Current Development in Theory and Applications of Wavelets

Volume 1, Issue 1, 2007, Pages 57-64 This paper is available online at http://www.pphmj.com © 2007 Pushpa Publishing House

WAVELET LINEAR DENSITY ESTIMATION FOR NEGATIVELY DEPENDENT RANDOM VARIABLES

HASSAN DOOSTI and YOGENDRA P. CHAUBEY

Department of Statistics
School of Mathematical Sciences
Ferdowsi University
P. O. Box 91775
Mashhad, Iran
e-mail: doosti@math.um.ac.ir

Department of Mathematics and Statistics Concordia University 1455 de Maisonneuve Blvd. W. Montréal, QC, Canada e-mail: chaubey@alcor.concordia.ca

Abstract

This note considers the wavelet based linear density estimator for the probability density function considered in Prakasa Rao [11]. The results obtained for associated sequences by Prakasa Rao [11] are extended to the case of negatively dependent sequences.

1. Introduction

Let $\{X_n,\, n\geq 1\}$ be a sequence of random variables. A finite family of

2000 Mathematics Subject Classification: Primary 62G05; Secondary 62G07.

Keywords and phrases: Besov space, L_p -loss, negative dependence, wavelet density estimator.

Communicated by Wai Cheung Ip

Received June 14, 2006; Revised October 30, 2006

random variables $\{X_1, X_2, ..., X_N\}$ is said to be negatively dependent (ND) if

$$P\left\{\bigcap_{j=1}^{n} (X_j \le x_j)\right\} \le \prod_{j=1}^{n} P\{X_j \le x_j\}$$

and

$$P\left\{\bigcap_{j=1}^{n} (X_j > x_j)\right\} \le \prod_{j=1}^{n} P\{X_j > x_j\}.$$

An infinite family of random variables is said to be *ND* if every finite subfamily is ND.

The following lemma was proved in Bozorgnia et al. [1]. We use it in obtaining the main result in the next section.

Lemma 1.1. Let $\{X_n, n \geq 1\}$ be a sequence of ND random variables and $\{f_n, n \geq 1\}$ be a sequence of Borel functions all of which are monotone increasing (or all are monotone decreasing). Then $\{f(X_n), n \geq 1\}$ is a sequence of ND random variables.

Suppose that $\{X_n, n \geq 1\}$ is a sequence of random variables with a common one-dimensional marginal probability density function f. Prakasa Rao [11] proposed a wavelet based linear estimator of f in case the sequence of random variables given above is associated. Recently, such results have also been extended to the negatively associated sequences by Doosti et al. [6]. This allows one to obtain upper bounds on the L_p losses for the resulting estimator as shown in Prakasa Rao [11]. The purpose of this note is to extend these results for estimating the density of ND of random variables.

Some preliminaries of the linear wavelet estimator of a probability density function is given in Section 2 and Section 3 provides the bounds on the L_p -losses for the proposed estimator.

2. Preliminaries

Let $\{X_n, n \ge 1\}$ be a sequence of ND random variables on the

probability space (Ω, \aleph, P) . We suppose that X_i has a bounded and compactly supported marginal density $f(\cdot)$, with respect to the Lebesgue measure, which does not depend on i. We are interested in estimating this density from n observations X_i , i = 1, ..., n. The motivation behind wavelet based linear estimator of the density comes from a formal expansion (see Daubechies [2, 3]) for any function $f \in \mathbf{L}_2(\mathbf{R})$,

$$\begin{split} f &= \sum_{k \in \mathbb{Z}} \alpha_{j_0, k} \phi_{j_0, k} + \sum_{j \geq j_0} \sum_{k \in \mathbb{Z}} \delta_{j, k} \psi_{j, k} \\ &= P_{j_0} f + \sum_{j \geq j_0} D_j f, \end{split}$$

