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Abstract

A structure ( )…,, <= RR  equipped with a dense linear ordering <

without endpoints is said to be o-minimal (weakly o-minimal) if every

definable subset of R is a finite union of intervals (convex sets),

respectively. A weakly o-minimal structure ( )…,,, +<= RR  expanding

an ordered group ( )+<,,R  is said to be non-valuational if for every cut

DC,  definable in R  we have that { } .0,:inf =∈∈− DyCxxy  L.

van den Dries proved that every o-minimal expansion of a real closed

field admits a rC  cell decomposition for each positive integer r. In this

paper, we prove the non-valuational weakly o-minimal version of it.

1. Introduction

Weak o-minimality was introduced by Dickmann (see [3]). He showed

that every real closed ring is weakly o-minimal in the language =L

{ },Div,1,0,,,, ⋅−+<  where the symbol “Div” is interpreted as yx Div

( ).xzyz =∃⇔  After that several fundamental results of weakly

o-minimality were proved by Macpherson et al. in [6].
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Non-valuational weakly o-minimal expansions of ordered groups and
ordered fields were studied by Macpherson et al. in [6], by Wencel in [7],
and by Dolich in [4]. Now, it is known that the model theory of weakly
o-minimal structures does not develop as smoothly as that of o-minimal
structures, see [6]. However non-valuational weakly o-minimal
expansions of ordered groups are very similar to o-minimal structures. In
particular, Wencel showed that every non-valuational weakly o-minimal
expansion of an ordered group admits an o-minimal style cell

decomposition (say strong cell decomposition) in [7].

On the other hand, differentiability and analyticity properties of
definable functions for weakly o-minimal expansions of real closed fields
are scarcely studied (see [6, Open problem 3]). In this paper, we study
differentiability properties of definable functions for non-valuational
weakly o-minimal expansions of real closed fields. Consequently, we
prove that each definable function in one variable for non-valuational
weakly o-minimal expansions of real closed fields is piecewise
differentiable (Proposition 3.1). Moreover, we prove that every non-
valuational weakly o-minimal expansion of a real closed field admits a

rC  strong cell decomposition for each positive integer r (Theorem 2.10).

Throughout this paper, “definable” means “definable possibly with

parameters” and we assume that a structure ( )…,, <= RR  is a dense

linear ordering < without endpoints. The set of positive integers

is denoted by .N  The reader is assumed to be familiar with fundamental

results of o-minimality; see, for example, [5] or [2].

2. Preliminaries and the Main Theorem

In this section, we introduce some definitions and facts for weakly
o-minimal structures and state our main theorem.

A subset A of R is said to be convex if Aba ∈,  and Rc ∈  with

,bca <<  then .Ac ∈  Moreover if ∅=A  or inf A, { },,sup ∞+−∞∈ ∪RA

then A is called an interval in R. We say that R  is o-minimal (weakly o-

minimal) if every definable subset of R is a finite union of intervals
(convex sets), respectively.
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For any subsets C, D of R, we write DC <  if dc <  whenever Cc ∈
and .Dd ∈  A pair DC,  of non-empty subsets of R is called a cut in R

if ,DC <  RDC =∪  and D has no lowest element. A cut DC,  is said

to be definable in R  if the sets C, D are definable in .R  The set of all

cuts definable in R  will be denoted by .R  Note that we have RR =  if

R  is o-minimal. We define a linear ordering on R  by 2211 ,, DCDC <

if and only if .21 CC ⊊  Then we may treat ( )<,R  as a substructure of

( )<,R  by identifying an element Ra ∈  with the definable cut

( ] ( ) .,,, ∞+−∞ aa  We equip R ( )R  with the interval topology (the open

intervals form a base), and each product (( ) )nn RR  with the

corresponding product topology, respectively.

Recall the notion of definable functions from [7]. Let N∈n  and
nRA ⊂  definable. A function RAf →:  is said to be definable if the

set ( ) { ( )}xfyAxRyxf n <∈∈=Γ +
< ,:,: 1  is definable. A function

{ }∞+∞−→ ,: ∪RAf  is said to be definable if f is a definable function

from A to ,R  ( ) −∞=xf  for all ,Ax ∈  or ( ) +∞=xf  for all .Ax ∈

Lemma 2.1. Let N∈n  and nRA ⊂  definable. Suppose that

RAf →:  is a function. Then the following conditions are equivalent.

