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Abstract

A new Lie algebra 6R  is constructed by introducing the cycled numbers,

whose resulting loop algebra 6~
R  is also presented, which is used to

establish a linear isospectral problem. It follows that an integrable

hierarchy of soliton equations with 8-potential functions is obtained,

from which the well-known KN integrable system is produced as a

reduced case. Therefore, a type of expanding integrable system of the

KN hierarchy is worked out. The method proposed in the paper can

deduce a great many of other integrable soliton hierarchies.

1. Introduction

As we all know that it is an important topic to look for new integrable
solitary hierarchies [11]. One has taken various approaches to obtain a
host of interesting hierarchies of soliton equations such as the results in
[1-3, 6-8, 10]. While integrable couplings are a quite new aspect of soliton
theory, which are introduced by the study of the Virasoro symmetry
algebra and the solitary solutions [4]. In terms of the related concepts of
integrable couplings [9], we find they belong to the scope of integrable
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systems. Based on some associated theories on integrable couplings, we

construct a new Lie algebra 6R  by introducing the cycled numbers. The

resulting loop algebra 6~
R  is given as well. It follows that the linear

isospectral Lax pairs are constructed. By employing Tu scheme, an
integrable system, as a matter of fact, an integrable coupling of the KN
hierarchy, is obtained, which is a type of expanding integrable model of
the KN hierarchy. The method given in this paper can be used to produce
a lot of other integrable solitary hierarchies with multi-component
potential functions.

2. An Integrable Solitary Hierarchy

Definition 1. The number set { }sεεε ...,,, 10  is called cycled, if the

relations hold
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Definition 2. As for two vectors ,
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commuting operation in 6R  is defined by

[ ] [ ] ,,0,,, skibaba kiki ≤≤εε=εε (2)
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A resulting loop algebra 6~
R  is given by
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with a commuting operation presented as

[ ] [ ] ,,, nm
kj

n
k

m
j baba +λεε=λελε (5)

where ., 6Rba ∈

Consider the linear isospectral Lax pair as follows:
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whose compatibility leads to the zero-curvature equation just as showed

in [5]

[ ] .0, =+− VUVU xt (7)

In what follows, we take spectral U and V in (6) and only consider

1,0=s  for calculational convenience.
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solving the stationary zero-curvature equation

[ ]VUVx ,= (8)

yields the recursion relations for V as follows:
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with the following initials:

( ) ( ) ( ) ( ) ( ) ( ) ( )1,00,00,00,00,0,1,00,0 bfdcbaa ====α==

( ) ( ) ( ) ( ) ( ) ( ),0,1,00,11,01,01,0 10 qqbaefc +α======

( ) ( ) ( ) ( ) ( ) ( ),0,1,0,1,0,1 101010 ppfsserrc +α=+α=+α=

( ) ( ),0,1 0111100010000111 qpqpqpqpsrsrsrsrd −−−−+++α=

( ) ( ) ( ) ( ) ( ),1,1,1,1,01,1 1001 rrcqqba +α=+α==

( ) ( ) ( ) ( ),1,1,1,1 0101 ppfsse +α=+α=

( ) ( ).1,1 1101001011010010 qpqpqpqpsrsrsrsrd −−−−+++α=
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Denote ( )
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then Eq. (8) can be written as

( ) [ ( ) ] ( ) [ ( ) ].,, nn
x

nn
x VUVVUV −−++ −=+− (10)

It is easy to verify that the terms on the left-hand side in above formula

are of degree ,0≥  however, the terms on the right-hand side are of

degree .1≤  Therefore, the terms on the both sides are of degrees 0, 1.

Thus we have
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Taking a modified term n∆  for ( )nV+  and denoting by ( ) ( ) ,n
nn VV ∆+= +

( ) ( ) ( ) ( )( ) ,0,0,1,0,,0,0,1,0, 1010
T

n ndndnana ε−ε−ε−ε−=∆  a direct

calculation reads that
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with

( ) ( ) ( ) ( ) ( )[ ]0,11,0,1,0, 10100 +−+++λε= nendrndrnasnasA

( ) ( ) ( ) ( ) ( )[ ],1,10,1,0,1, 10101 +−+++λε+ nendrndrnasnas

( ) ( ) ( ) ( ) ( )[ ]0,11,0,1,0, 10100 +−+++λε= nfndqndqnapnapB

( ) ( ) ( ) ( ) ( )[ ].1,10,1,0,1, 10101 +−+++λε+ nfndqndqnapnap

Hence the zero-curvature equation

( ) [ ( ) ] 0, =+− nn
xt VUVU (11)

admits the following integrable system:
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where J is a Hamiltonian operator.

From the relations (9), a recursion operator satisfies

( ) ,881 nnijn LGGlG == ×+ (13)



w
w
w
.p
ph

m
j.c

om

A LIE ALGEBRA AND ITS APPLICATIONS 365

where
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Hence, the system (12) can be written as
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Taking ,0001111 ====== spsprq  the system (14) is reduced

to the KN hierarchy. Therefore, it is a type of expanding integrable

system with 8-component potential functions of the KN.

Remark. The method presented in the paper for obtaining expanding

integrable hierarchies of soliton equations, is far from any one in [5]. If

taking ,...,,2,1,0 ns =  we could obtain integrable systems with more

multiple component functions. However, the calculation would be too

tedious to complete only by hand, except for using computer. In addition,

there is an open problem, that is, how do we get the Hamiltonian

structure, symmetries and conserved laws for the integrable systems

obtained by the above approach? Which is worth studying in the future.
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