THE WEYL GROUP OF THE 3-EXTENDED AFFINE ROOT SYSTEM $A_1^{(1,1,1)*}(1)$

TADAYOSHI TAKEBAYASHI

Department of Mathematics School of Science and Engineering Waseda University Ohkubo Shinjuku-ku Tokyo, 169-8555, Japan e-mail: takeba@aoni.waseda.jp

Abstract

We describe the Weyl group associated to 3-extended affine root system $A_1^{(1,1,1)*}(1)$ [1, 5] in terms of the 3-extended affine diagram.

1. Introduction

In 1985, Saito [5] introduced the notion of an extended affine root system, and especially classified (marked) 2-extended affine root systems associated to the elliptic singularities, which are the root systems belong to a positive semi-definite quadratic form I whose radical has rank two. Therefore, 2-extended affine root systems are also called *elliptic root systems*. In 1997, Allison et al. [1] also introduced the extended affine root systems associated to the extended affine Lie algebras and gave a complete description of them by using the concept of a semilattice. The generators and their relations of elliptic Weyl groups associated to the elliptic root systems were described from the viewpoint of a

2000 Mathematics Subject Classification: 20F55.

Keywords and phrases: 3-extended affine root system, Weyl group.

Received February 19, 2007

@ 2007 Pushpa Publishing House

generalization of Coxeter groups by Saito and Takebayashi [6]. In cases of the simply-laced extended affine root systems, Azam and Shahsanaei [4] have given a presentation of the corresponding Weyl groups. In [7] and [8], in cases of the simply-laced 3-extended affine root systems we described the 3-extended affine Weyl groups in terms of the 3-extended affine diagrams. In this paper, we describe the Weyl group of the 3-extended affine root system $A_1^{(1,1,1)*}(1)$ in terms of the 3-extended affine diagram.

2. The 3-extended Affine Root System $A_1^{(1,1,1)*}(1)$

We recall the 3-extended affine root system $A_1^{(1,1,1)*}(1)$ [1, 5], which is given as follows:

$$R = \{ \pm (\varepsilon_1 - \varepsilon_2) + 2nb + ma + kc \ (n, m, k \in \mathbb{Z} \text{ s.t. } mk \equiv 0 \pmod{2}),$$
$$\pm (\varepsilon_1 - \varepsilon_2) + (2n+1)b + 2ma + 2kc \ (n, m, k \in \mathbb{Z}) \}.$$

We set;

$$\alpha_0 = \varepsilon_2 - \varepsilon_1 + b, \quad \alpha_1 = \varepsilon_1 - \varepsilon_2, \quad \alpha_0^* = \alpha_0 + 2a,$$

$$\alpha_1^* = \alpha_1 + a, \quad \widetilde{\alpha}_0 = \alpha_0 + 2c, \quad \widetilde{\alpha}_1 = \alpha_1 + c.$$

The 3-extended affine diagram $\Gamma(R)$ of $A_1^{(1,1,1)*}(1)$ is given as follows:

3. The Weyl Group of the 3-extended Affine Root System

The Weyl group of the 3-extended affine root system is defined as follows [1, 5]. Let V be an (l+3)-dimensional real vector space