(1) The function f is definable.

(2) The graph ( ) { ( ) }yxfAxRyxf n =∈∈=Γ + ,:,: 1  is definable.

Proof. (1) ⇒ (2) Since A and f are definable, there exist ( )RL -

formulas ( )xϕ  and ( )yx,ψ  such that ( )Rϕ=A  and ( ) ( ).Rψ=Γ< f  Let

( ) ( ) ( ) ( )( ).,,, zxyzzyxxyx ψ→<∀∧ψ¬∧ϕ≡ψ′  Then we obtain ( ) =Γ f

( ),Rψ′  as desired.

(2) ⇒ (1) Since ( )fΓ  is definable, there exists some ( )RL -formula

( )yx,θ  such that ( ) ( ).Rθ=Γ f  Let ( ) ( ) ( )( ).,, zxzyzxyx θ∧<∃∧ϕ≡θ′

Then we obtain ( ) ( ).Rθ′=Γ< f  Thus, the function f is definable. �
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Let N∈n  and nRA ⊂  an infinite definable set. The dimension of A,

denoted by ( ),dim A  is the largest r for which there exists some projection

rn RR →π :  such that ( )Aπ  contains an open box, where an open box in

nR  is the Cartesian product ( ) ( )nn baba ,, 11 ××"  of open intervals.

Non-empty finite sets are said to have dimension 0. The empty set is said

to have dimension –∞. We will use the convention that if { },,0 ∞−∈ ∪Nd

then −∞≥d  and ( ) .−∞=+−∞=−∞+ dd

Lemma 2.2 [8, Fact 1.6]. Let ( )…,, <= RR  be a weakly o-minimal

structure. Suppose that N∈nm,  and ,, mRBA ⊂  nRC ⊂  are definable

sets.

(1) If ,BA ⊂  then ( ) ( ).dimdim BA ≤

(2) If { }mk ,,1 …∈  and km RR →π :  is a projection, then

( ) ( ) ( )( ) ( ).dimdimdim AAkmA ≤π≤−−

(3) If mm RRf →:  is a permutation of variables, then

( )( )Afdim ( ).dim A=

(4) ( ) ( ) ( ).dimdimdim CACA +=×

(5) ( ) ( ) ( ){ }.dim,dimmaxdim BABA =∪

Let ( )…,,, +<= RR  be a weakly o-minimal expansion of an ordered

group ( ).,, +<R  By [6, Theorem 5.1), the structure R  is divisible and

abelian. A cut DC,  is said to be non-valuational if { ,:inf Cxxy ∈−

} .0=∈ Dy  We say that the structure R  is non-valuational if all cuts

definable in R  are non-valuational.

Let ( )…,,,, ⋅+<= RR  be a non-valuational weakly o-minimal

expansion of an ordered field ( ).,,, ⋅+<R  By [6, Theorem 5.3], the

structure R  is real closed. For any subsets A, B of R, we define =+ :BA

{ },,: ByAxyx ∈∈+  { },,:: ByAxyxBA ∈∈−=−  { :: yxBA ⋅=⋅

}ByAx ∈∈ ,  and { }.:: AxxA ∈−=−  Note that ( )0,−∞=− DC  and
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( )∞+=− ,0CD  for any element DC,  of .R  Also notice that for any

positive element DC,  of ,R  we have { ( ),,0:inf 1 ∞+∈⋅− ∩Cxyx

} ,1=∈ Dy  and for any negative element DC,  of ,R  we have

{ ( )} .10,,:inf 1 =∞−∈∈⋅ − ∩DyCxyx  For any elements ,, 11 DC

22, DC  of ,R  we define

( ) ,,\:,, 21212211 DDDDRDCDC ++=+

2211 ,, DCDC ⋅

( )
( )( )( ) ( )( )( )

( )( )( ) ( )( )( )
( ) ( )









∈∈⋅⋅
∈∈−⋅−−⋅−
∈∈⋅−−⋅−−
∈∈⋅⋅

=

,0and0ifint,int\
0and0ifcl\,cl
0and0ifcl\,cl
0and0if,\

:

212121

212121

212121

212121

DDCCCCR

DCCDRCD

CDDCRDC

CCDDDDR

where for each N∈n  the topological closure in nR  of a set nRA ⊂  is

denoted by ( ),cl A  and its topological interior in nR  by ( ).int A  Then the

structure ( )⋅+< ,,,R  is an ordered field and the structure ( )⋅+< ,,,R  is a

subfield of it.

