C^r STRONG CELL DECOMPOSITIONS IN NON-VALUATIONAL WEAKLY o-MINIMAL REAL CLOSED FIELDS

HIROSHI TANAKA and TOMOHIRO KAWAKAMI

(Received February 8, 2007)

Abstract

A structure $\mathcal{R}=(R,<,\ldots)$ equipped with a dense linear ordering < without endpoints is said to be o-minimal (weakly o-minimal) if every definable subset of R is a finite union of intervals (convex sets), respectively. A weakly o-minimal structure $\mathcal{R}=(R,<,+,\ldots)$ expanding an ordered group (R,<,+) is said to be non-valuational if for every cut $\langle C,D\rangle$ definable in \mathcal{R} we have that $\inf\{y-x:x\in C,\ y\in D\}=0$. L. van den Dries proved that every o-minimal expansion of a real closed field admits a C^r cell decomposition for each positive integer r. In this paper, we prove the non-valuational weakly o-minimal version of it.

1. Introduction

Weak o-minimality was introduced by Dickmann (see [3]). He showed that every real closed ring is weakly o-minimal in the language $L = \{<, +, -, \cdot, 0, 1, \text{Div}\}$, where the symbol "Div" is interpreted as $x \text{ Div } y \Leftrightarrow \exists z(y=xz)$. After that several fundamental results of weakly o-minimality were proved by Macpherson et al. in [6].

²⁰⁰⁰ Mathematics Subject Classification: 03C64, 14P10, 14P20.

Keywords and phrases: weakly o-minimal, C^r strong cells, C^r strong cell decompositions, real closed fields.

Non-valuational weakly o-minimal expansions of ordered groups and ordered fields were studied by Macpherson et al. in [6], by Wencel in [7], and by Dolich in [4]. Now, it is known that the model theory of weakly o-minimal structures does not develop as smoothly as that of o-minimal structures, see [6]. However non-valuational weakly o-minimal expansions of ordered groups are very similar to o-minimal structures. In particular, Wencel showed that every non-valuational weakly o-minimal expansion of an ordered group admits an o-minimal style cell decomposition (say strong cell decomposition) in [7].

On the other hand, differentiability and analyticity properties of definable functions for weakly o-minimal expansions of real closed fields are scarcely studied (see [6, Open problem 3]). In this paper, we study differentiability properties of definable functions for non-valuational weakly o-minimal expansions of real closed fields. Consequently, we prove that each definable function in one variable for non-valuational weakly o-minimal expansions of real closed fields is piecewise differentiable (Proposition 3.1). Moreover, we prove that every non-valuational weakly o-minimal expansion of a real closed field admits a C^r strong cell decomposition for each positive integer r (Theorem 2.10).

Throughout this paper, "definable" means "definable possibly with parameters" and we assume that a structure $\mathcal{R} = (R, <, ...)$ is a dense linear ordering < without endpoints. The set of positive integers is denoted by \mathbb{N} . The reader is assumed to be familiar with fundamental results of o-minimality; see, for example, [5] or [2].

2. Preliminaries and the Main Theorem

In this section, we introduce some definitions and facts for weakly o-minimal structures and state our main theorem.

A subset A of R is said to be *convex* if $a, b \in A$ and $c \in R$ with a < c < b, then $c \in A$. Moreover if $A = \emptyset$ or inf A, $\sup A \in R \cup \{-\infty, +\infty\}$, then A is called an *interval* in R. We say that \mathcal{R} is *o-minimal* (weakly o-minimal) if every definable subset of R is a finite union of intervals (convex sets), respectively.

For any subsets C, D of R, we write C < D if c < d whenever $c \in C$ and $d \in D$. A pair $\langle C, D \rangle$ of non-empty subsets of R is called a cut in \mathcal{R} if C < D, $C \cup D = R$ and D has no lowest element. A cut $\langle C, D \rangle$ is said to be definable in \mathcal{R} if the sets C, D are definable in \mathcal{R} . The set of all cuts definable in \mathcal{R} will be denoted by \overline{R} . Note that we have $R = \overline{R}$ if \mathcal{R} is o-minimal. We define a linear ordering on \overline{R} by $\langle C_1, D_1 \rangle < \langle C_2, D_2 \rangle$ if and only if $C_1 \subsetneq C_2$. Then we may treat (R, <) as a substructure of $(\overline{R}, <)$ by identifying an element $a \in R$ with the definable cut $\langle (-\infty, a], (a, +\infty) \rangle$. We equip R (\overline{R}) with the interval topology (the open intervals form a base), and each product R^n $((\overline{R})^n)$ with the corresponding product topology, respectively.

