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Abstract 

This note considers the wavelet based linear density estimator for the 
probability density function considered in Prakasa Rao [11]. The results 
obtained for associated sequences by Prakasa Rao [11] are extended to 
the case of negatively dependent sequences. 

1. Introduction 

Let { }1, ≥nXn  be a sequence of random variables. A finite family of 
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random variables { }NXXX ,,, 21 …  is said to be negatively dependent 

(ND) if 
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An infinite family of random variables is said to be ND if every finite 
subfamily is ND. 

The following lemma was proved in Bozorgnia et al. [1]. We use it in 
obtaining the main result in the next section. 

Lemma 1.1. Let { }1, ≥nXn  be a sequence of ND random variables 

and { }1, ≥nfn  be a sequence of Borel functions all of which are monotone 

increasing (or all are monotone decreasing). Then ( ){ }1, ≥nXf n  is a 

sequence of ND random variables. 

Suppose that { }1, ≥nXn  is a sequence of random variables with a 

common one-dimensional marginal probability density function f. 

Prakasa Rao [11] proposed a wavelet based linear estimator of f in case 
the sequence of random variables given above is associated. Recently, 
such results have also been extended to the negatively associated 
sequences by Doosti et al. [6]. This allows one to obtain upper bounds on 

the pL  losses for the resulting estimator as shown in Prakasa Rao [11]. 

The purpose of this note is to extend these results for estimating the 
density of ND of random variables. 

Some preliminaries of the linear wavelet estimator of a probability 
density function is given in Section 2 and Section 3 provides the bounds 

on the pL -losses for the proposed estimator. 

2. Preliminaries 

Let { }1, ≥nXn  be a sequence of ND random variables on the 



www.p
phm

j.c
om

WAVELET LINEAR DENSITY ESTIMATION … 59

probability space ( ).,, PℵΩ  We suppose that iX  has a bounded and 

compactly supported marginal density ( ),⋅f  with respect to the Lebesgue 

measure, which does not depend on i. We are interested in estimating 

this density from n observations .,,1, niXi …=  The motivation behind 

wavelet based linear estimator of the density comes from a formal 

expansion (see Daubechies [2, 3]) for any function ( ),2 RL∈f  
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where the functions 

( ) ( )kxx jj
kj −φ=φ 00

0
22 2

,  

and 

( ) ( )kxx jj
kj −ψ=ψ 22 2

,  

constitute an (inhomogeneous) orthonormal basis of ( ).2 RL  Here ( )xφ  

and ( )xψ  are the scale function and the orthogonal wavelet, respectively. 

Wavelet coefficients are given by the integrals 

( ) ( )∫ φ=α ,,, 00
dxxxf kjkj  

( ) ( ) .,, ∫ ψ=δ dxxxf kjkj  

We suppose that both φ and ,,1 NC ∈∈ψ + rr  have compact supports 

included in [ ]., δδ−  Note that, by Corollary 5.5.2 in Daubechies [2], ψ is 

orthogonal to polynomials of degree ,r≤  i.e., 

( ) .,,1,0,0∫ =∀=ψ rldxxx l …  

We suppose that f belongs to the Besov class (see Meyer [10], Section VI. 

10), { }MfBfF s
qpB

s
qpqps ≤∈=

,
,,,,  for some 1,10 ≥+<< prs  and 

,1≥q  where 
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 We consider Besov spaces essentially 

because of their executional expressive power (see Triebel [13] and the 

discussion in Donoho et al. [5]). We construct the density estimator 
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where 
0jK  is the set of k such that ( ) ( ) .suppsupp ,0

∅≠φ kjf ∩  

The fact that φ has a compact support implies that 
0jK  is finite and 

( ).2card 0
0

j
j OK =  Wavelet density estimators aroused much interest in 

the recent literature, see Donoho et al. [4] and Doukhan and Leon [7]. In 

the case of independent samples the properties of the linear estimator 

(2.2) have been studied for a variety of error measures and density 

classes (see Kerkyacharian and Picard [8], Leblanc [9] and Tribouley 

[14]). It was shown, for example, that these estimators are minimax with 

respect to pL -risk for densities belonging to Besov space .,
s

qpB  When the 

error of estimation is measure in pL ′ -norm, with ,pp ≥′  the linear 

wavelet estimators are not optimal anymore, although they are still 

minimax in the class of linear estimators (see Donoho et al. [4] and 

Kerkyacharian and Picard [8]). 
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3. Main Results 

In the following theorems we take density to have compact support on 

[0, 1]. The scale function may typically be taken to be a compactly 

supported density on [0, 1], in the following theorem we take it to be 

monotone, such as the linear density or uniform density on [0, 1]. 

Theorem 3.1 gives bounds on 2ˆ
pf ffE ′−  for ( ).,2max pP >′  

Theorem 3.1. Let qpsFf ,,∈  with ,1,1 ≥≥ pps  and .1≥q  Then 

for ( ),,2max pp ≥′  there exists a constant C such that  
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where ppss 11 −′+=′  and .2 21
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Proof. First, we decompose 2ˆ
pff ′−E  into a bias term and 

stochastic term 
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Now, we want to find upper bounds for 1T  and .2T  From Leblanc [9, 

p. 83] 
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Now the use of Lemma 1 in Leblanc [9, p. 82] (using Meyer [10]) gives 
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Further, by using Jensen’s inequality the above equation implies 
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Denote [ ( ) ].,, 00 kjikji X α−φ=ξ  Because of ND property (Lemma 1.1) 

and monotonicity of scale function, we know { }1, ≥ξ ni  remains a 

sequence of ND random variables. Moreover ,2 20
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Now, we need the following theorem from Rivaz et al. [12]. 

Theorem 3.2. Let nξξ ,,1 …  be a sequence of ND identically 

distributed random variables such that ( ) .,0 Mii <ξ=ξ ∞E  Then there 

exists ( ),pC  such that 
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Using the above theorem and the fact that ( )0
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Now by substituting above inequality in (3.3), we get 
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By substituting (3.2), (3.4), and 
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2 0  in (3.1) theorem is proved. 

Remark. Suppose .21 ≤′< p  One can get upper bounds similar to 

those as Theorem 3.1 for the expected loss .ˆ p
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for some positive constants 21, CC  and .3C   
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