o(x) A Iz(y < z A O(x, 2)).
Then we obtain T'_(f) = &'(R). Thus, the function fis definable. 0



420 HIROSHI TANAKA and TOMOHIRO KAWAKAMI

Let ne N and A ¢ R" an infinite definable set. The dimension of A,

denoted by dim(A), is the largest r for which there exists some projection
n: R" — R" such that n(A) contains an open box, where an open box in

R" is the Cartesian product (a;, b;)x---x(a,, b,) of open intervals.

Non-empty finite sets are said to have dimension 0. The empty set is said

to have dimension —o. We will use the convention that if d € N U {0, —oo},
then d > - and d + (—©) = 0 + d = —o.
Lemma 2.2 [8, Fact 1.6]. Let R = (R, <, ...) be a weakly o-minimal

structure. Suppose that m,ne N and A, Bc R™, C c R" are definable

sets.

(1) If A c B, then dim(A) < dim(B).

@) If kel,...,m} and n: R™ — R" is a projection, then
dim(A) - (m - k) < dim(n(A)) < dim(A).
®3)If f : R™ — R™ is a permutation of variables, then
dim(f(A)) = dim(A).
(4) dim(A x C) = dim(A) + dim(C).
(5) dim(A U B) = max{dim(A), dim(B)}.

Let R = (R, <, +, ...) be a weakly o-minimal expansion of an ordered
group (R, <, +). By [6, Theorem 5.1), the structure R 1is divisible and
abelian. A cut (C, D) is said to be non-valuational if inf{y —x : x € C,
y € D} = 0. We say that the structure R is non-valuational if all cuts

definable in R are non-valuational.

Let R =(R,<,+,+...) be a non-valuational weakly o-minimal
expansion of an ordered field (R, <, +, ). By [6, Theorem 5.3], the
structure R 1is real closed. For any subsets A, B of R, we define A + B :=
{x+y:xeA yeB}, A-B={x-y:xe€A,yeB}, A-B:={x-y:
xe A, ye B} and -A :={-x:x e A}. Note that C - D = (-, 0) and
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D - C = (0, +) for any element (C, D) of R. Also notice that for any
positive element (C, D) of R, we have inf{x_1 cy:x e CN(0, +o),
yeD}=1, and for any negative element (C,D) of R, we have
infix -y :xeC,ye DN(-»,0)} =1. For any elements (C;, D),
(Cy, Dy) of R, we define
(C1, Dy) +(Cy, Dy) = (R\(Dy + Dy), Dy + D),
(Ci, Dy) - (Cq, Dy)
<R\(D1 . D2), Dl . D2> if 0 e Cl and 0 e Cz
_ J{el(~((=Cy) - Dg)), R\cl(~((-Cy) - Dg))) if 0 e Dy and 0 € Cy
T (D - (<o), R\CI((Dy - (-Cy)))) if 0 e C; and 0 € D,
(R\int(C; - Cy), int(C; - Cy)) if 0 € D; and 0 € D,
where for each n € N the topological closure in R"™ of a set A ¢ R" is
denoted by cl(A), and its topological interior in R" by int(A). Then the
structure (R, <, +, -) is an ordered field and the structure (R, <, +, -) is a
subfield of it.
Recall the notion of the strong monotonicity from [7].
Definition 2.3. We say that a weakly o-minimal structure R =
(R, <, ...) has the strong monotonicity if for each definable set I c R and

each definable function f: I — R, there exists a partition of I into a
finite set X and definable convex open sets I3, ..., I} such that for each

i €{l, ..., k}, one of the following conditions holds.

(1) f11; is constant.

(2) f1I; is strictly increasing and for any a, b € I; with a <b and
any ¢, d € R with f(a) < ¢ < d < f(b), there exists some x € (a, b) such

that ¢ < f(x) < d; in particular f|I; is continuous.