Recall the notion of the strong monotonicity from [7].

Definition 2.3. We say that a weakly o-minimal structure =R

( )…,, <R  has the strong monotonicity if for each definable set RI ⊂  and

each definable function ,: RIf →  there exists a partition of I into a

finite set X and definable convex open sets kII ,,1 …  such that for each

{ },,,1 ki …∈  one of the following conditions holds.

(1) iIf |  is constant.

(2) iIf |  is strictly increasing and for any iIba ∈,  with ba <  and

any Rdc ∈,  with ( ) ( ),bfdcaf <<<  there exists some ( )bax ,∈  such

that ( ) ;dxfc <<  in particular iIf |  is continuous.

(3) iIf |  is strictly decreasing and for any iIba ∈,  with ba <  and

any Rdc ∈,  with ( ) ( ),bfdcaf >>>  there exists some ( )bax ,∈  such

that ( ) ;dxfc >>  in particular iIf |  is continuous.
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Theorem 2.4 [7, Lemma 1.4]. Suppose that ( )…,,, +<= RR  is a

weakly o-minimal expansion of an ordered group ( ).,, +<R  Then the

following conditions are equivalent.

(1) R  is non-valuational.

(2) R  has the strong monotonicity.

Let ( )…,,,, ⋅+<= RR  be a non-valuational weakly o-minimal

expansion of a real closed field ( ).,,, ⋅+<R  Let ., N∈nm  Suppose that

nRU ⊂  is a definable open set and RUfi →:  is definable for each

{ }.,,1 mi …∈  Let ( ) ( ) .:,,: 1
m

m RUfff →= …  We call f a 1C  map if f is

continuous and for each { }mi ,,1 …∈  and each { },,,1 nj …∈  the

function ji xf ∂∂  is defined as a R -valued function on U and is

continuous. For each integer ,1>r  the map f is called a rC  map if f is a

1C  map and ji xf ∂∂  is a 1−rC  map for each { }mi ,,1 …∈  and each

{ }.,,1 nj …∈  Suppose that nRA ⊂  is definable (not necessarily open)

and RAgi →:  is definable for each { }.,,1 mi …∈  For each positive

integer r, we call ( )mggg ,,: 1 …=  a rC  map if there exist a definable

open set nRU ⊂  containing A and definable rC  functions

UGG m :,,1 …  R→  such that ii gAG =|  for each { }.,,1 mi …∈

Recall the notion of strong cells from [7].

Definition 2.5. Suppose that ( )…,, <= RR  is a weakly o-minimal

structure. For each ,N∈n  we inductively define strong cells in nR  and

their completions in ( ) .nR

(1) A one-element subset of R is called a strong 0 -cell in R. If

RC ⊂  is a strong 0 -cell, then its completion .: CC =

(2) A non-empty definable convex open subset of R is called a strong

1 -cell in R. If RC ⊂  is a strong 1 -cell, then its completion

{ :: RxC ∈=  there exist Cba ∈,  such that }.bxa <<
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Assume that ,N∈n  { },1,0,,1 ∈nii …  and strong nii ,,1 … -cells in

nR  and their completions in ( )nR  are already defined.