equipped with a positive semi-definite bilinear form. Let V^0 be the 3-dimensional radical of the form \langle , \rangle and $(V^0)^*$ be the dual space of V^0 . Set $V = \dot{V} \oplus V^0$, and $\tilde{V} = \dot{V} \oplus V^0 \oplus (V^0)^*$. Let $\{\epsilon_1, ..., \epsilon_l\}$ be the standard basis of \dot{V} satisfying $\langle \epsilon_i, \epsilon_j \rangle = \delta_{ij}$ for all i, j = 1, ..., l. Define the bilinear form \langle , \rangle on \tilde{V} so that \langle , \rangle extends the form on V and \langle , \rangle is nondegenerate on \tilde{V} . For $\alpha \in R$, we define the reflection $w_\alpha \in GL(\tilde{V})$ by $w_\alpha(u) = u - \langle u, \alpha^\vee \rangle \alpha \ (u \in \tilde{V})$ with $\alpha^\vee = \frac{2\alpha}{\langle \alpha, \alpha \rangle}$. Set $\tilde{W}_R = \langle w_\alpha \mid \alpha \in R \rangle \subseteq GL(\tilde{V})$. Then \tilde{W}_R is the Weyl group of the 3-extended affine root system R. In the case of $A_1^{(1,1,1)*}(1)$, we set $X = w_{\alpha_1}w_{\alpha_1+b}$, $Y = w_{\alpha_1}w_{\alpha_1+a}$, $Z = w_{\alpha_1}w_{\alpha_1+c}$, and define the central elements η_1, η_2, η_3 , by $\eta_1(u) := u + \langle u, 2\alpha \rangle b - \langle u, 2b \rangle a$, $\eta_2(u) := u + \langle u, 2c \rangle b - \langle u, 2b \rangle c$, $\eta_3(u) := u + \langle u, 2c \rangle a - \langle u, 2a \rangle c$, then the following has been given in [4].

Proposition 3.1 [4]. The Weyl group of the 3-extended affine root system $A_1^{(1,1,1)*}(1)$ is described as follows:

Generators: $w_1 := w_{\alpha_1}$, X, Y, Z and the central elements η_1 , η_2 , η_3 .

$$Relations: \ w_1^2 = 1, \quad \begin{cases} w_1 X w_1 X = 1 \\ w_1 Y w_1 Y = 1 \\ w_1 Z w_1 Z = 1, \end{cases} \quad \begin{cases} YX = XY \eta_1 \\ ZX = XZ \eta_2 \\ ZY = YZ \eta_3. \end{cases}$$

From Proposition 3.1, we obtain the following.

Theorem 3.2. The Weyl group of the 3-extended affine root system $A_1^{(1,1,1)*}(1)$ is described as follows:

Generators: for each $\alpha \in \Gamma(R)$, we attach a generator $a_{\alpha} := w_{\alpha}$. For simplicity, we shall write $a, a^*, \widetilde{a}, b, b^*, \widetilde{b}$ instead of $a_{\alpha}, a_{\alpha^*}, a_{\widetilde{\alpha}}, a_{\beta}, a_{\beta^*}, a_{\widetilde{\beta}}$.

Relations:

Proof. The case of $I.\infty$ is the same as [8], so we check the cases of $II.\infty$ and $III.\infty$.

$$(II.\infty) ba^*b(u) = u - \langle u, \alpha + 2\beta + 2a \rangle (\alpha + 2\beta + 2a) = b^*ab^*(u).$$

THE WEYL GROUP OF THE 3-EXTENDED AFFINE ROOT ... 381

The others are similarly checked.

$$(III.\infty) \ aa^*(bb^*)^2 \widetilde{a}(u) = u + \langle u, 2a \rangle (\alpha + \beta) - \langle u, 2\alpha + 2\beta \rangle a - \langle u, \widetilde{\alpha} \rangle \widetilde{\alpha}$$
$$= \widetilde{a}aa^*(bb^*)^2(u).$$

The others are similarly checked.

Next, we show that the relations in Theorem 3.2 are the defining relations of \widetilde{W}_R . We denote by $\widetilde{W}(\Gamma(R))$ the group defined by the generators and relations in Theorem 3.2. Let N(R) be the smallest normal subgroup of $\widetilde{W}(\Gamma(R))$ containing $a_{\alpha}\widetilde{a}_{\alpha}$ for $\alpha \in \{\alpha_0, \alpha_1\}$. Then one has a natural isomorphism

$$\widetilde{W}(\Gamma(R))/N(R) \cong \widetilde{W}(R_{el}).$$

The left hand side is a group obtained from $\widetilde{W}(\Gamma(R))$ by substituting \widetilde{a} , \widetilde{b} by a, b. Therefore, it is isomorphic to the central extension $\widetilde{W}(R_{el})$ of the elliptic Weyl group associated to the elliptic root system R_{el} [6]. For the proof of Theorem 3.2, we prepare the following.