where the functions

$$\phi_{j_0, k}(x) = 2^{j_0/2}\phi(2^{j_0}x - k)$$

and

$$\psi_{j,k}(x) = 2^{j/2} \psi(2^j x - k)$$

constitute an (inhomogeneous) orthonormal basis of $\mathbf{L}_2(\mathbf{R})$. Here $\phi(x)$ and $\psi(x)$ are the scale function and the orthogonal wavelet, respectively. Wavelet coefficients are given by the integrals

$$\alpha_{j_0,k} = \int f(x)\phi_{j_0,k}(x)dx,$$

$$\delta_{j,k} = \int f(x)\psi_{j,k}(x)dx.$$

We suppose that both ϕ and $\psi \in \mathbb{C}^{r+1}$, $r \in \mathbb{N}$, have compact supports included in $[-\delta, \delta]$. Note that, by Corollary 5.5.2 in Daubechies [2], ψ is orthogonal to polynomials of degree $\leq r$, i.e.,

$$\int \psi(x) x^l dx = 0, \quad \forall l = 0, 1, ..., r.$$

We suppose that f belongs to the Besov class (see Meyer [10], Section VI. 10), $F_{s,\,p,\,q} = \{f \in B^s_{p,\,q}, \, \| \, f \, \|_{B^s_{p,\,q}} \leq M \}$ for some $0 < s < r+1, \, p \geq 1$ and $q \geq 1$, where

$$\| f \|_{B^{s}_{p,q}} = \| P_{j_0} f \|_p + \left(\sum_{j \geq j_0} (\| D_j f \|_p 2^{js})^q \right)^{1/q},$$

with
$$\|g\|_p = \left(\int |g|^p\right)^{(1/p)}$$
.

We may also say $f \in B_{p,q}^s$ if and only if

$$\|\alpha_{j_0,..}\|_{l_p(Z)} < \infty, \text{ and } \left(\sum_{j \geq j_0} (\|\delta_{j,..}\|_{l_p(Z)} 2^{j(s+1/2-1/p)})^q\right)^{1/q} < \infty, \quad (2.1)$$

where $\|\gamma_j,.\|_{l_p(Z)} = \left(\sum_{k\in Z} \gamma_{j,k}^p\right)^{1/p}$. We consider Besov spaces essentially because of their executional expressive power (see Triebel [13] and the discussion in Donoho et al. [5]). We construct the density estimator

$$\hat{f} = \sum_{k \in K_{j_0}} \hat{\alpha}_{j_0, k} \phi_{j_0, k}, \text{ with } \hat{\alpha}_{j_0, k} = \frac{1}{n} \sum_{i=1}^n \phi_{j_0, k}(X_i),$$
 (2.2)

where K_{j_0} is the set of k such that $supp(f) \cap supp(\phi_{j_0,k}) \neq \emptyset$.

The fact that ϕ has a compact support implies that K_{j_0} is finite and $\operatorname{card} K_{j_0} = O(2^{j_0})$. Wavelet density estimators aroused much interest in the recent literature, see Donoho et al. [4] and Doukhan and Leon [7]. In the case of independent samples the properties of the linear estimator (2.2) have been studied for a variety of error measures and density classes (see Kerkyacharian and Picard [8], Leblanc [9] and Tribouley [14]). It was shown, for example, that these estimators are minimax with respect to L_p -risk for densities belonging to Besov space $B_{p,q}^s$. When the error of estimation is measure in $L_{p'}$ -norm, with $p' \geq p$, the linear wavelet estimators are not optimal anymore, although they are still minimax in the class of linear estimators (see Donoho et al. [4] and Kerkyacharian and Picard [8]).

3. Main Results

In the following theorems we take density to have compact support on [0,1]. The scale function may typically be taken to be a compactly supported density on [0,1], in the following theorem we take it to be monotone, such as the linear density or uniform density on [0,1]. Theorem 3.1 gives bounds on $E_f \| \hat{f} - f \|_{p'}^2$ for $P' > \max(2, p)$.