(3) Let nRC ⊂  be a strong nii ,,1 … -cell in nR  and RCf →:  is

a definable continuous function which has a continuous extension

.: RCf →  Then the graph ( )fΓ  is called a strong 0,,,1 nii … -cell in

1+nR  and its completion ( ) ( ).: ff Γ=Γ

(4) Let nRC ⊂  be a strong nii ,,1 … -cell in nR  and →Chg :,

{ }∞+∞− ,∪R  are definable continuous functions which have continuous

extensions { }∞+∞−→ ,:, ∪RChg  such that ( ) ( )xhxg <  for all

.Cx ∈  Then the set

( ) { ( ) ( )}ahbagCaRbahg n
C <<∈∈= + ,:,:, 1

is called a strong 1,,,1 nii … -cell in .1+nR  The completion of ( )Chg,  is

defined as

( ) { ( ) ( ) ( )}.,:,:, 1 ahbagCaRbahg n
C <<∈∈= +

(5) Let C be a subset of .nR  The set C is called a strong cell in nR  if

there exist { }1,0,,1 ∈nii …  such that C is a strong nii ,,1 … -cell in

.nR  If additionally ,N∈r  the structure R  is a non-valuational weakly

o-minimal expansion of a real closed field and f, g, h of (3), (4) are rC

functions, then the set C is called a rC  strong cell in .nR

Let ( )…,, <= RR  be a weakly o-minimal structure, N∈n  and C be

a strong cell of .nR  A definable function RCf →:  is said to be strongly

continuous if f has a continuous extension .: RCf →  A function which

is identically equal to –∞ or +∞, and whose domain is a strong cell is also

said to be strongly continuous.

Definition 2.6. Let ( )…,, <= RR  be a weakly o-minimal structure.

For each ,N∈n  we inductively define a strong cell decomposition (or a
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decomposition into strong cells in )nR  of a non-empty definable set

.nRA ⊂

(1) If RA ⊂  is a non-empty definable set and { }kCC ,,1 …=D  is a

partition of A into strong cells in R, then D  is called a decomposition of A
into strong cells in R.

(2) Suppose that 1+⊂ nRA  is a non-empty definable set and =D

{ }kCC ,,1 …  is a partition of A into strong cells in .1+nR  Then D  is

called a decomposition of A into strong cells in 1+nR  if ( ) ( ){ }kCC ππ ,,1 …

is a decomposition of ( )Aπ  into strong cells in ,nR  where

nn RR →π +1:  is the projection on the first n coordinates.

Let ( )…,,,, ⋅+<= RR  be a non-valuational weakly o-minimal

expansion of a real closed field ( )⋅+< ,,,R  and ., N∈rn  Then in a

similar way to the above definition, we define a rC  strong cell

decomposition of a non-empty definable set .nRA ⊂

Definition 2.7. Let ( )…,, <= RR  be a weakly o-minimal structure

and .N∈n  Suppose that nRBA ⊂,  are definable sets, ∅≠A  and D

is a decomposition of A into strong cells in .nR  We say that D  partitions

B if for each strong cell ,D∈C  we have either BC ⊂  or .∅=BC ∩

Definition 2.8. A weakly o-minimal structure ( )…,, <= RR  is said

to have the strong cell decomposition if for any N∈nk,  and any

definable sets ,,,1
n

k RAA ⊂…  there exists a decomposition of nR  into

strong cells partitioning each of the sets .,,1 kAA …

Let ( )…,,,, ⋅+<= RR  be a non-valuational weakly o-minimal

expansion of a real closed field ( )⋅+< ,,,R  and .N∈r  Then in a similar

way to the above definition, we define the rC  strong cell decomposition.

Theorem 2.9 [7, Theorem 2.14]. Let ( )…,,, +<= RR  be a non-

valuational weakly o-minimal expansion of an ordered group ( )+<,,R

and .N∈n
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(1) For any N∈k  and any definable sets ,,,1
n

k RAA ⊂…  there

exists a decomposition of nR  into strong cells partitioning each of the sets

.,,1 kAA …

(2) For any definable set nRA ⊂  and any definable function

,: RAf →  there exists a decomposition of A into strong cells such that

the restriction RCCf →| :  is strongly continuous for each AC ⊂  of the

decomposition.

The following is the main theorem of this paper.

Theorem 2.10 rC(  strong cell decompositions). Let ( )…,,,, ⋅+<= RR

be a non-valuational weakly o-minimal expansion of a real closed field

( )⋅+< ,,,R  and ., N∈rn

(1) For any N∈k  and any definable sets ,,,1
n

k RAA ⊂…  there

exists a decomposition of nR  into rC  strong cells partitioning each of the

sets .,,1 kAA …

(2) For any definable set nRA ⊂  and any definable function

,: RAf →  there exists a decomposition of A into rC  strong cells such

that the restriction RCCf →| :  is rC  and strongly continuous for each

AC ⊂  of the decomposition.

The o-minimal version of our main theorem was proved by L. van den
Dries [5, pp. 115-116].

3. rC  Strong Cell Decompositions

Throughout this section, we assume that ( )…,,,, ⋅+<= RR  is a non-

valuational weakly o-minimal expansion of a real closed field ( ).,,, ⋅+<R

In this section, we prove our main theorem.