Lemma 3.3. We set $\gamma_3 := (w_1 w_1^* \widetilde{w}_1)^2$, then

- (i) γ_3 is a central element in $\widetilde{W}(\Gamma(R))$,
- (ii) $\gamma_3^2 = w_0 w_0^* w_1 \widetilde{w}_1 w_0^* w_0 \widetilde{w}_1 w_1 = w_1 w_1^* w_0 \widetilde{w}_0 w_1^* w_1 \widetilde{w}_0 w_0$, and $\gamma_3^4 = (w_0 w_0^* \widetilde{w}_0)^2$.
- (iii) N(R) is an abelian group generated by $T_{\alpha}:=a_{\alpha}\widetilde{a}_{\alpha}$ for $\alpha\in\{\alpha_0,\,\alpha_1\}$ and $\gamma_3.$

Proof. (i)
$$w_0 \gamma_3 = w_0 w_1 w_1^* \widetilde{w}_1 w_1 w_1^* \widetilde{w}_1$$

$$= w_0 \widetilde{w}_1 w_1 w_1^* \widetilde{w}_1 w_1 w_1^* \text{ (by } (w_1 w_1^* \widetilde{w}_1)^2 = (\widetilde{w}_1 w_1 w_1^*)^2)$$

$$= \widetilde{w}_1 w_1 \widetilde{w}_0 w_1^* \widetilde{w}_1 w_1 w_1^* \text{ (by } w_0 \widetilde{w}_1 w_1 = \widetilde{w}_1 w_1 \widetilde{w}_0)$$

so,

$$= \widetilde{w}_1 w_1 w_1^* \widetilde{w}_1 w_0^* w_1 w_1^* \text{ (by } \widetilde{w}_0 w_1^* \widetilde{w}_1 = w_1^* \widetilde{w}_1 w_0^*)$$

$$= \widetilde{w}_1 w_1 w_1^* \widetilde{w}_1 w_1 w_1^* w_0 = \gamma_3 w_0 \text{ (by } w_0^* w_1 w_1^* = w_1 w_1^* w_0).$$

The others are similar.

(ii)
$$\gamma_3^2 = w_1 w_1^* \widetilde{w}_1 w_1 w_1^* \widetilde{w}_1 w_1 w_1^* \widetilde{w}_1 w_1 w_1^* \widetilde{w}_1 w_1$$
,

here $w_1 w_1^* \widetilde{w}_1 w_1 w_1^* \widetilde{w}_1 w_1 w_1^*$

$$= \widetilde{w}_1 w_1 w_1^* \widetilde{w}_1 w_1 w_1^* \widetilde{w}_1 w_1 w_1^*$$

$$= w_1^* w_1 w_1^* \widetilde{w}_1 w_1 w_1^* \widetilde{w}_1 w_1 w_1^*$$

$$= w_1^* w_1 w_1^* \widetilde{w}_1 w_1 w_1^* w_1 w_1 w_1 w_1^*$$

$$= w_1^* w_1 w_1^* \widetilde{w}_1 w_1 w_1^* w_1 w_1^*$$

$$= w_1^* w_1 w_1^* \widetilde{w}_1 w_1 w_1^* w_1 w_1^* w_0 w_0^* w_0^* w_0^*$$

$$= w_1 w_1^* w_0 w_0^* w_1^* \widetilde{w}_1 w_1^* w_0 w_0$$

$$= w_1 w_1^* w_0 w_0^* w_1^* \widetilde{w}_1 w_0^* w_0$$

$$= w_1 w_1^* w_0 w_0^* w_1^* \widetilde{w}_1 w_0^* w_0$$

$$= w_0 w_0^* w_1 \widetilde{w}_1 w_0^* w_0 \widetilde{w}_1 w_1$$

$$= w_0 w_0^* w_1 \widetilde{w}_1 w_0^* w_0 \widetilde{w}_1 w_1$$

$$= w_0 w_0^* w_1 w_1^* w_1^* \widetilde{w}_1 w_0^* \widetilde{w}_0 \widetilde{w}_0 w_0 \widetilde{w}_1 w_1$$