Theorem 3.1. Let $f \in F_{s, p, q}$ with $s \ge 1/p$, $p \ge 1$, and $q \ge 1$. Then for $p' \ge \max(2, p)$, there exists a constant C such that

$$\mathbf{E} \| \hat{f} - f \|_{p'}^2 \le C n^{-\frac{2s'}{1+2s'}},$$

where s' = s + 1/p' - 1/p and $2^{j_0} = n^{\frac{1}{1+2s'}}$.

Proof. First, we decompose $\mathbf{E} \|\hat{f} - f\|_{p'}^2$ into a bias term and stochastic term

$$\mathbf{E} \|\hat{f} - f\|_{p'}^{2} \le 2(\|f - P_{j_{0}}f\|_{p'}^{2} + \mathbf{E} \|\hat{f} - P_{j_{0}}f\|_{p'}^{2}) = 2(T_{1} + T_{2}).$$
 (3.1)

Now, we want to find upper bounds for T_1 and T_2 . From Leblanc [9, p. 83]

$$T_1 \le K2^{-2s'j_0}. (3.2)$$

Next, we have

$$T_2 = \mathbf{E} \| \hat{f} - P_{j_0} f \|_{p'}^2 = \mathbf{E} \left\| \sum_{k \in K_{j_0}} (\hat{\alpha}_{j_0, k} - \alpha_{j_0, k}) \phi_{j_0, k}(x) \right\|_{p'}^2.$$

Now the use of Lemma 1 in Leblanc [9, p. 82] (using Meyer [10]) gives

$$T_2 \leq C \mathbf{E} \Biggl\{ \sum_{k \in K_{j_0}} \| \, \hat{\alpha}_{j_0, \, k} - \alpha_{j_0, \, k} \, \|_{l_{p'}}^2 \Biggr\} 2^{2j_0(1/2 - 1/p')}.$$

Further, by using Jensen's inequality the above equation implies

$$T_2 \le C2^{2j_0(1/2-1/p')} \left\{ \sum_{k \in K_{j_0}} \mathbf{E} |\hat{\alpha}_{j_0, k} - \alpha_{j_0, k}|^{p'} \right\}^{2/p'}. \tag{3.3}$$

To complete the proof, it is sufficient to estimate $\mathbf{E}|\hat{\alpha}_{j_0,k} - \alpha_{j_0,k}|^{p'}$. We know that

$$\hat{\alpha}_{j_0,k} - \alpha_{j_0,k} = \frac{1}{n} \sum_{i=1}^{n} \{ [\phi_{j_0,k}(X_i) - \alpha_{j_0,k}] \}.$$

Denote $\xi_i = [\phi_{j_0,k}(X_i) - \alpha_{j_0,k}]$. Because of ND property (Lemma 1.1) and monotonicity of scale function, we know $\{\xi_i, n \geq 1\}$ remains a sequence of ND random variables. Moreover $\|\xi_i\|_{\infty} \leq K2^{j_0/2} \|\phi\|_{\infty}$, $\mathbf{E}\xi_i = 0$, $\mathbf{E}\xi_i^2 \leq \|f\|_{\infty}$ and $|\hat{\alpha}_{j_0,k} - \alpha_{j_0,k}| = \frac{1}{n} \left|\sum_{i=1}^n \xi_i\right|$.

Now, we need the following theorem from Rivaz et al. [12].

Theorem 3.2. Let ξ_1, \ldots, ξ_n be a sequence of ND identically distributed random variables such that $\mathbf{E}(\xi_i) = 0, \|\xi_i\|_{\infty} < M$. Then there exists C(p), such that

$$\mathbf{E}\Bigg(\Bigg|\sum_{i=1}^n \xi_i\Bigg|^p\Bigg) \le C(p)\Bigg\{M^{p-2}\sum_{i=1}^n \mathbf{E}(\xi_i^2) + \Bigg(\sum_{i=1}^n \mathbf{E}(\xi_i^2)\Bigg)^{p/2}\Bigg\}, \quad p > 2.$$