We first prove the following proposition.

Proposition 3.1. Let I be a non-empty definable subset of R. Let
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RIf →:  be a definable function. Then f is differentiable at all but

finitely many points of I.

This requires several lemmas.

Lemma 3.2 [7, Lemma 1.2]. Let RI ⊂  be a non-empty definable

convex open set and RIf →:  be a definable function. Then the limits

( )xfIx 0suplim −→  and ( )xfIx 0inflim +→  exist in { }., ∞+∞−∪R

Let I be a non-empty definable open subset of R and RIf →:  be a

definable function. For each ,Ix ∈  we define the limits

( ) ( ) ( ) ,lim:
0 t

xftxfxf
t

−+=′
+→+

( ) ( ) ( ) ,lim:
0 t

xftxfxf
t

−+=′
−→−

( ) ( ) ( ) .lim:
0 t

xftxfxf
t

−+=′
→

Lemma 3.3. Let RI ⊂  be a non-empty definable convex open set and

RIf →:  be a definable function. Then, for each Ix ∈  the limits ( )xf+′

and ( )xf−′  exist in { }., ∞+∞−∪R

Proof. Suppose that .Ix ∈  We define ( ) ( ) ( )( )xftxfttg −+= −1:  on

an open interval ( ).,0 ε  Then by Lemma 3.2, the limit ( ) =′+ xf

( )tgt 0lim +→  exists in { }., ∞+∞−∪R  Similarly, the limit ( )xf−′  exists in

{ }., ∞+∞−∪R  �

Let I be a non-empty definable convex open subset of R. Let

RIf →:  be a definable continuous function and ( ) 0>′+ xf  for each

.Ix ∈  If R  is o-minimal, then the function f is strictly increasing on I,

see [5, p. 109]. However in the weakly o-minimal setting, the function f is

not necessarily strictly increasing on I.

Example 3.4. Let algR  be the real closure of .Q  We consider

( ),,,,,alg1 PR ⋅+<=R  where the unary predicate symbol P is interpreted

by the convex set ( ) ., algR∩ππ−  By [1], the structure 1R  is weakly
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o-minimal. Suppose that a definable function ( ) alg4,0: Rf →  is defined

by ( ) xxf =  for all ( ) alg,0 Rx ∩π∈  and ( ) 1−= xxf  for all ∈x

( ) .4, algR∩π  Then ( ) 0>′+ xf  for each ( )4,0∈x  and f is continuous on

the open interval ( ).4,0  However f is not strictly increasing on the open

interval ( ).4,0

Let RI ⊂  be a closed bounded interval. Let RIf →:  be a definable

strongly continuous function. If R  is o-minimal, then the function f takes

a maximum and a minimum value on I, see [5, p. 46]. However in the

weakly o-minimal setting, the function f does not necessarily attain a

maximum and a minimum value on I.

Example 3.5. We consider ( )PR ,,,,alg1 ⋅+<=R  of Example 3.4.

Suppose that a definable function [ ] alg4,0: Rf →  is defined by ( ) xxf =

for all [ ) alg,0 Rx ∩π∈  and ( ) π+−= 2xxf  for all ( ] .4, algRx ∩π∈  Then

f is strongly continuous on the closed interval [ ].4,0  However f does not

have a maximum value on the closed interval [ ].4,0

Examples 3.4 and 3.5 also show that the Mean Value Theorem does
not hold in general in the weakly o-minimal setting.

Lemma 3.6. Let I be a non-empty definable convex open subset of R.

Let RIf →:  be a definable strongly continuous function. Suppose that

either ( ) 0>′+ xf  for each Ix ∈  or ( ) 0>′− xf  each .Ix ∈  Then f is strictly

increasing on I. Similarly, if either ( ) 0<′+ xf  for each Ix ∈  or ( ) 0<′− xf

for each ,Ix ∈  then f is strictly decreasing on I.