$$= w_1 w_1^* w_0 w_0^* w_1^* \widetilde{w}_1 w_0^* \widetilde{w}_0 \widetilde{w}_1 w_1 \widetilde{w}_0 w_0$$

$$= w_1 w_1^* w_0 w_0^* \widetilde{w}_0 w_1^* \widetilde{w}_1 \widetilde{w}_0 \widetilde{w}_1 w_1 \widetilde{w}_0 w_0$$

$$= w_1 w_1^* w_0 w_0^* \widetilde{w}_0 w_1^* \widetilde{w}_1 w_0 \widetilde{w}_0 w_0 \text{ (by } w_1^* \widetilde{w}_1 w_0^* = \widetilde{w}_0 w_1^* \widetilde{w}_1)$$

$$= w_1 w_1^* w_0 w_0^* w_1^* \widetilde{w}_1 w_0^* \widetilde{w}_0 w_0 \text{ (by } w_0^* \widetilde{w}_0 w_1^* \widetilde{w}_1 = w_1^* \widetilde{w}_1 w_0^* \widetilde{w}_0)$$

$$= w_1 w_1^* w_0 \widetilde{w}_0 w_1^* w_1 \widetilde{w}_0 w_0 \text{ (by } \widetilde{w}_1 w_0^* \widetilde{w}_0 w_1^* \widetilde{w}_1 = w_1^* \widetilde{w}_0 w_0^*).$$

$$\gamma_3^4 = (w_0 w_0^* w_1 \widetilde{w}_1 w_1^* w_0^* w_0 \widetilde{w}_1 w_1 \widetilde{w}_1 w_1$$

$$= w_0 w_0^* w_1 \widetilde{w}_1 w_1 \widetilde{w}_1 w_0^* w_0 \widetilde{w}_1 w_1 \widetilde{w}_1 w_1,$$

here,

$$w_1\widetilde{w}_1w_1\widetilde{w}_1w_0^*w_0\widetilde{w}_1w_1\widetilde{w}_1w_1$$

$$=\widetilde{w}_0w_0w_0\widetilde{w}_0w_1\widetilde{w}_1w_1\widetilde{w}_1w_0^*w_0\widetilde{w}_1w_1\widetilde{w}_1w_1$$

$$(\text{by }w_0\widetilde{w}_0(w_1\widetilde{w}_1)^2w_0^*=w_0^*w_0\widetilde{w}_0(w_1\widetilde{w}_1)^2)$$

$$=\widetilde{w}_0w_0w_0^*\widetilde{w}_0,$$
so, $\gamma_3^4=(w_0w_0^*\widetilde{w}_0)^2.$

(iii) We show that the subgroup generated by T_{α} (for $\alpha \in \{\alpha_0, \alpha_1\}$) and γ_3 is closed under the adjoint action $Ad_{a_{\alpha}} \ \forall \alpha \in \Gamma(R)$.