(3) f11; is strictly decreasing and for any «a, b € I; with a <b and
any ¢, d € R with f(a) > ¢ > d > f(b), there exists some x € (a, b) such

that ¢ > f(x) > d; in particular f|I; is continuous.
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Theorem 2.4 [7, Lemma 1.4]. Suppose that R = (R, <, +,...) is a
weakly o-minimal expansion of an ordered group (R, <,+). Then the

following conditions are equivalent.

(1) R is non-valuational.
(2) R has the strong monotonicity.
Let R =(R,<, + +...) be a non-valuational weakly o-minimal

expansion of a real closed field (R, <, +, -). Let m, n € N. Suppose that
U c R" is a definable open set and f; : U — R is definable for each
iefl,...,m). Let f:=(fi, ..., f) : U > (RY". Wecallfa C' map if fis
continuous and for each ie{l,...,m} and each je{l,...,n}, the
function 0f;/dx; is defined as a R -valued function on U and is
continuous. For each integer r > 1, the map fis called a C" map if fis a
C' map and of;/ox; is a C"™! map for each ie{l,..., m} and each
jef{l, ..., n}. Suppose that A c R" is definable (not necessarily open)
and g; : A —> R is definable for each i e {1, ..., m}. For each positive
integer r, we call g :=(gq, ..., 8,) @ C" map if there exist a definable
open set U c R"™ containing A and definable C” functions
Gy,...,G,, :U — R suchthat G;|A = g; foreach i € {1, ..., m}.

Recall the notion of strong cells from [7].

Definition 2.5. Suppose that R = (R, <, ...) is a weakly o-minimal
structure. For each n € N, we inductively define strong cells in R" and
their completions in (R)".

(1) A one-element subset of R is called a strong (0)-cell in R. If

C C R is a strong (0) -cell, then its completion C := C.

(2) A non-empty definable convex open subset of R is called a strong
(I)-cell in R. If Cc R is a strong (1)-cell, then its completion

C = {x € R : there exist a, b € C such that a < x < b}.
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Assume that n e N, i, ..., 1, € {0, 1}, and strong (i, ..., i, ) -cells in
R"™ and their completions in (R)" are already defined.

(3) Let C c R" be a strong (i, ..., i,)-cellin R" and f: C — R is

a definable continuous function which has a continuous extension

f:C — R. Then the graph I'(f) is called a strong (i1, ..vs By, 0) -cell in

R™1 and its completion T(f) := T(f).

(4) Let C c R" be a strong (i, ..., i,)-cell in R" and g,h:C —
R U {~o, +o0} are definable continuous functions which have continuous
extensions 2,k : C — R U {0, +o} such that g(x)< h(x) for all
x € C. Then the set

(g, h)e = {{a, b) e R"™ 1 a e C, g(a) < b < h(a)}

is called a strong (i, ..., i,, 1) -cell in R™1! The completion of (g, h)c is

defined as
(g, h)o = {{a, b) e R)""! 1 a e C, g(a) < b < h(a)}.

(5) Let C be a subset of R". The set C is called a strong cell in R" if
there exist i, ..., i, € {0, 1} such that C is a strong (i, ..., i,)-cell in
R". If additionally r € N, the structure R is a non-valuational weakly
o-minimal expansion of a real closed field and f, g, A of (3), (4) are C”
functions, then the set Cis called a C” strong cell in R".

Let R = (R, <, ...) be a weakly o-minimal structure, n € N and C be

a strong cell of R". A definable function f : C — R is said to be strongly
continuous if f has a continuous extension f : C — R. A function which
is identically equal to —0 or +w, and whose domain is a strong cell is also
said to be strongly continuous.

Definition 2.6. Let R = (R, <, ...) be a weakly o-minimal structure.

For each n € N, we inductively define a strong cell decomposition (or a
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decomposition into strong cells in R") of a non-empty definable set
A c R".

(1) If A c R is a non-empty definable set and D = {C}, ..., C,} is a

partition of A into strong cells in R, then D is called a decomposition of A
into strong cells in R.