Proof. We will show that if ( ) 0>′+ xf  for each ,Ix ∈  then f is strictly

increasing on I. The other cases are similar. Suppose for a contradiction

that there exist some Iba ∈,  with ba <  such that ( ) ( ).bfaf ≥  Since

( ) 0>′+ xf  for each ,Ix ∈  by Theorem 2.4, there exists a partition of I into

a finite set X and definable convex open sets kII ,,1 …  such that for each

{ },,,1 ki …∈  the restriction iIf |  is strictly increasing. Because f is

continuous, we may assume that .∅=X  We may also assume that
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1Ia∈  and .2Ib∈  Now ( ) ( ) ( ) ( ).limlim 0inf0sup 21
xfbfafxf IxIx +→−→ >≥>

This contradicts strong continuity of f. �

Lemma 3.7. Let I be a non-empty definable convex open subset of R.

Let RIf →:  be a definable strongly continuous function. Suppose that

the functions +′f  and −′f  are R -valued and continuous on I. Then f is

differentiable at each point of I and RIf →′ :  is continuous.

Proof. It suffices to prove that ( ) ( )afaf −+ ′=′  for all .Ia ∈  Suppose

for a contradiction that there exists some Ia ∈  such that ( ) ( ).afaf −+ ′≠′

Without loss of generality, we may assume ( ) ( ).afaf −+ ′>′  Then there

exist Rc ∈  and an open subinterval J of I around a such that ( ) >′+ xf

( )xfc −′>  for each .Jx ∈  Thus the definable function RJg →:  defined

by ( ) ( ) cxxfxg −=:  satisfies ( ) 0>′+ xg  and ( ) 0<′− xg  for each .Jx ∈

Also, the function g is strongly continuous on J. Hence, by Lemma 3.6,

the function g is both strictly increasing and strictly decreasing on J, a

contradiction. �

Lemma 3.8. Let I be a non-empty definable convex open subset of R.

Let RIf →:  be a definable strongly continuous function. Then there

exist only finitely many Ix ∈  such that ( ),xf+′  ( ) { }., ∞+−∞∈′− xf

Proof. Suppose that the definable set ( ){ }+∞=′∈ + xfIx :  is infinite.

Then by weak o-minimality of ,R  it contains an open subinterval. After

shrinking I, we may assume that ( ) +∞=′+ xf  for all .Ix ∈

We take Iba ∈,  with .ba <  For all ,Ix ∈  we define

( ) ( ) ( ) ( ) ( ).: ax
ab

afbfxfxg −
−
−−=

Then ( ) +∞=′+ xg  for all Ix ∈  and g is strongly continuous on I. Also, we

have ( ) ( ).bgag =  By Lemma 3.6, the function g is strictly increasing on I.

We deduce ( ) ( ),bgag <  which is impossible. �

Proof of Proposition 3.1. By Theorem 2.9, Lemmas 3.3 and 3.8, we

may reduce to the case, where I is a convex open set, the function f is
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strongly continuous on I, and the functions ,+′f  −′f  are R -valued and

continuous on I. Applying Lemma 3.7, we have the proposition. �

Let .,, N∈rnm  A rC  map f from a definable set nRA ⊂  to a

definable set mRB ⊂  is called a rC  diffeomorphism if f is bijective and
1−f  is a rC  map. Note that for each rC  strong cell C in ,nR  there exist

positive integers m, mii ,,1 …  with nii m ≤<<≤ "11  such that the

map ( ) ( ) m
iin RCxxxx
m

→:,,,,
11 …6…  is a rC  diffeomorphism onto

an open rC  strong cell in .mR  Thus, the following holds.

Lemma 3.9. Let .N∈n  For each strong nii ,,1 … -cell C in ,nR  we

have ( ) .dim 1 niiC ++= "

Let N∈n  and nRA ⊂  definable. Suppose that RAf →:  is

definable. If x is an interior point of A, we define

( ) ( ) ( ) ,,,:
1









∂
∂

∂
∂=∇ x

x
fx

x
fxf

n
…

provided these partial derivatives exist at x. If some partial derivative is

not defined at x, then f∇  is not defined at x. We define { xAxA :: ∈=′

is an interior point of A at which f∇  is defined}. Note that A′  is

definable.

Lemma 3.10. For the above sets A and ,A′  the set AA ′\  has empty

interior.

Proof. If ( ) ,int ∅=A  then this lemma holds. Thus, assume that

( ) .int ∅≠A  We proceed by induction on n.

Let .1=n  Then it follows from Proposition 3.1.