$$\begin{split} Ad_{\alpha_{0}}(T_{\alpha_{1}}) &= w_{0}w_{1}\widetilde{w}_{1}w_{0} = w_{0}\widetilde{w}_{0}w_{1}\widetilde{w}_{1} = T_{\alpha_{0}}T_{\alpha_{1}}.\\ Ad_{\alpha_{0}^{*}}(T_{\alpha_{1}}) &= w_{0}^{*}w_{1}\widetilde{w}_{1}w_{0}^{*} = w_{0}w_{0}w_{0}^{*}w_{1}\widetilde{w}_{1}w_{0}^{*}w_{0}\widetilde{w}_{1}w_{1}w_{1}\widetilde{w}_{1}w_{0}\\ &= \gamma_{3}^{2}w_{0}w_{1}\widetilde{w}_{1}w_{0} = \gamma_{3}^{2}T_{\alpha_{0}}T_{\alpha_{1}}.\\ Ad_{\alpha_{0}}(T_{\alpha_{1}}) &= \widetilde{w}_{0}w_{1}\widetilde{w}_{1}\widetilde{w}_{0} = w_{1}\widetilde{w}_{1}w_{0}\widetilde{w}_{0} = T_{\alpha_{0}}T_{\alpha_{1}}.\\ Ad_{\alpha_{1}^{*}}(T_{\alpha_{1}}) &= w_{1}^{*}w_{1}\widetilde{w}_{1}w_{1}^{*} = w_{1}^{*}w_{1}\widetilde{w}_{1}w_{1}^{*}w_{1}\widetilde{w}_{1}\widetilde{w}_{1}w_{1} = \gamma_{3}^{-1}T_{\alpha_{1}}^{-1}.\\ Ad_{\alpha_{1}^{*}}(T_{\alpha_{0}}) &= w_{1}w_{0}\widetilde{w}_{0}w_{1} = w_{1}w_{0}\widetilde{w}_{0}w_{1}\widetilde{w}_{1}w_{1}\widetilde{w}_{1}\widetilde{w}_{1}w_{1}\widetilde{w}_{1}\\ &= w_{1}\widetilde{w}_{1}w_{1}\widetilde{w}_{1}w_{0}\widetilde{w}_{0}w_{1}\widetilde{w}_{1}w_{1}\widetilde{w}_{1} = T_{\alpha_{0}}T_{\alpha_{1}}^{4}.\\ Ad_{\alpha_{1}^{*}}(T_{\alpha_{0}}) &= w_{1}^{*}w_{0}\widetilde{w}_{0}w_{1}^{*} = w_{1}w_{1}w_{1}^{*}w_{0}\widetilde{w}_{0}w_{1}^{*}w_{1}\widetilde{w}_{0}w_{0}w_{0}\widetilde{w}_{0}\widetilde{w}_{0}\\ &= \gamma_{3}^{2}w_{1}w_{0}\widetilde{w}_{0}w_{1} = w_{1}w_{1}\widetilde{w}_{1}w_{0}\widetilde{w}_{0}\widetilde{w}_{1}\\ &= w_{1}w_{0}\widetilde{w}_{0}w_{1} = w_{1}w_{1}\widetilde{w}_{1}w_{0}\widetilde{w}_{0}\widetilde{w}_{0}\\ &= w_{1}w_{0}\widetilde{w}_{0}w_{1} = T_{\alpha_{0}}T_{\alpha_{1}}^{4}.\\ Ad_{\alpha_{0}^{*}}(T_{\alpha_{0}}) &= w_{0}^{*}w_{0}\widetilde{w}_{0}w_{0}^{*} = w_{0}^{*}w_{0}\widetilde{w}_{0}w_{0}^{*}w_{0}\widetilde{w}_{0}\widetilde{w}_{0}\widetilde{w}_{0}w_{0} = \gamma_{3}^{-4}T_{\alpha_{0}}^{-1}.\\ Ad_{\alpha_{0}^{*}}(T_{\alpha_{0}}) &= w_{0}^{*}w_{0}\widetilde{w}_{0}w_{0}^{*} = w_{0}^{*}w_{0}\widetilde{w}_{0}w_{0}w_{0}\widetilde{w}_{0}\widetilde{w}_{0}\widetilde{w}_{0}\widetilde{w}_{0}w_{0} = \gamma_{3}^{-4}T_{\alpha_{0}}^{-1}.\\ Ad_{\alpha_{0}^{*}}(T_{\alpha_{0}}) &= w_{0}^{*}w_{0}\widetilde{w}_{0}w_{0}^{*} = w_{0}^{*}w_{0}\widetilde{w}_{0}w_{0}w_{0}\widetilde{w}_{0}\widetilde{w}_{0}\widetilde{w}_{0}\widetilde{w}_{0}\widetilde{w}_{0}w_{0} = \gamma_{3}^{-4}T_{\alpha_{0}}^{-1}.\\ Ad_{\alpha_{0}^{*}}(T_{\alpha_{0}}) &= w_{0}^{*}w_{0}\widetilde{w}_{0}w_{0}^{*} = w_{0}^{*}w_{0}\widetilde{w}_{0}w_{0}w_{0}\widetilde{w}_{0}\widetilde{w}_{0}\widetilde{w}_{0}\widetilde{w}_{0}\widetilde{w}_{0}w_{0} = \gamma_{3}^{-4}T_{\alpha_{0}}^{-1}.\\ Ad_{\alpha_{0}^{*}}(T_{\alpha_{0}}) &= w_{0}^{*}w_{0}\widetilde{w}_{0}w_{0}^{*} = w_{0}^{*}w_{0}\widetilde{w}_{0}\widetilde{w$$