Recall the notion of definable functions from [7]. Let $n \in \mathbb{N}$ and $A \subset R^n$ definable. A function $f: A \to \overline{R}$ is said to be *definable* if the set $\Gamma_{<}(f) := \{\langle x, y \rangle \in R^{n+1} : x \in A, \ y < f(x) \}$ is definable. A function $f: A \to \overline{R} \cup \{-\infty, +\infty\}$ is said to be *definable* if f is a definable function from A to \overline{R} , $f(x) = -\infty$ for all $x \in A$, or $f(x) = +\infty$ for all $x \in A$.

Lemma 2.1. Let $n \in \mathbb{N}$ and $A \subset \mathbb{R}^n$ definable. Suppose that $f: A \to R$ is a function. Then the following conditions are equivalent.

- (1) The function f is definable.
- (2) The graph $\Gamma(f) := \{\langle x, y \rangle \in \mathbb{R}^{n+1} : x \in A, f(x) = y \}$ is definable.

Proof. (1) \Rightarrow (2) Since A and f are definable, there exist L(R)formulas $\varphi(x)$ and $\psi(x, y)$ such that $A = \varphi(\mathcal{R})$ and $\Gamma_{<}(f) = \psi(\mathcal{R})$. Let $\psi'(x, y) \equiv \varphi(x) \land \neg \psi(x, y) \land \forall z(z < y \to \psi(x, z)).$ Then we obtain $\Gamma(f) = \psi'(\mathcal{R})$, as desired.

(2) \Rightarrow (1) Since $\Gamma(f)$ is definable, there exists some L(R)-formula $\theta(x, y)$ such that $\Gamma(f) = \theta(R)$. Let $\theta'(x, y) \equiv \phi(x) \wedge \exists z (y < z \wedge \theta(x, z))$. Then we obtain $\Gamma_{<}(f) = \theta'(R)$. Thus, the function f is definable.

Let $n \in \mathbb{N}$ and $A \subset R^n$ an infinite definable set. The *dimension* of A, denoted by $\dim(A)$, is the largest r for which there exists some projection $\pi: R^n \to R^r$ such that $\pi(A)$ contains an open box, where an open box in R^n is the Cartesian product $(a_1, b_1) \times \cdots \times (a_n, b_n)$ of open intervals. Non-empty finite sets are said to have $dimension\ 0$. The empty set is said to have $dimension\ -\infty$. We will use the convention that if $d \in \mathbb{N} \cup \{0, -\infty\}$, then $d \geq -\infty$ and $d + (-\infty) = -\infty + d = -\infty$.

Lemma 2.2 [8, Fact 1.6]. Let $\mathcal{R} = (R, <, ...)$ be a weakly o-minimal structure. Suppose that $m, n \in \mathbb{N}$ and $A, B \subset R^m$, $C \subset R^n$ are definable sets.

- (1) If $A \subset B$, then $\dim(A) \leq \dim(B)$.
- (2) If $k \in \{1, ..., m\}$ and $\pi: \mathbb{R}^m \to \mathbb{R}^k$ is a projection, then $\dim(A) (m k) \le \dim(\pi(A)) \le \dim(A).$
- (3) If $f: \mathbb{R}^m \to \mathbb{R}^m$ is a permutation of variables, then $\dim(f(A)) = \dim(A).$
- (4) $\dim(A \times C) = \dim(A) + \dim(C)$.
- (5) $\dim(A \cup B) = \max\{\dim(A), \dim(B)\}.$

Let $\mathcal{R} = (R, <, +, ...)$ be a weakly o-minimal expansion of an ordered group (R, <, +). By [6, Theorem 5.1), the structure \mathcal{R} is divisible and abelian. A cut $\langle C, D \rangle$ is said to be *non-valuational* if $\inf\{y - x : x \in C, y \in D\} = 0$. We say that the structure \mathcal{R} is *non-valuational* if all cuts definable in \mathcal{R} are non-valuational.