Given ,1≥n  assume the lemma proved for n. It suffices to show that

for each open box ,AU ⊂  we have .∅≠′AU ∩  Let AU ⊂  be an open

box. We define { ( ) ( ) }.definedis::
~

1 xxfUxU n+∂∂∈=  Then the set U
~

 is

definable. By Proposition 3.1, we have ( ) .
~

\int ∅=UU  By Lemma 2.2, we



www.p
phm

j.c
om

HIROSHI TANAKA and TOMOHIRO KAWAKAMI430

have ( ) { ( ) ( )} ( ).~
dim

~
dim,

~
\dimmaxdim UUUUU ==  Thus there exists a

non-empty open box UWV
~⊂×  such that nRV ⊂  and .RW ⊂  We

take .Ww ∈  By the inductive hypothesis to the function ( ) :, wvfv 6

,RV →  there exists Vv ∈0  such that for each { }ni ,,1 …∈  the partial

derivative ( ) ( )wvxf i ,0∂∂  is defined. Therefore we obtain ( ) ,,0 Awv ′∈

as desired. �

Proof of Theorem 2.10. Without loss of generality, we may assume

that .1=r  We proceed by induction on n.

By weak o-minimality of ,R  the condition ( )11  holds. The condition

( )12  follows from Theorem 2.9 and Proposition 3.1. The condition ( ) 11 +n

follows from Theorem 2.9 and ( ) .2 n

We prove ( ) .2 1+n  Let 1+⊂ nRA  be definable and RAf →:

definable. We define A′  as above. By ( ) 11 +n  and Theorem 2.9, we can

take a decomposition D  of A into 1C  strong cells in 1+nR  partitioning

A′  such that f ( )f∇:lyrespective  is strongly continuous on each 1C

strong cell of D (respectively: on each 1C  strong cell of D  contained in

).A′

Let D∈C  and .dim ndC ≤=  Then there exists a 1C

diffeomorphism p from C onto some 1C  strong cell .dRD ⊂  By ( ) ,2 d

there exists a decomposition DD  of D into 1C  strong cells in dR  such

that Bpf |−1D  is a 1C  function for each .DB D∈  By composing with

the 1C  map p, we obtain that ( )Bpf 1−|  is a 1C  function for each

.DB D∈  By ( ) ,1 1+n  there exists a decomposition CD  of C into 1C  strong

cells in 1+nR  partitioning ( )Bp 1−  for each .DB D∈  Then Cf ′|  is a 1C

function for each .CC D∈′

Let D∈C  and .1dim += nC  By Lemma 3.10, the 1C  strong cell C
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intersects .A′  Since D  partitions ,A′  we have .AC ′⊂  It follows that

Cf |  is a 1C  function.

This finishes the proof of ( ) .2 1+n �

References

[1] Y. Baisalov and B. Poizat, Paires de structures o-minimales, J. Symbolic Logic
63 (1998), 570-578.

[2] M. Coste, An introduction to o-minimal geometry, Dottorato di Ricerca in
Matematica, Dip. Mat. Univ. Pisa, Istituti Editoriali e Poligrafici Internazionali,
2000.

[3] M. A. Dickmann, Elimination of quantifiers for ordered valuation rings, J. Symbolic
Logic 52 (1987), 116-128.

[4] A. Dolich, Theories without the intermediate value property and weak o-minimality,
preprint.

[5] L. van den Dries, Tame topology and o-minimal structures, London Math. Soc.
Lecture Notes Series, 248, Cambridge Univ. Press, Cambridge, 1998.

[6] D. Macpherson, D. Marker and C. Steinhorn, Weakly o-minimal structures and real
closed fields, Trans. Amer. Math. Soc. 352 (2000), 5435-5483.

[7] R. Wencel, Weakly o-minimal non-valuational structures, RAAG preprint n. 182,
(http://ihp-raag.org/).

[8] R. Wencel, Topological properties of sets definable in weakly o-minimal structures,
RAAG preprint n. 181 (http://ihp-raag.orgj/).

Department of Mathematics
Faculty of Science
Okayama University 1-1
Naka 3-chome, Tsushima
Okayama 700-8530, Japan
e-mail: htanaka@math.okayama-u.ac.jp

Department of Mathematics
Faculty of Education
Wakayama University
Sakaedani, Wakayama 640-8510, Japan
e-mail: kawa@center.wakayama-u.ac.jp