(2) Suppose that A C R"! is a non-empty definable set and D =
{Cy, ..., C)} is a partition of A into strong cells in R"™. Then D is
called a decomposition of A into strong cells in R™*! if {n(Cy), ..., ©(Cy)}
is a decomposition of m(A) into strong cells in R", where
n: R™1 — R" is the projection on the first n coordinates.

Let R =(R,<, + +...) be a non-valuational weakly o-minimal
expansion of a real closed field (R, <, +,-) and n,re€ N. Then in a
similar way to the above definition, we define a C” strong cell
decomposition of a non-empty definable set A ¢ R™.

Definition 2.7. Let R = (R, <, ...) be a weakly o-minimal structure
and n € N. Suppose that A, B ¢ R" are definable sets, A # @ and D

is a decomposition of A into strong cells in R". We say that D partitions
B if for each strong cell C € D, we have either C ¢ B or C(1 B = &.

Definition 2.8. A weakly o-minimal structure R = (R, <, ...) is said
to have the strong cell decomposition if for any k, ne€ N and any
definable sets Aj, ..., A, c R", there exists a decomposition of R" into
strong cells partitioning each of the sets 4, ..., A4,.

Let R =(R,<, + +...) be a non-valuational weakly o-minimal
expansion of a real closed field (R, <, +, -) and r € N. Then in a similar
way to the above definition, we define the C” strong cell decomposition.

Theorem 2.9 [7, Theorem 2.14]. Let R = (R, <, +,...) be a non-

valuational weakly o-minimal expansion of an ordered group (R, <, +)

and n € N.
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(1) For any ke N and any definable sets A, ..., A, = R", there
exists a decomposition of R" into strong cells partitioning each of the sets

A, .., Ay

(2) For any definable set A c R"™ and any definable function
f: A — R, there exists a decomposition of A into strong cells such that
the restriction f|C : C — R is strongly continuous for each C c A of the

decomposition.

The following is the main theorem of this paper.

Theorem 2.10 (C” strong cell decompositions). Let R = (R, <, +,+,...)

be a non-valuational weakly o-minimal expansion of a real closed field
(R, <, +,-)and n, r € N.

(1) For any ke N and any definable sets A, ..., A, — R", there
exists a decomposition of R"™ into C" strong cells partitioning each of the

sets Aq, ..., Ag.

(2) For any definable set A c R™ and any definable function
f: A — R, there exists a decomposition of A into C” strong cells such

that the restriction f|C :C — R is C" and strongly continuous for each

C c A of the decomposition.

The o-minimal version of our main theorem was proved by L. van den
Dries [5, pp. 115-116].

3. C" Strong Cell Decompositions

Throughout this section, we assume that R = (R, <, +, -, ...) is a non-
valuational weakly o-minimal expansion of a real closed field (R, <, +, ).

In this section, we prove our main theorem.
We first prove the following proposition.

Proposition 3.1. Let I be a non-empty definable subset of R. Let
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f:I > R be a definable function. Then f is differentiable at all but
finitely many points of 1.

This requires several lemmas.

Lemma 3.2 [7, Lemma 1.2]. Let I ¢ R be a non-empty definable
convex open set and f: I — R be a definable function. Then the limits

lim, ,qup 7-0 f(x) and limy ¢ 740 f(x) exist in R U {-oo, +oo}.

Let I be a non-empty definable open subset of Rand f: I — R be a

definable function. For each x € I, we define the limits

flx+1) = f(x)
. ;

)= I,
) e Tim L& 1) = f(x)
o= (28
() e Tig O+ 1) = f(x)
fl(x) = hm%.

t—0
Lemma 3.3. Let I — R be a non-empty definable convex open set and
f: I — R be a definable function. Then, for each x € I the limits f{(x)

and f’(x) exist in R U {—oo, +oo}.

Proof. Suppose that x e I. We define g(t) =t *(f(x + t) - f(x)) on
an open interval (0,¢). Then by Lemma 3.2, the limit f/(x)=
lim, , .o g(t) exists in R U {~o, +o}. Similarly, the limit f’(x) exists in
R U {~o0, +o0}. O

Let I be a non-empty definable convex open subset of R. Let
f:I — R be a definable continuous function and f;(x) > 0 for each

x € I. If R is o-minimal, then the function f is strictly increasing on I,
see [5, p. 109]. However in the weakly o-minimal setting, the function f is

not necessarily strictly increasing on I.