Let $\mathcal{R}=(R,<,+,\cdot,\ldots)$ be a non-valuational weakly o-minimal expansion of an ordered field $(R,<,+,\cdot)$. By [6, Theorem 5.3], the structure \mathcal{R} is real closed. For any subsets A,B of R, we define $A+B:=\{x+y:x\in A,\ y\in B\},\ A-B:=\{x-y:x\in A,\ y\in B\},\ A\cdot B:=\{x\cdot y:x\in A,\ y\in B\}$ and $-A:=\{-x:x\in A\}$. Note that $C-D=(-\infty,0)$ and

 $D-C=(0,+\infty)$ for any element $\langle C,D\rangle$ of \overline{R} . Also notice that for any positive element $\langle C,D\rangle$ of \overline{R} , we have $\inf\{x^{-1}\cdot y:x\in C\cap(0,+\infty),\ y\in D\}=1$, and for any negative element $\langle C,D\rangle$ of \overline{R} , we have $\inf\{x\cdot y^{-1}:x\in C,\ y\in D\cap(-\infty,0)\}=1$. For any elements $\langle C_1,D_1\rangle$, $\langle C_2,D_2\rangle$ of \overline{R} , we define

$$\begin{split} &\langle C_1,\,D_1\rangle + \langle C_2,\,D_2\rangle \coloneqq \langle R \backslash (D_1+D_2),\,D_1+D_2\rangle,\\ &\langle C_1,\,D_1\rangle \cdot \langle C_2,\,D_2\rangle\\ &\coloneqq \begin{cases} \langle R \backslash (D_1\cdot D_2),\,D_1\cdot D_2\rangle & \text{if } 0\in C_1 \text{ and } 0\in C_2\\ \langle \mathrm{cl}(-((-C_1)\cdot D_2)),\,R \backslash \mathrm{cl}(-((-C_1)\cdot D_2))\rangle & \text{if } 0\in D_1 \text{ and } 0\in C_2\\ \langle \mathrm{cl}(-(D_1\cdot (-C_2))),\,R \backslash \mathrm{cl}(-(D_1\cdot (-C_2)))\rangle & \text{if } 0\in C_1 \text{ and } 0\in D_2\\ \langle R \backslash \mathrm{int}(C_1\cdot C_2),\,\mathrm{int}(C_1\cdot C_2)\rangle & \text{if } 0\in D_1 \text{ and } 0\in D_2, \end{cases} \end{split}$$

where for each $n \in \mathbb{N}$ the topological closure in R^n of a set $A \subset R^n$ is denoted by $\mathrm{cl}(A)$, and its topological interior in R^n by $\mathrm{int}(A)$. Then the structure $(\overline{R}, <, +, \cdot)$ is an ordered field and the structure $(R, <, +, \cdot)$ is a subfield of it.

Recall the notion of the strong monotonicity from [7].

Definition 2.3. We say that a weakly o-minimal structure $\mathcal{R} = (R, <, ...)$ has the strong monotonicity if for each definable set $I \subset R$ and each definable function $f: I \to \overline{R}$, there exists a partition of I into a finite set X and definable convex open sets $I_1, ..., I_k$ such that for each $i \in \{1, ..., k\}$, one of the following conditions holds.

- (1) $f \mid I_i$ is constant.
- (2) $f \mid I_i$ is strictly increasing and for any $a, b \in I_i$ with a < b and any $c, d \in R$ with f(a) < c < d < f(b), there exists some $x \in (a, b)$ such that c < f(x) < d; in particular $f \mid I_i$ is continuous.
- (3) $f \mid I_i$ is strictly decreasing and for any $a, b \in I_i$ with a < b and any $c, d \in R$ with f(a) > c > d > f(b), there exists some $x \in (a, b)$ such that c > f(x) > d; in particular $f \mid I_i$ is continuous.

Theorem 2.4 [7, Lemma 1.4]. Suppose that $\mathcal{R} = (R, <, +, ...)$ is a weakly o-minimal expansion of an ordered group (R, <, +). Then the following conditions are equivalent.

- (1) \mathcal{R} is non-valuational.
- (2) \mathcal{R} has the strong monotonicity.

Let $\mathcal{R}=(R,<,+,\cdot,\ldots)$ be a non-valuational weakly o-minimal expansion of a real closed field $(R,<,+,\cdot)$. Let $m,n\in\mathbb{N}$. Suppose that $U\subset R^n$ is a definable open set and $f_i:U\to\overline{R}$ is definable for each $i\in\{1,\ldots,m\}$. Let $f:=(f_1,\ldots,f_m):U\to(\overline{R})^m$. We call f a C^1 map if f is continuous and for each $i\in\{1,\ldots,m\}$ and each $j\in\{1,\ldots,n\}$, the function $\partial f_i/\partial x_j$ is defined as a \overline{R} -valued function on U and is continuous. For each integer r>1, the map f is called a C^r map if f is a C^1 map and $\partial f_i/\partial x_j$ is a C^{r-1} map for each $i\in\{1,\ldots,m\}$ and each $j\in\{1,\ldots,n\}$. Suppose that $A\subset R^n$ is definable (not necessarily open) and $g_i:A\to\overline{R}$ is definable for each $i\in\{1,\ldots,m\}$. For each positive integer r, we call $g:=(g_1,\ldots,g_m)$ a C^r map if there exist a definable open set $U\subset R^n$ containing A and definable C^r functions $G_1,\ldots,G_m:U\to\overline{R}$ such that $G_i\mid A=g_i$ for each $i\in\{1,\ldots,m\}$.

