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Abstract

Dilation Equations play an important role in Wavelet Multiresolution
Approximation. A dilation equation is a difference equation for fixed
scale summing over all time-shifts. In this note we introduce a class of
equations called Time-Shift Equations. A time-shift equation is a
difference equation for fixed time-shift summing over all scales. Analysis
leading to derivation of these equations will occupy the rest of the note.

1. Introduction

This note is a brief introduction to a class of equations  called Time-

Shift Equations (TiEq)  which is an analog of the class of Dilation

Equations (DiEq).

Dilation Equations “live” in Wavelet Multiresolution Approximation
(MRA), see for instance the paper of Strang [12] and the book of Keinert
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[4, Chapter 1]. The basic DiEq, also called “refinement equation”, is a two-
scale difference equation, of the form

( ) ( )( ) ( )∑ ∑
∈ ∈

⋅φ=−⋅φ=⋅φ
Z Zn n

n
nn DTcnc ,2 (1.1)

where the scaling function ( ) ( )R2L∈⋅φ   generating a MRA from ( )R2L -

subspaces { } Z∈mmV   is normalized so that [12]

( )∫ ∑
∞

∞− ∈

=⇒=φ
Zn

ncdtt .21 (1.2)

Here and in what follows D and T are, respectively, dyadic-scale and unit-

time-shift ( )R2L -operators defined by

( ) ( )( )⋅=⋅ 22fDf   and  ( ) ( )( ).1: −⋅=⋅ fTf (1.3)

The basic Time-Shift Equation to be derived is the difference equation
of the form

( ) ( ( ) ) ( )∑ ∑
∈ ∈

⋅ϕβ=−⋅ϕβ=⋅ϕ
Z Zm m

m
m

mm
m TD ,122 (1.4)

for a ( ) ( ).2 RL∈⋅ϕ

We note that m always stands for scale level and m2  is scale while n
is time-shift. Thus the right hand side of equation (1.1) is for scale level

,1=m  or for scale ,21  over all time-shifts, while that of equation (1.4) is

at time-shift 1 over all scale levels.

Background and steps leading to TiEq will be presented in Section 2.
The connection between TiEq and DiEq is shown in Section 3.

2. Why Time-Shift Equations?

Let ( ) ( )R2L∈⋅ψ  be a wavelet and let ( ) ( ) ,,, 2
, Z∈⋅ψ nmnm  be the

wavelet functions generated from ( )⋅ψ  by time-shiftings followed by

dyadic-scalings, that is,
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( ) ( ( ) ) ( ) ( )( ) ( ) .,,22: 2
, Z∈−⋅ψ=⋅ψ=−⋅ψ=⋅ψ nmnDTDn mnmmm
nm (2.1)

Then, by definition, { ( )}⋅ψ nm,  is a double-indexed ( )R2L -orthonormal

basis (o.n.b) [5, 9]. As a consequence the “scale detail subspaces” ( )ψmW

constructed from ( )⋅ψ nm,  as

( ) ( )( ) ,,: Z
Z

∈−⋅ψ=ψ
∈
∨ mnDm
nmW (2.2)

constitute an ( )R2L -orthogonal subspaces basis (o.s.b) [7]. Therefore the

space ( )R2L  admits a decomposition into orthogonal scale detail

subspaces

( ) ( ).2 ψ=
∈
⊕ m
m

WL
Z

R (2.3)

Moreover, since D has a bounded inverse, we also have

( ) ( ),0
2 ψ=

∈
⊕ WL m
m

D
Z

R (2.4)

where the subspace

( ) ( )( ),:0 n
n

−⋅ψ=ψ
∈
∨
Z

W (2.5)

is generating  because of (2.4)  and D-wandering because

( ) ( ),00 ψ⊥ψ ′WW mm DD  whenever .mm ′≠ (2.6)

What is interesting is the fact that (2.4) actually defines D as a bilateral
shift whose multiplicity is the dimension of its generating wandering

subspace ( )ψ0W  [3], see also [2, 1]. This fact will be used in Section 3.

Now, suppose a wavelet ( )⋅ψ  is “derived” from a scaling function ( )⋅φ
 generating a MRA { } .Z∈mmV  That is, the subspaces mV   called

scaling approximation subspaces  satisfy the following properties [9, 10,

11]:

 (o) ( )( )nn −⋅φ∈= ∨ Z:0V  and ( ) ,,, 2
1 Z∈=+ nmD mm VV
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  (i) ,,1 Z∈⊂ + mmm VV

 (ii) { },0=∈ mm VZ∩

(iii) ( ).2 RZ LV =∈ mm∪

Then we also have

( ) .,1 Z∈ψ⊕=+ mmmm WVV (2.7)

This establishes a relationship between the scaling function ( )⋅φ  and the

associated wavelet ( ).⋅ψ  Note that in property (o), the functions ( )( ),n−⋅φ

,Z∈n  are taken to be orthonormal.

