THE WEYL GROUP OF THE 3-EXTENDED AFFINE ROOT SYSTEM $A_{1}^{(1,1,1)}$

TADAYOSHI TAKEBAYASHI

Department of Mathematics
School of Science and Engineering
Waseda University
Ohkubo Shinjuku-ku
Tokyo, 169-8555, Japan
e-mail: takeba@aoni.waseda.jp

Abstract

We describe the Weyl group associated to the 3 -extended affine root system $A_{1}^{(1,1,1)}[1,5]$ in terms of the 3-extended affine diagram.

1. Introduction

In 1985, Saito [5] introduced the notion of an extended affine root system, and especially classified (marked) 2 -extended affine root systems associated to the elliptic singularities, which are the root systems belong to a positive semi-definite quadratic form I whose radical has rank two. Therefore 2 -extended affine root systems are also called elliptic root systems. In 1997, Allison et al. [1] also introduced the extended affine root systems associated to the extended affine Lie algebras and gave a complete description of them by using the concept of a semilattice. The generators and their relations of elliptic Weyl groups associated to the elliptic root systems were described from the viewpoint of a 2000 Mathematics Subject Classification: 20F55.

Keywords and phrases: 3-extended affine root system, Weyl group.
Received February 14, 2007
generalization of Coxeter groups by Saito and Takebayashi [6]. In the cases of the simply-laced extended affine root systems, Azam and Shahsanaei [4] have given a presentation of the corresponding Weyl groups. In [7], in the cases of simply-laced 3 -extended affine root systems except for $A_{1}^{(1,1,1)}$, similarly to the cases of the elliptic root systems, we described the 3 -extended affine Weyl groups in terms of the 3 -extended affine diagrams. In this paper, we describe the Weyl group of the 3extended affine root system $A_{1}^{(1,1,1)}$ in terms of the 3 -extended affine diagram.

2. The 3 -extended Affine Root System $A_{1}^{(1,1,1)}$

We recall the 3 -extended affine root system $A_{1}^{(1,1,1)}[1,5]$, which is given as follows:

$$
R=\left\{ \pm\left(\varepsilon_{1}-\varepsilon_{2}\right)+n b+m a+k c(n, m, k \in \mathbb{Z})\right\} .
$$

We set

$$
\begin{aligned}
& \alpha_{0}=\varepsilon_{2}-\varepsilon_{1}+b, \quad \alpha_{1}=\varepsilon_{1}-\varepsilon_{2}, \\
& \alpha_{i}^{*}=\alpha_{i}+a \quad(i=0,1), \quad \widetilde{\alpha}_{i}=\alpha_{i}+c \quad(i=0,1) .
\end{aligned}
$$

The 3 -extended affine diagram $\Gamma(R)$ of $A_{1}^{(1,1,1)}$ is defined as follows:

3. The Weyl Group of the 3-extended Affine Root System

The Weyl group of the 3 -extended affine root system is defined as follows [1, 5]. Let V be an $(l+3)$-dimensional real vector space
equipped with a positive semi-definite bilinear form. Let V^{0} be the 3-dimensional radical of the form \langle,$\rangle and \left(V^{0}\right)^{*}$ be the dual space of V^{0}. Set $V=\dot{V} \oplus V^{0}$, and $\tilde{V}=\dot{V} \oplus V^{0} \oplus\left(V^{0}\right)^{*}$. Let $\left\{\varepsilon_{1}, \ldots, \varepsilon_{l}\right\}$ be the standard basis of \dot{V} satisfying $\left\langle\varepsilon_{i}, \varepsilon_{j}\right\rangle=\delta_{i j}$ for all $i, j=1, \ldots, l$. Define the bilinear form \langle,$\rangle on \tilde{V}$ so that \langle,$\rangle extends the form on V$ and \langle,$\rangle is$ nondegenerate on \tilde{V}. For $\alpha \in R$, we define the reflection $w_{\alpha} \in G L(\widetilde{V})$ by $w_{\alpha}(u)=u-\left\langle u, \alpha^{\vee}\right\rangle \alpha(u \in \tilde{V})$ with $\quad \alpha^{\vee}=\frac{2 \alpha}{\langle\alpha, \alpha\rangle} . \quad$ Set $\quad \tilde{W}_{R}=\left\langle w_{\alpha} \mid \alpha \in R\right\rangle$ $\subseteq G L(\widetilde{V})$. Then \widetilde{W}_{R} is the Weyl group of the 3 -extended affine root system R. In the case of $A_{1}^{(1,1,1)}$, we set $X=w_{\alpha_{1}} w_{\alpha_{1}+b}, Y=w_{\alpha_{1}} w_{\alpha_{1}+a}$, $Z=w_{\alpha_{1}} w_{\alpha_{1}+c}$, and define the central elements $\eta_{1}, \eta_{2}, \eta_{3}$, by $\eta_{1}(u):=$ $u+\langle u, a\rangle b-\langle u, b\rangle a, \quad \eta_{2}(u):=u+\langle u, c\rangle b-\langle u, b\rangle c, \quad \eta_{3}(u):=u+\langle u, 2 c\rangle a$ $-\langle u, 2 a\rangle c$, then the following has been given in [4].

Proposition 3.1 [4]. The Weyl group of the 3 -extended affine root system $A_{1}^{(1,1,1)}$ is described as follows:

Generators: $w_{1}:=w_{\alpha_{1}}, X, Y, Z$ and the central elements $\eta_{1}, \eta_{2}, \eta_{3}$.
Relations: $w_{1}^{2}=1,\left\{\begin{array}{l}w_{1} X w_{1} X=1 \\ w_{1} Y w_{1} Y=1 \\ w_{1} Z w_{1} Z=1,\end{array}\left\{\begin{array}{l}Y X=X Y \eta_{1} \\ Z X=X Z \eta_{2} \\ Z Y=Y Z \eta_{3} .\end{array}\right.\right.$
From Proposition 3.1, we obtain the following.
Theorem 3.2. The Weyl group of the 3 -extended affine root system $A_{1}^{(1,1,1)}$ is described as follows:

Generators: for each $\alpha \in \Gamma(R)$, we attach a generator $a_{\alpha}:=w_{\alpha}$. For simplicity, we shall write $a, a^{*}, \widetilde{a}, b, b^{*}, \widetilde{b}$ instead of $a_{\alpha}, a_{\alpha^{*}}, a_{\tilde{\alpha}}, a_{\beta}$, $a_{\beta^{*}}, a_{\tilde{\beta}}$.

Relations:

0
${ }^{\alpha} \circ$
$\Rightarrow a^{2}=1$
$\begin{array}{ll}I .0 & \alpha^{*}\end{array}$
 $\Rightarrow\left(a \alpha^{*} \widetilde{a}\right)^{2}=\left(a^{*} \widetilde{a} a\right)^{2}=\left(\widetilde{a} \alpha \alpha^{*}\right)^{2}$

$$
\Rightarrow(A \bar{A} B)^{2}=(\bar{A} B A)^{2}=(B A \bar{A})^{2}
$$

where $A \neq \bar{A} \in\left\{\alpha, \alpha^{*}, \widetilde{\alpha}\right\}$, and $B=\beta, \beta^{*}, \widetilde{\beta}$

$$
\Rightarrow A \bar{A} B \bar{B}=\bar{A} B \bar{B} A=B \bar{B} A \bar{A}=\bar{B} A \bar{A} B
$$

where $\left\{A=\alpha, \bar{A}=\alpha^{*}, B=\beta, \bar{B}=\beta^{*}\right\}$,

$$
\left\{A=\alpha^{*}, \bar{A}=\widetilde{\alpha}, B=\beta^{*}, \bar{B}=\widetilde{\beta}\right\} \text { or }
$$