Recall the notion of strong cells from [7].

Definition 2.5. Suppose that $\mathcal{R} = (R, <, ...)$ is a weakly o-minimal structure. For each $n \in \mathbb{N}$, we inductively define *strong cells* in \mathbb{R}^n and their completions in $(\overline{R})^n$.

- (1) A one-element subset of R is called a $strong \langle 0 \rangle$ -cell in R. If $C \subset R$ is a strong $\langle 0 \rangle$ -cell, then its completion $\overline{C} := C$.
- (2) A non-empty definable convex open subset of R is called a *strong* $\langle 1 \rangle$ -cell in R. If $C \subset R$ is a strong $\langle 1 \rangle$ -cell, then its completion $\overline{C} := \{x \in \overline{R} : \text{there exist } a, b \in C \text{ such that } a < x < b\}.$

Assume that $n \in \mathbb{N}$, $i_1, \ldots, i_n \in \{0, 1\}$, and strong $\langle i_1, \ldots, i_n \rangle$ -cells in \mathbb{R}^n and their completions in $(\overline{R})^n$ are already defined.

- (3) Let $C \subset \mathbb{R}^n$ be a strong $\langle i_1, \ldots, i_n \rangle$ -cell in \mathbb{R}^n and $f: C \to R$ is a definable continuous function which has a continuous extension $\bar{f}: \overline{C} \to \overline{R}$. Then the graph $\Gamma(f)$ is called a $strong \langle i_1, \ldots, i_n, 0 \rangle$ -cell in \mathbb{R}^{n+1} and its completion $\overline{\Gamma(f)} := \Gamma(\bar{f})$.
- (4) Let $C \subset R^n$ be a strong $\langle i_1, \ldots, i_n \rangle$ -cell in R^n and $g, h : C \to \overline{R} \cup \{-\infty, +\infty\}$ are definable continuous functions which have continuous extensions $\overline{g}, \overline{h} : \overline{C} \to \overline{R} \cup \{-\infty, +\infty\}$ such that $\overline{g}(x) < \overline{h}(x)$ for all $x \in \overline{C}$. Then the set

$$(g, h)_C := \{ \langle a, b \rangle \in \mathbb{R}^{n+1} : a \in C, g(a) < b < h(a) \}$$

is called a $strong\ \langle i_1,\,\ldots,\,i_n,\,1\rangle$ -cell in R^{n+1} . The completion of $(g,\,h)_C$ is defined as

$$\overline{(g,h)_C} := \{ \langle a,b \rangle \in (\overline{R})^{n+1} : a \in \overline{C}, \, \overline{g}(a) < b < \overline{h}(a) \}.$$

(5) Let C be a subset of R^n . The set C is called a *strong cell* in R^n if there exist $i_1, \ldots, i_n \in \{0, 1\}$ such that C is a strong $\langle i_1, \ldots, i_n \rangle$ -cell in R^n . If additionally $r \in \mathbb{N}$, the structure \mathcal{R} is a non-valuational weakly o-minimal expansion of a real closed field and f, g, h of (3), (4) are C^r functions, then the set C is called a C^r strong cell in R^n .

Let $\mathcal{R}=(R,<,\ldots)$ be a weakly o-minimal structure, $n\in\mathbb{N}$ and C be a strong cell of R^n . A definable function $f:C\to \overline{R}$ is said to be *strongly continuous* if f has a continuous extension $\overline{f}:\overline{C}\to \overline{R}$. A function which is identically equal to $-\infty$ or $+\infty$, and whose domain is a strong cell is also said to be *strongly continuous*.

Definition 2.6. Let $\mathcal{R} = (R, <, ...)$ be a weakly o-minimal structure. For each $n \in \mathbb{N}$, we inductively define a *strong cell decomposition* (or a

decomposition into strong cells in \mathbb{R}^n) of a non-empty definable set $A \subset \mathbb{R}^n$.