The Proof of Theorem 3.2. Let N be a subgroup generated by Z, η_2 and η_3 . Then N is a normal subgroup of \widetilde{W}_R and there is an isomorphism $\widetilde{W}_R/N \cong \widetilde{W}(R_{el})$, where $\widetilde{W}(R_{el}) \cong \langle w_1, X, Y, \eta_1 \rangle$. So we have the commutative diagram:

By the same argument in the case of the elliptic Weyl group [6], noting the expression of η_2 , we see that the first arrow is an isomorphism. Therefore, the middle arrow is also an isomorphism.

Let us denote \dot{w}_{α} be the reflection in GL(V) such that $w_{\alpha}|_{V} = \dot{w}_{\alpha}$, and set $W_{R} = \langle \dot{w}_{\alpha} | \alpha \in R \rangle$. Then, from the same argument in the elliptic case [6] and Proposition 3.1, we see the following.

Proposition 3.4. (i) The central elements γ_1 and $\gamma_2 \in \widetilde{W}(\Gamma(R))$ corresponding to η_1 and η_2 are given as follows:

$$\gamma_1 = w_0 w_0^* (w_1 w_1^*)^2, \quad \gamma_2 = w_0 \widetilde{w}_0 (w_1 \widetilde{w}_1)^2.$$

(ii) We have an isomorphism $\widetilde{W}(\Gamma(R))/\langle \gamma_1, \gamma_2, \gamma_3 \rangle \cong W_R$.

Proof. (i) is directly checked and (ii) is trivial.

References

- B. Allison, S. Azam, S. Berman, Y. Gao and A. Pianzola, Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc. 603 (1997), 1-122.
- [2] S. Azam, Extended affine root systems, J. Lie Theory 12(2) (2002), 515-527.
- [3] S. Azam, Nonreduced extended affine Weyl groups, J. Algebra 269 (2003), 508-527.
- [4] S. Azam and V. Shahsanaei, Simply laced extended affine Weyl groups, Publ. RIMS, Kyoto University, to appear.
- [5] K. Saito, Extended affine root systems I, II, Publ. RIMS, Kyoto University 21 (1985), 75-179; 26 (1990), 15-78.

THE WEYL GROUP OF THE 3-EXTENDED AFFINE ROOT ... 385

- [6] K. Saito and T. Takebayashi, Extended affine root systems III, Publ. RIMS, Kyoto University 33 (1997), 301-329.
- [7] T. Takebayashi, Weyl groups of the simply-laced 3-extended affine root systems, JP Jour. Algebra, Number Theory and Applications, to appear.
- [8] T. Takebayashi, The Weyl group of the 3-extended affine root system $A_1^{(1,1,1)}$, preprint.

WWW.Pohmil.com