$$
\{A=\alpha, \bar{A}=\widetilde{\alpha}, B=\beta, \bar{B}=\widetilde{\beta}\}
$$

$$
\begin{aligned}
a a^{*} b b^{*} \widetilde{a} & =\widetilde{a} a a^{*} b b^{*} \\
a a^{*} b b^{*} \widetilde{b} & =\widetilde{b} a a^{*} b b^{*} \\
a \widetilde{a} b \widetilde{b} a^{*} & =a^{*} a \widetilde{a} b \widetilde{b} \\
a \widetilde{a} b \widetilde{b} b^{*} & =b^{*} a \widetilde{a} b \widetilde{b}
\end{aligned}
$$

Proof. In the case of $I .0$ is the same as in [7], so we check the cases of $I . \infty, I I . \infty$, and III. ∞.

$$
\begin{aligned}
(I . \infty)(A \bar{A} B)^{2}(u)= & u-\langle u, 2 A-2 \bar{A}\rangle B-\langle u,-2 \bar{A}-2 B\rangle A \\
& -\langle u, 2 A+2 B\rangle \bar{A}=(\bar{A} B A)^{2}(u)=(B A \bar{A})^{2}(u) . \\
(I I . \infty) A \bar{A} B \bar{B}(u)= & u+\langle u, d\rangle(A+B)-\langle u, A+B\rangle d=\bar{A} B \bar{B} A(u) \\
= & B \bar{B} A \bar{A}(u)=\bar{B} A \bar{A} B(u) . \quad(\bar{A}=: A+d, \bar{B}=: B+d) \\
(I I I . \infty) a a^{*} b b^{*} \widetilde{a}(u)= & u+\langle u, a\rangle(\alpha+\beta)-\langle u, \alpha+\beta\rangle a-\langle u, \tilde{\alpha}\rangle \tilde{\alpha} \\
& =\widetilde{a} a a^{*} b b^{*}(u) .
\end{aligned}
$$

The others are similarly checked.
Next, we show that the relations in Theorem 3.2 are the defining relations of \widetilde{W}_{R}. We denote by $\widetilde{W}(\Gamma(R))$ the group defined by the generators and relations in Theorem 3.2. Let $N(R)$ be the smallest normal subgroup of $\widetilde{W}(\Gamma(R))$ containing $a_{\alpha} \widetilde{a}_{\alpha}$ for $\alpha \in\left\{\alpha_{0}, \alpha_{1}\right\}$. Then one has a natural isomorphism

$$
\tilde{W}(\Gamma(R)) / N(R) \cong \tilde{W}\left(R_{e l}\right) .
$$

The left hand side is a group obtained from $\widetilde{W}(\Gamma(R))$ by substituting \widetilde{a}, \widetilde{b}, by a, b. Therefore, it is isomorphic to the central extension $\tilde{W}\left(R_{e l}\right)$ of the elliptic Weyl group associated to the elliptic root system $R_{e l}$ [6]. For the proof of Theorem 3.2, we prepare the following.

Lemma 3.3. We set $\gamma_{3}:=\left(w_{1} w_{1}^{*} \widetilde{w}_{1}\right)^{2}$, then
(i) $\gamma_{3}=\left(w_{0} w_{0}^{*} \tilde{w}_{0}\right)^{2}$,
(ii) γ_{3} is a central element in $\widetilde{W}(\Gamma(R))$,
(iii) $N(R)$ is an abelian group generated by $T_{\alpha}:=a_{\alpha} \widetilde{a}_{\alpha}$ for $\alpha \in$ $\left\{\alpha_{0}, \alpha_{1}\right\}$ and γ_{3}.

Proof.