- (1) If $A \subset R$ is a non-empty definable set and $\mathcal{D} = \{C_1, \ldots, C_k\}$ is a partition of A into strong cells in R, then \mathcal{D} is called a *decomposition of A into strong cells* in R.
- (2) Suppose that $A \subset R^{n+1}$ is a non-empty definable set and $\mathcal{D} = \{C_1, \ldots, C_k\}$ is a partition of A into strong cells in R^{n+1} . Then \mathcal{D} is called a decomposition of A into strong cells in R^{n+1} if $\{\pi(C_1), \ldots, \pi(C_k)\}$ is a decomposition of $\pi(A)$ into strong cells in R^n , where $\pi: R^{n+1} \to R^n$ is the projection on the first n coordinates.

Let $\mathcal{R}=(R,<,+,\cdot,...)$ be a non-valuational weakly o-minimal expansion of a real closed field $(R,<,+,\cdot)$ and $n,r\in\mathbb{N}$. Then in a similar way to the above definition, we define a C^r strong cell decomposition of a non-empty definable set $A\subset R^n$.

Definition 2.7. Let $\mathcal{R} = (R, <, ...)$ be a weakly o-minimal structure and $n \in \mathbb{N}$. Suppose that $A, B \subset R^n$ are definable sets, $A \neq \emptyset$ and \mathcal{D} is a decomposition of A into strong cells in R^n . We say that \mathcal{D} partitions B if for each strong cell $C \in \mathcal{D}$, we have either $C \subset B$ or $C \cap B = \emptyset$.

Definition 2.8. A weakly o-minimal structure $\mathcal{R} = (R, <, ...)$ is said to have the *strong cell decomposition* if for any $k, n \in \mathbb{N}$ and any definable sets $A_1, ..., A_k \subset R^n$, there exists a decomposition of R^n into strong cells partitioning each of the sets $A_1, ..., A_k$.

Let $\mathcal{R} = (R, <, +, \cdot, ...)$ be a non-valuational weakly o-minimal expansion of a real closed field $(R, <, +, \cdot)$ and $r \in \mathbb{N}$. Then in a similar way to the above definition, we define the C^r strong cell decomposition.

Theorem 2.9 [7, Theorem 2.14]. Let $\mathcal{R} = (R, <, +, ...)$ be a non-valuational weakly o-minimal expansion of an ordered group (R, <, +) and $n \in \mathbb{N}$.

- (1) For any $k \in \mathbb{N}$ and any definable sets $A_1, ..., A_k \subset \mathbb{R}^n$, there exists a decomposition of \mathbb{R}^n into strong cells partitioning each of the sets $A_1, ..., A_k$.
- (2) For any definable set $A \subset \mathbb{R}^n$ and any definable function $f: A \to \overline{\mathbb{R}}$, there exists a decomposition of A into strong cells such that the restriction $f \mid C: C \to \overline{\mathbb{R}}$ is strongly continuous for each $C \subset A$ of the decomposition.

The following is the main theorem of this paper.

Theorem 2.10 (C^r strong cell decompositions). Let $\mathcal{R} = (R, <, +, \cdot, ...)$ be a non-valuational weakly o-minimal expansion of a real closed field $(R, <, +, \cdot)$ and $n, r \in \mathbb{N}$.

- (1) For any $k \in \mathbb{N}$ and any definable sets $A_1, ..., A_k \subset \mathbb{R}^n$, there exists a decomposition of \mathbb{R}^n into \mathbb{C}^r strong cells partitioning each of the sets $A_1, ..., A_k$.
- (2) For any definable set $A \subset R^n$ and any definable function $f: A \to \overline{R}$, there exists a decomposition of A into C^r strong cells such that the restriction $f \mid C: C \to \overline{R}$ is C^r and strongly continuous for each $C \subset A$ of the decomposition.

The o-minimal version of our main theorem was proved by L. van den Dries [5, pp. 115-116].

3. C^r Strong Cell Decompositions

Throughout this section, we assume that $\mathcal{R} = (R, <, +, \cdot, ...)$ is a non-valuational weakly o-minimal expansion of a real closed field $(R, <, +, \cdot)$. In this section, we prove our main theorem.

We first prove the following proposition.

Proposition 3.1. Let I be a non-empty definable subset of R. Let

 $f: I \to \overline{R}$ be a definable function. Then f is differentiable at all but finitely many points of I.

This requires several lemmas.