The DiEq was born in the “nested” property (i).

It follows from property (o) that

( )( ) .,: Z
Z

∈−⋅φ=
∈
∨ mnDm
nmV (2.8)

Moreover, each mV  can also be “represented” in terms of the scale detail

subspaces ( ) ,1, −≤′<∞−ψ′ mmmW  as

( ) .,

1

Z∈ψ= ′

−

−∞=′
⊕ mm

m

m
m WV (2.9)

This is a consequence of (2.7).

To distinguish between mV  in (2.8) and its representation in (2.9) we

denote the right hand side of (2.9) by ( )ψmV

( ) ( ) ,,:

1

Z∈ψ=ψ ′

−

−∞=′
⊕ mm

m

m
m WV (2.10)

to indicate that, since it depends on the wavelet functions ( ),, ⋅ψ nm  it

depends on the wavelet ( )⋅ψ  as well. Moreover, ( ),ψmV  ,Z∈m

automatically satisfy the MRA properties (i), (ii), and (iii).

It is evident that dyadic-scaling plays a central role while time-
shifting is some-what neglected! In other words, Wavelets and MRA are
basically “scale-based” theories.
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An important fact which we feel has been “overlooked” is the fact that

one can also construct “time-shift detail subspaces” ( )ψnH  from the

wavelet functions ( ),, ⋅ψ nm  ( ) ,, 2Z∈nm  as [6],

( ) ( )( ) .,: Z
Z

∈−⋅ψ=ψ
∈
∨ nnDm

mnH (2.11)

Moreover, these ( )ψnH  are also orthogonal and form a second o.s.b for

( ).2 RL  Consequently, we now have, in addition to (2.3), the time-shift

orthogonal decomposition

( ) ( ).2 ψ=
∈
⊕ n
n

HL
Z

R (2.12)

This suggests that one ought to explore a “time-shift-based” approach to
Wavelets and MRA. Preliminary results along these lines were reported
in [7, 8].

To derive the proposed TiEq we begin with the time-shift detail

subspaces ( )ψnG  defined by

( ) ( ) .,:

1

Z∈ψ=ψ ′

−

−∞=′
⊕ nn

n

n
n HG (2.13)

These are simply a time-shift analog of the scale subspaces ( ).ψmV

Moreover, it is a simple matter to verify that ( ){ }ψnG  also satisfies the

MRA properties (i), (ii) and (iii).

The difference between ( ){ } Z∈ψ mmV  and ( ){ } Z∈ψ nnG  is that the

former consists of scale detail subspaces and it represents the original

MRA { } ,Z∈mmV  while the latter consists of time-shift detail subspaces,

hence it cannot represent the scaling subspaces { } .Z∈mmV  This is also

due in part to the fact that ( )ψnG  is D-reducing while mV  is only ∗D -

invariant, because of the MRA property (i).

Suppose now that there is a function ( ) ( )R2L∈⋅ϕ  such that

( )( ) ( )( ) ( ) .,, 2Z∈∀−⋅ϕ⊥−⋅ϕ nmnDn m (2.14)
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Let the subspaces ,nT  ,Z∈n  be defined by

( )( ) ,,: Z∈−⋅ϕ= ∨ nnDm
mnT (2.15)

and satisfy the following properties:

  (i′) ,1+⊂ nn TT  ,Z∈n

 (ii′) { },0=∈ nn TZ∩

(iii′) ( ).2 RZ LT =∈ nm∪

Moreover

( ) ,,1 Z∈ψ⊕=+ nnnn HTT (2.16)

where ( )ψnH  is as previously defined. Then clearly nT  also admits the

representation

( ) ( ) .,:

1

Z∈ψ=ψ= ′

−

−∞=′
⊕ nnn

n

n
n GHT (2.17)

We note that nT  as defined by (2.15) is D-reducing and so is ( ).ψnG

It follows from (2.15) and property (i′) that

( ) ( )( ).1:: 10 −⋅ϕ=⊂⋅ϕ=
∈∈
∨∨ m

m
m

m
DD

ZZ
TT (2.18)

Therefore, since ( )⋅ϕ  also lives in 1T  it can be represented in terms of the

orthonormal functions ( )( ),1−⋅ϕmD  Z∈m   spanning 1T   as

( ) ( )( )∑
∈

−⋅ϕβ=⋅ϕ
Zm

m
mD .1 (2.19)

This is the basic Time-Shift Equation anounced in (1.3). We also have, as
in the case of the DiEq (1.1),

( )∫ ∑
∞

∞− ∈

=
β

⇒=ϕ
Zm

m
mdtt .1
2

1 (2.20)

In general we have the TiEq

( )( ) ( ) ( )( )∑
∈

∈+−⋅ϕβ=−⋅ϕ
Z

Z
m

m
nm nnDn .,1, (2.21)
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3. A Connection between TiEq and DiEq

We close by showing that a TiEq can be converted  up to a unitary

operator  into a DiEq and vice versa.