Example 3.4. Let R,, be the real closure of Q. We consider
Ry = (Ralg’ <, +, -, P), where the unary predicate symbol P is interpreted
by the convex set (-m, 1) Ry,. By [1], the structure R; is weakly
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o-minimal. Suppose that a definable function f : (0, 4) - Ry, is defined
by f(x)=x for all xe (0, 1)\ Ry, and f(x)=x-1 for all xe
(n, 4) N Ryyg. Then fi(x) > 0 for each x € (0, 4) and f is continuous on
the open interval (0, 4). However f is not strictly increasing on the open

interval (0, 4).

Let I = R be a closed bounded interval. Let f:I — R be a definable
strongly continuous function. If R is o-minimal, then the function f takes
a maximum and a minimum value on I, see [5, p. 46]. However in the
weakly o-minimal setting, the function f does not necessarily attain a

maximum and a minimum value on I.

Example 3.5. We consider R; = (R, <, +, -, P) of Example 3.4.

lg»
Suppose that a definable function f : [0, 4] — Ealg is defined by f(x) = x
for all x € [0, 1) N Ryje and f(x) = —x + 2n for all x € (n, 4] N Ryje. Then
f is strongly continuous on the closed interval [0, 4]. However f does not

have a maximum value on the closed interval [0, 4].

Examples 3.4 and 3.5 also show that the Mean Value Theorem does
not hold in general in the weakly o-minimal setting.

Lemma 3.6. Let I be a non-empty definable convex open subset of R.
Let f: I — R be a definable strongly continuous function. Suppose that
either f/(x)> 0 foreach x € I or f/(x)> 0 each x € I. Then f is strictly

increasing on I. Similarly, if either f{(x) < 0 foreach x € I or f (x)<0

for each x € I, then fis strictly decreasing on I.

Proof. We will show that if f{(x) > 0 for each x € I, then fis strictly

increasing on I. The other cases are similar. Suppose for a contradiction
that there exist some a, b€ I with a < b such that f(a)> f(b). Since

fi(x) > 0 for each x € I, by Theorem 2.4, there exists a partition of I into
a finite set X and definable convex open sets Iy, ..., I} such that for each
i e{l,..., k}, the restriction f|I; is strictly increasing. Because f is

continuous, we may assume that X = &. We may also assume that
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ael; and bely. Now hmx—)supllfo f(x) > f(a) 2 f(b) > 1imx—>inf12+0 f(x)

This contradicts strong continuity of f. O

Lemma 3.7. Let I be a non-empty definable convex open subset of R.

Let f: I — R be a definable strongly continuous function. Suppose that
the functions f, and f’ are R -valued and continuous on I. Then f is

differentiable at each point of Iand f': I — R is continuous.

Proof. It suffices to prove that f/(a)= f'(a) for all a € I. Suppose
for a contradiction that there exists some a € I such that f/(a) # f'(a).
Without loss of generality, we may assume f/(a)> f’(a). Then there

exist ¢ € R and an open subinterval o of I around a such that f](x) >

¢ > f'(x) for each x e J. Thus the definable function g : J — R defined
by g(x):= f(x) - cx satisfies g\(x) >0 and g’ (x)< 0 for each x € .
Also, the function g is strongly continuous on J. Hence, by Lemma 3.6,
the function g is both strictly increasing and strictly decreasing on </, a
contradiction. ]

Lemma 3.8. Let I be a non-empty definable convex open subset of R.
Let f: 1 — R be a definable strongly continuous function. Then there

exist only finitely many x € I such that f(x), f.(x) e {-o0, +oo}.