(i) $\gamma_{3}=\left(w_{1} w_{1}^{*} \widetilde{w}_{1}\right)^{2}$

$$
\begin{aligned}
& =w_{1} w_{1}^{*} \widetilde{w}_{1} w_{1} \widetilde{w}_{0} w_{0} w_{0} \widetilde{w}_{0} w_{1}^{*} \widetilde{w}_{1} \\
& =w_{1} w_{1}^{*} w_{0} \widetilde{w}_{0} w_{1}^{*} w_{1} \widetilde{w}_{0} w_{0}\left(\text { by } \widetilde{w}_{1} w_{1} \widetilde{w}_{0} w_{0} w_{1}^{*}=w_{1}^{*} \widetilde{w}_{1} w_{1} \widetilde{w}_{0} w_{0}\right) \\
& =w_{1} w_{1}^{*} w_{0} w_{0}^{*} w_{0}^{*} \widetilde{w}_{0} w_{1}^{*} w_{1} \widetilde{w}_{0} w_{0} \\
& =w_{0}^{*} \widetilde{w}_{0} w_{0} w_{0}^{*} \widetilde{w}_{0} w_{0}\left(\text { by } w_{1} w_{1}^{*} w_{0} w_{0}^{*} \widetilde{w}_{0}=\widetilde{w}_{0} w_{1} w_{1}^{*} w_{0} w_{0}^{*}\right) \\
& =\left(w_{0} w_{0}^{*} \tilde{w}_{0}\right)^{2}
\end{aligned}
$$

(ii) It is trivial from the relations

$$
\begin{aligned}
\left(w_{1} w_{1}^{*} \tilde{w}_{1}\right)^{2} & =\left(w_{1}^{*} \tilde{w}_{1} w_{1}\right)^{2}=\left(\widetilde{w}_{1} w_{1} w_{1}^{*}\right)^{2}=\left(w_{0} w_{0}^{*} \tilde{w}_{0}\right)^{2} \\
& =\left(w_{0}^{*} \widetilde{w}_{0} w_{0}\right)^{2}=\left(\widetilde{w}_{0} w_{0} w_{0}^{*}\right)^{2}
\end{aligned}
$$

(iii) We show that the subgroup generated by T_{α} (for $\left.\alpha \in\left\{\alpha_{0}, \alpha_{1}\right\}\right)$ and γ_{3} is closed under the adjoint action $A d_{a_{\alpha}}, \forall \alpha \in \Gamma(R)$,

$$
\begin{aligned}
& A d_{\alpha_{0}}\left(T_{\alpha_{1}}\right)=w_{0} w_{1} \widetilde{w}_{1} w_{0}=w_{0} w_{1} \tilde{w}_{1} w_{0} \widetilde{w}_{0} \widetilde{w}_{0} \\
& =w_{0} \widetilde{w}_{0} w_{1} \widetilde{w}_{1} w_{0} \widetilde{w}_{0}=T_{\alpha_{0}}^{2} T_{\alpha_{1}}, \\
& A d_{\alpha_{0}^{*}}\left(T_{\alpha_{1}}\right)=w_{0}^{*} w_{1} \widetilde{w}_{1} w_{0}^{*}=w_{0}^{*} \widetilde{w}_{0} w_{0} w_{0} \widetilde{w}_{0} w_{1} \widetilde{w}_{1} w_{0}^{*} \\
& =w_{0}^{*} \widetilde{w}_{0} w_{0} w_{0}^{*} \widetilde{w}_{0} w_{0} w_{0} \widetilde{w}_{0} w_{0} \widetilde{w}_{0} w_{1} \widetilde{w}_{1}=\gamma_{3} T_{\alpha_{0}}^{2} T_{\alpha_{1}}, \\
& A d_{\widetilde{\alpha}_{0}}\left(T_{\alpha_{1}}\right)=\widetilde{w}_{0} w_{1} \widetilde{w}_{1} \widetilde{w}_{0}=w_{0} w_{0} \widetilde{w}_{0} w_{1} \widetilde{w}_{1} \widetilde{w}_{0} \\
& =w_{0} \widetilde{w}_{0} w_{0} \tilde{w}_{0} w_{1} \tilde{w}_{1}=T_{\alpha_{0}}^{2} T_{\alpha_{1}}, \\
& A d_{\alpha_{1}^{*}}\left(T_{\alpha_{1}}\right)=w_{1}^{*} w_{1} \widetilde{w}_{1} w_{1}^{*}=w_{1}^{*} w_{1} \widetilde{w}_{1} w_{1}^{*} w_{1} \widetilde{w}_{1} \widetilde{w}_{1} w_{1}=\gamma_{3}^{-1} T_{\alpha_{1}}^{-1} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& A d_{\alpha_{1}}\left(T_{\alpha_{0}}\right)=T_{\alpha_{0}} T_{\alpha_{1}}^{2}, \quad A d_{\alpha_{1}^{*}}\left(T_{\alpha_{0}}\right)=\gamma_{3} T_{\alpha_{1}}^{2} T_{\alpha_{0}}, \\
& A d_{\widetilde{\alpha}_{1}}\left(T_{\alpha_{0}}\right)=T_{\alpha_{0}} T_{\alpha_{1}}^{2}, \quad A d_{\alpha_{0}^{*}}\left(T_{\alpha_{0}}\right)=\gamma_{3}^{-1} T_{\alpha_{0}}^{-1} .
\end{aligned}
$$