Lemma 3.2 [7, Lemma 1.2]. Let $I \subset R$ be a non-empty definable convex open set and $f: I \to \overline{R}$ be a definable function. Then the limits $\lim_{x\to \sup I-0} f(x)$ and $\lim_{x\to \inf I+0} f(x)$ exist in $\overline{R} \cup \{-\infty, +\infty\}$.

Let I be a non-empty definable open subset of R and $f: I \to \overline{R}$ be a definable function. For each $x \in I$, we define the limits

$$f'_{+}(x) := \lim_{t \to +0} \frac{f(x+t) - f(x)}{t},$$

$$f'_{-}(x) := \lim_{t \to -0} \frac{f(x+t) - f(x)}{t},$$

$$f'(x) := \lim_{t \to 0} \frac{f(x+t) - f(x)}{t}.$$

Lemma 3.3. Let $I \subset R$ be a non-empty definable convex open set and $f: I \to \overline{R}$ be a definable function. Then, for each $x \in I$ the limits $f'_+(x)$ and $f'_-(x)$ exist in $\overline{R} \cup \{-\infty, +\infty\}$.

Proof. Suppose that $x \in I$. We define $g(t) := t^{-1}(f(x+t) - f(x))$ on an open interval $(0, \varepsilon)$. Then by Lemma 3.2, the limit $f'_{+}(x) = \lim_{t \to +0} g(t)$ exists in $\overline{R} \cup \{-\infty, +\infty\}$. Similarly, the limit $f'_{-}(x)$ exists in $\overline{R} \cup \{-\infty, +\infty\}$.

Let I be a non-empty definable convex open subset of R. Let $f: I \to R$ be a definable continuous function and $f'_+(x) > 0$ for each $x \in I$. If \mathcal{R} is o-minimal, then the function f is strictly increasing on I, see [5, p. 109]. However in the weakly o-minimal setting, the function f is not necessarily strictly increasing on I.

Example 3.4. Let R_{alg} be the real closure of \mathbb{Q} . We consider $\mathcal{R}_1 = (R_{\text{alg}}, <, +, \cdot, P)$, where the unary predicate symbol P is interpreted by the convex set $(-\pi, \pi) \cap R_{\text{alg}}$. By [1], the structure \mathcal{R}_1 is weakly

o-minimal. Suppose that a definable function $f:(0,4)\to R_{\rm alg}$ is defined by f(x)=x for all $x\in(0,\pi)\cap R_{\rm alg}$ and f(x)=x-1 for all $x\in(\pi,4)\cap R_{\rm alg}$. Then $f'_+(x)>0$ for each $x\in(0,4)$ and f is continuous on the open interval (0,4). However f is not strictly increasing on the open interval (0,4).

Let $I \subset R$ be a closed bounded interval. Let $f: I \to \overline{R}$ be a definable strongly continuous function. If $\mathcal R$ is o-minimal, then the function f takes a maximum and a minimum value on I, see [5, p. 46]. However in the weakly o-minimal setting, the function f does not necessarily attain a maximum and a minimum value on I.

Example 3.5. We consider $\mathcal{R}_1 = (R_{\text{alg}}, <, +, \cdot, P)$ of Example 3.4. Suppose that a definable function $f:[0,4] \to \overline{R}_{\text{alg}}$ is defined by f(x) = x for all $x \in [0,\pi) \cap R_{\text{alg}}$ and $f(x) = -x + 2\pi$ for all $x \in (\pi,4] \cap R_{\text{alg}}$. Then f is strongly continuous on the closed interval [0,4]. However f does not have a maximum value on the closed interval [0,4].

Examples 3.4 and 3.5 also show that the Mean Value Theorem does not hold in general in the weakly o-minimal setting.

Lemma 3.6. Let I be a non-empty definable convex open subset of R. Let $f: I \to \overline{R}$ be a definable strongly continuous function. Suppose that either $f'_+(x) > 0$ for each $x \in I$ or $f'_-(x) > 0$ each $x \in I$. Then f is strictly increasing on I. Similarly, if either $f'_+(x) < 0$ for each $x \in I$ or $f'_-(x) < 0$ for each $x \in I$, then f is strictly decreasing on I.

Proof. We will show that if $f'_+(x) > 0$ for each $x \in I$, then f is strictly increasing on I. The other cases are similar. Suppose for a contradiction that there exist some $a, b \in I$ with a < b such that $f(a) \ge f(b)$. Since $f'_+(x) > 0$ for each $x \in I$, by Theorem 2.4, there exists a partition of I into a finite set X and definable convex open sets I_1, \ldots, I_k such that for each $i \in \{1, \ldots, k\}$, the restriction $f \mid I_i$ is strictly increasing. Because f is continuous, we may assume that $X = \emptyset$. We may also assume that

 $a \in I_1$ and $b \in I_2$. Now $\lim_{x \to \sup I_1 = 0} f(x) > f(a) \ge f(b) > \lim_{x \to \inf I_2 = 0} f(x)$. This contradicts strong continuity of f.