Proof. Suppose that the definable set {x € I : f/(x) = +o} is infinite.
Then by weak o-minimality of R, it contains an open subinterval. After

shrinking I, we may assume that f}(x) = +e forall x € I.
We take a, b e I with a < b. For all x € I, we define
b
g(x) = f(x) - f() f(a)(x a).
Then g’ (x) = + for all x € I and g is strongly continuous on I. Also, we

have g(a) = g(b). By Lemma 3.6, the function g is strictly increasing on I.
We deduce g(a) < g(b), which is impossible. 0

Proof of Proposition 3.1. By Theorem 2.9, Lemmas 3.3 and 3.8, we
may reduce to the case, where I is a convex open set, the function f is
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strongly continuous on I, and the functions f;, f. are R -valued and
continuous on I. Applying Lemma 3.7, we have the proposition. 0
Let m,n,r e N. A C" map f from a definable set A ¢ R" to a

definable set B — R™ is called a C" diffeomorphism if f is bijective and
f'isa C" map. Note that for each C” strong cell C in R", there exist

positive integers m, iy, ..., i, with 1<i <. <i, <n such that the
map (xi, ..., %,) = (¥, ..., % ): C > R™ isa C" diffeomorphism onto

an open C” strong cellin R™. Thus, the following holds.

Lemma 3.9. Let n € N. For each strong (i, ..., i,)-cell C in R", we

have dim(C) = i + -+ + iy,.

Let ne N and A c R" definable. Suppose that f: A —> R is

definable. If x is an interior point of A, we define
of
Ox,, (x)),

provided these partial derivatives exist at x. If some partial derivative is
not defined at x, then Vf is not defined at x. We define A" ={x e A : x

V() == (% ) ...,

is an interior point of A at which Vf is defined}. Note that A’ is
definable.

Lemma 3.10. For the above sets A and A', the set ANA' has empty

interior.

Proof. If int(A) = &, then this lemma holds. Thus, assume that
int(A) # &. We proceed by induction on n.

Let n = 1. Then it follows from Proposition 3.1.

Given n > 1, assume the lemma proved for n. It suffices to show that

for each open box U ¢ A, we have UN A" # &. Let U c A be an open
box. We define U = {x € U : (6f/dx,,1)(x) is defined}. Then the set U is

definable. By Proposition 3.1, we have int(U\U) = @. By Lemma 2.2, we
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have dim(U) = max{dim(U\U), dim(U)} = dim(U). Thus there exists a

non-empty open box V xW c U such that V c R® and W c R. We
take w € W. By the inductive hypothesis to the function v — f(v, w):

V — R, there exists vy € V such that for each i € {1, ..., n} the partial
derivative (of /ox;)(vg, w) is defined. Therefore we obtain (vy, w)e A’,

as desired. O

Proof of Theorem 2.10. Without loss of generality, we may assume

that r = 1. We proceed by induction on n.
By weak o-minimality of R, the condition (1); holds. The condition

(2), follows from Theorem 2.9 and Proposition 3.1. The condition (1)

n+l1

follows from Theorem 2.9 and (2),,.

We prove (2),,,- Let A c R"™! be definable and f:A — R

definable. We define A’ as above. By (1),,; and Theorem 2.9, we can
take a decomposition D of A into C! strong cells in R™*! partitioning
A’ such that f (respectively: Vf) is strongly continuous on each ct
strong cell of D (respectively: on each ct strong cell of D contained in
A).

Let CeD and dimC=d <n. Then there exists a C!
diffeomorphism p from C onto some C' strong cell D ¢ R%. By 2)g
there exists a decomposition Dp of D into C! strong cells in R? such
that fo p_1 |B is a C' function for each B e Dp. By composing with
the C' map p, we obtain that flp_l(B) is a C! function for each
Be Dp. By (1),,;, there exists a decomposition D¢ of Cinto C' strong

cells in R partitioning p~*(B) for each B e Dp. Then f|C isa C'

function for each C’ € Dg.

Let Ce D and dimC = n +1. By Lemma 3.10, the C' strong cell C
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intersects A’. Since D partitions A’, we have C c A’. It follows that

fIC isa C' function.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

This finishes the proof of (2)

n+l-
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