The Proof of Theorem 3.2. Let N be a subgroup generated by Z, η_{2} and η_{3}. Then N is a normal subgroup of \widetilde{W}_{R} and there is an isomorphism $\widetilde{W}_{R} / N \cong \widetilde{W}\left(R_{e l}\right)$, where $\widetilde{W}\left(R_{e l}\right) \cong\left\langle w_{1}, X, Y, \eta_{1}\right\rangle$. So we have the commutative diagram:

By the same argument in the case of the elliptic Weyl group [6], noting the expression of η_{2} is generated by Y, we see that the first arrow is an isomorphism. Therefore the middle arrow is also an isomorphism.

Let us denote \dot{w}_{α} be the reflection in $G L(V)$ such that $\left.w_{\alpha}\right|_{V}=\dot{w}_{\alpha}$, and set $W_{R}=\left\langle\dot{w}_{\alpha} \mid \alpha \in R\right\rangle$. Then, from the same argument in the elliptic case [6] and Proposition 3.1, we see the following.

Proposition 3.4. (i) The central elements γ_{1} and $\gamma_{2} \in \tilde{W}(\Gamma(R))$ corresponding to η_{1} and η_{2} are given as follows:

$$
\gamma_{1}=w_{0} w_{0}^{*} w_{1} w_{1}^{*}, \quad \gamma_{2}=w_{0} \widetilde{w}_{0} w_{1} \widetilde{w}_{1} .
$$

(ii) We have an isomorphism $\widetilde{W}(\Gamma(R)) /\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3}\right\rangle \cong W_{R}$.

Proof. (i) is directly checked and (ii) is trivial.

References

[1] B. Allison, S. Azam, S. Berman, Y. Gao and A. Pianzola, Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc. 603 (1997), 1-122.
[2] S. Azam, Extended affine root systems, J. Lie Theory 12(2) (2002), 515-527.
[3] S. Azam, Nonreduced extended affine Weyl groups, J. Algebra 269 (2003), 508-527.
[4] S. Azam and V. Shahsanaei, Simply laced extended affine Weyl groups, Publ. Res. Inst. Math. Sci., Kyoto University, to appear.
[5] K. Saito, Extended affine root systems I, II, Publ. Res. Inst. Math. Sci., Kyoto University 21 (1985), 75-179; 26 (1990), 15-78.
[6] K. Saito and T. Takebayashi, Extended affine root systems III, Publ. Res. Inst. Math. Sci., Kyoto University 33 (1997), 301-329.
[7] T. Takebayashi, Weyl groups of the simply-laced 3-extended affine root systems, JP Jour. Algebra, Number Theory and Appl., to appear.