First, given a wavelet ( ) ( ),2 RL∈⋅ψ  then the space ( )R2L

automatically admits the orthogonal decomposition (2.4) into scale detail
subspaces

( ) ( ) ( ) ( ),;: 2
0

2 DDm
m

m
m

RR
ZZ

LWWL =ψ=ψ=
∈∈
⊕⊕ (3.1)

where ( )ψ0W  is defined by (2.5)

( ) ( )( ),:0 n
n

−⋅ψ=ψ
∈
∨W
Z

is a D-wandering generating subspace, and ( )D;2 RL  indicates that (3.1)

is a D-wandering subspaces representation of ( ).2 RL

For the unit time-shift operator T, unfortunately, there is no

decomposition in terms of the wavelet functions ( )⋅ψ nm,   similar to

(3.1). However, since T is also a bilateral shift of countably infinite

multiplicity, the space ( )R2L  can admit a T-wandering subspaces

orthogonal representation of the form

( ) ( ),;: 2
,0

2 TT T
n

n
RR

Z
LWL ==

∈
⊕ (3.2)

where T,0W  is a T-wandering generating subspace.

It is well known that bilateral shifts of equal multiplicity are
unitarily equivalent [13, Chapter 1]. This for the case of the bilateral

shifts D and T can be seen as follows:

First, let ( ) ( ).;2 Df RL∈⋅  Then we have the dyadic-scale orthogonal

representation

( ) ( ) ( ) ( )∑
∈

∈ψ∈⋅⋅=⋅
Z

Z
m

mm
m mwwDf ,,, 0W  and ( ) ( )∑

∈

⋅=⋅
Zm

m fw .22

(3.3)
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Let

( ) T,00: WW →ψω

be a unitary operator sending ( )ψ0W  onto .,0 TW  Then the operator

( ) ( ),,;: 22 TD RR LL →Ω

defined by

( ) ( )∑
∈

⋅ω=⋅Ω
Zm

m
m wTf ,: (3.4)

is clearly unitary. Moreover, it is easy to see that

,Ω=Ω TD (3.5)

that is D and T are unitarily equivalent.

We summarize these steps in the next proposition.

Proposition 1. Let ( ) ( )R2L∈⋅ψ  be a wavelet. Then the space ( )R2L

admits a dyadic-scaling representation ( )D;2 RL  defined by the

orthogonal decomposition (3.1), as well as a unit-time-shift representation

( )T;2 RL  defined by (3.3). The former is unique while the latter need not

be.

Now, return to the basic TiEq (1.4)

( ) ( )( ) ( )∑ ∑
∈ ∈

⋅ϕβ=−⋅ϕβ=⋅ϕ
Z Zm m

m
m

m
m TDD ,1 (3.6)

which can be rewritten as

( ) ( )( )∑
∈

−∗ −⋅ϕβ=⋅ϕ
Zm

m
mDD .11 (3.7)

Substituting for D from (3.5) we obtain

( ) ( )( )∑
∈

−∗∗ −⋅ϕΩΩβ=⋅ϕ
Zn

n
n TD ,11 (3.8)

where, since the right hand side is summing with respect to time-shifts,
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we have replaced m by n. Then, since ∗Ω  is also unitary, we can have

( ) ( )( )∑
∈

−∗ −⋅ϕΩβ=⋅ϕΩ
Zn

n
nTD .11 (3.9)

This is clearly a Dilation-Type Equation. To see this, let us rewrite the
basic DiEq (1.1) as

( ) ( )( )∑
∈

−∗ −⋅φ=⋅φ
Zn

n
nTcD ,11 (3.10)

which is simply equation (3.9) for ,I=Ω  in which ( )⋅ϕ  as well as nβ  are

replaced by ( )⋅φ  and .nc  We have therefore shown that a TiEq of the form

(3.8) is connected to a DiEq of the form (3.9) via the “Dilation-Type
Equation” (3.10). In exactly the same way, a DiEq of the form (3.10) is
connected to a TiEq of the form (3.7) via the “Time-Shift-Type Equation”

( ) ( )( )∑
∈

∗−∗∗ −⋅φΩ=⋅φΩ
Zn

n
nDcD .11 (3.11)

This note is intended as a brief introduction to TiEq. Further work on
these equations as well as on Time-Shift MRA will be reported elsewhere.
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