Lemma 3.7. Let I be a non-empty definable convex open subset of R. Let $f: I \to \overline{R}$ be a definable strongly continuous function. Suppose that the functions f'_+ and f'_- are \overline{R} -valued and continuous on I. Then f is differentiable at each point of I and $f': I \to \overline{R}$ is continuous.

Proof. It suffices to prove that $f'_+(a) = f'_-(a)$ for all $a \in I$. Suppose for a contradiction that there exists some $a \in I$ such that $f'_+(a) \neq f'_-(a)$. Without loss of generality, we may assume $f'_+(a) > f'_-(a)$. Then there exist $c \in R$ and an open subinterval J of I around a such that $f'_+(x) > c > f'_-(x)$ for each $x \in J$. Thus the definable function $g: J \to \overline{R}$ defined by g(x) := f(x) - cx satisfies $g'_+(x) > 0$ and $g'_-(x) < 0$ for each $x \in J$. Also, the function g is strongly continuous on J. Hence, by Lemma 3.6, the function g is both strictly increasing and strictly decreasing on J, a contradiction.

Lemma 3.8. Let I be a non-empty definable convex open subset of R. Let $f: I \to \overline{R}$ be a definable strongly continuous function. Then there exist only finitely many $x \in I$ such that $f'_+(x), f'_-(x) \in \{-\infty, +\infty\}$.

Proof. Suppose that the definable set $\{x \in I : f'_+(x) = +\infty\}$ is infinite. Then by weak o-minimality of \mathcal{R} , it contains an open subinterval. After shrinking I, we may assume that $f'_+(x) = +\infty$ for all $x \in I$.

We take $a, b \in I$ with a < b. For all $x \in I$, we define

$$g(x) := f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Then $g'_+(x) = +\infty$ for all $x \in I$ and g is strongly continuous on I. Also, we have g(a) = g(b). By Lemma 3.6, the function g is strictly increasing on I. We deduce g(a) < g(b), which is impossible.

Proof of Proposition 3.1. By Theorem 2.9, Lemmas 3.3 and 3.8, we may reduce to the case, where I is a convex open set, the function f is

strongly continuous on I, and the functions f'_+ , f'_- are \overline{R} -valued and continuous on I. Applying Lemma 3.7, we have the proposition.

Let $m, n, r \in \mathbb{N}$. A C^r map f from a definable set $A \subset R^n$ to a definable set $B \subset R^m$ is called a C^r diffeomorphism if f is bijective and f^{-1} is a C^r map. Note that for each C^r strong cell C in R^n , there exist positive integers m, i_1, \ldots, i_m with $1 \le i_1 < \cdots < i_m \le n$ such that the map $(x_1, \ldots, x_n) \mapsto (x_{i_1}, \ldots, x_{i_m}) : C \to R^m$ is a C^r diffeomorphism onto an open C^r strong cell in R^m . Thus, the following holds.

Lemma 3.9. Let $n \in \mathbb{N}$. For each strong $\langle i_1, \ldots, i_n \rangle$ -cell C in \mathbb{R}^n , we have $\dim(C) = i_1 + \cdots + i_n$.

Let $n \in \mathbb{N}$ and $A \subset \mathbb{R}^n$ definable. Suppose that $f: A \to \overline{\mathbb{R}}$ is definable. If x is an interior point of A, we define

$$\nabla f(x) := \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right),$$

provided these partial derivatives exist at x. If some partial derivative is not defined at x, then ∇f is not defined at x. We define $A' := \{x \in A : x \text{ is an interior point of } A \text{ at which } \nabla f \text{ is defined} \}$. Note that A' is definable.

Lemma 3.10. For the above sets A and A', the set $A \setminus A'$ has empty interior.

Proof. If $int(A) = \emptyset$, then this lemma holds. Thus, assume that $int(A) \neq \emptyset$. We proceed by induction on n.

Let n = 1. Then it follows from Proposition 3.1.

Given $n \geq 1$, assume the lemma proved for n. It suffices to show that for each open box $U \subset A$, we have $U \cap A' \neq \emptyset$. Let $U \subset A$ be an open box. We define $\widetilde{U} := \{x \in U : (\partial f/\partial x_{n+1})(x) \text{ is defined}\}$. Then the set \widetilde{U} is definable. By Proposition 3.1, we have $\operatorname{int}(U \setminus \widetilde{U}) = \emptyset$. By Lemma 2.2, we

have $\dim(U) = \max\{\dim(U \setminus \widetilde{U}), \dim(\widetilde{U})\} = \dim(\widetilde{U})$. Thus there exists a non-empty open box $V \times W \subset \widetilde{U}$ such that $V \subset R^n$ and $W \subset R$. We take $w \in W$. By the inductive hypothesis to the function $v \mapsto f(v, w)$: $V \to \overline{R}$, there exists $v_0 \in V$ such that for each $i \in \{1, ..., n\}$ the partial derivative $(\partial f/\partial x_i)(v_0, w)$ is defined. Therefore we obtain $(v_0, w) \in A'$, as desired.

Proof of Theorem 2.10. Without loss of generality, we may assume that r = 1. We proceed by induction on n.

By weak o-minimality of \mathcal{R} , the condition $(1)_1$ holds. The condition $(2)_1$ follows from Theorem 2.9 and Proposition 3.1. The condition $(1)_{n+1}$ follows from Theorem 2.9 and $(2)_n$.

We prove $(2)_{n+1}$. Let $A \subset R^{n+1}$ be definable and $f: A \to \overline{R}$ definable. We define A' as above. By $(1)_{n+1}$ and Theorem 2.9, we can take a decomposition \mathcal{D} of A into C^1 strong cells in R^{n+1} partitioning A' such that f (respectively: ∇f) is strongly continuous on each C^1 strong cell of \mathcal{D} (respectively: on each C^1 strong cell of \mathcal{D} contained in A').

Let $C \in \mathcal{D}$ and $\dim C = d \leq n$. Then there exists a C^1 diffeomorphism p from C onto some C^1 strong cell $D \subset R^d$. By $(2)_d$, there exists a decomposition \mathcal{D}_D of D into C^1 strong cells in R^d such that $f \circ p^{-1} \mid B$ is a C^1 function for each $B \in \mathcal{D}_D$. By composing with the C^1 map p, we obtain that $f \mid p^{-1}(B)$ is a C^1 function for each $B \in \mathcal{D}_D$. By $(1)_{n+1}$, there exists a decomposition \mathcal{D}_C of C into C^1 strong cells in R^{n+1} partitioning $p^{-1}(B)$ for each $B \in \mathcal{D}_D$. Then $f \mid C'$ is a C^1 function for each $C' \in \mathcal{D}_C$.

Let $C \in \mathcal{D}$ and dim C = n + 1. By Lemma 3.10, the C^1 strong cell C

intersects A'. Since \mathcal{D} partitions A', we have $C \subset A'$. It follows that $f \mid C$ is a C^1 function.

This finishes the proof of $(2)_{n+1}$.

References

- [1] Y. Baisalov and B. Poizat, Paires de structures o-minimales, J. Symbolic Logic 63 (1998), 570-578.
- [2] M. Coste, An introduction to o-minimal geometry, Dottorato di Ricerca in Matematica, Dip. Mat. Univ. Pisa, Istituti Editoriali e Poligrafici Internazionali, 2000.
- [3] M. A. Dickmann, Elimination of quantifiers for ordered valuation rings, J. Symbolic Logic 52 (1987), 116-128.
- [4] A. Dolich, Theories without the intermediate value property and weak o-minimality, preprint.
- [5] L. van den Dries, Tame topology and o-minimal structures, London Math. Soc. Lecture Notes Series, 248, Cambridge Univ. Press, Cambridge, 1998.
- [6] D. Macpherson, D. Marker and C. Steinhorn, Weakly o-minimal structures and real closed fields, Trans. Amer. Math. Soc. 352 (2000), 5435-5483.
- [7] R. Wencel, Weakly o-minimal non-valuational structures, RAAG preprint n. 182, (http://ihp-raag.org/).
- [8] R. Wencel, Topological properties of sets definable in weakly o-minimal structures, RAAG preprint n. 181 (http://ihp-raag.orgj/).

Department of Mathematics
Faculty of Science
Okayama University 1-1
Naka 3-chome, Tsushima
Okayama 700-8530, Japan
e-mail: htanaka@math.okayama-u.ac.jp

Department of Mathematics
Faculty of Education
Wakayama University
Sakaedani, Wakayama 640-8510, Japan
e-mail: kawa@center.wakayama-u.ac.jp