Using the above theorem and the fact that $\operatorname{card} K_{j_0} = O(2^{j_0})$ we have

$$\begin{split} \left\{ \sum_{k \in K_{j_0}} \mathbf{E} | \, \hat{\alpha}_{j_0, \, k} - \alpha_{j_0, \, k} \, \big|^{p'} \right\}^{2/p'} & \leq \left\{ C 2^{j_0} \, \frac{1}{n^{p'}} (n 2^{j_0/2(p'-2)} c_1 + n^{p'/2} c_2) \right\}^{2/p'} \\ & \leq K_1 \bigg\{ \frac{2^{j_0}}{n^{2(1-1/p')}} + \frac{2^{2j_0/p'}}{n} \bigg\}. \end{split}$$

Now by substituting above inequality in (3.3), we get

$$\begin{split} T_2 &\leq K_1 2^{2j_0(1/2-1/p')} \bigg\{ \frac{2^{j_0}}{n^{2(1-1/p')}} + \frac{2^{2j_0/p'}}{n} \bigg\} \\ &= K_1 \bigg\{ \frac{2^{2j_0-2j_0/p'}}{n^{2-2/p'}} + \frac{2^{j_0}}{n} \bigg\} \\ &= K_1 \bigg\{ \frac{2^{j_0}}{n} \bigg(\frac{2^{j_0}}{n} \bigg)^{1-2/p'} + \frac{2^{j_0}}{n} \bigg\}, \end{split}$$

since $n\ge 2^{j_0}$ and $1-2/p'\ge 0$ imply $\left(\frac{2^{j_0}}{n}\right)^{1-2/p'}\le 1$. Hence $T_2\le \frac{K_22^{j_0}}{n}\,. \tag{3.4}$

By substituting (3.2), (3.4), and $2^{j_0} = \frac{1}{n^{1+2s'}}$ in (3.1) theorem is proved.

Remark. Suppose $1 < p' \le 2$. One can get upper bounds similar to those as Theorem 3.1 for the expected loss $\mathbf{E} \|\hat{f} - f\|_{p'}^{p'}$.

Observing that

$$\mathbf{E} \| \hat{f} - f \|_{p'}^{p'} \le 2^{p'-1} (\| f - P_{j_0} f \|_{p'}^{p'} + \mathbf{E} \| \hat{f} - P_{j_0} f \|_{p'}^{p'}), \tag{3.5}$$

$$||f - P_{j_0}f||_{p'}^{p'} \le C_1 2^{-p's'j_0},$$
 (3.6)

$$\begin{split} \mathbf{E} \| \hat{f} - P_{j_0} f \|_{p'}^{p'} &\leq C_2 2^{2j_0(p'/2-1)} \Biggl\{ \sum_{k \in K_{j_0}} \mathbf{E} | \hat{\alpha}_{j_0, k} - \alpha_{j_0, k} |^{p'} \Biggr\} \\ &\leq C_2 2^{2j_0(p'/2-1)} \Biggl\{ \sum_{k \in K_{j_0}} \sqrt{\mathbf{E} | \hat{\alpha}_{j_0, k} - \alpha_{j_0, k} |^{2p'}} \Biggr\} \\ &\leq C_3 2^{2j_0(p'/2-1)} \Biggl\{ 2^{j_0} \frac{1}{n^{p'}} (n 2^{j_0(p'-2)} + n^{p'}) \Biggr\}. \end{split}$$
 (3.7)

for some positive constants C_1 , C_2 and C_3 .

References

- A. Bozorgnia, R. F. Patterson and R. L. Taylor, Limit theorems for dependent random variables, World Congress of Nonlinear Analysts'92, Vol. I-IV, pp. 1639-1650, de Gruyter, Berlin, 1996.
- [2] I. Daubechies, Orthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996.
- [3] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conferences Series in Applied Mathematics, 61, SIAM, Philadelphia, 1992.
- [4] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding, Ann. Statist. 24 (1996), 508-539.
- [5] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian and D. Picard, Wavelet shrinkage: asymptopia (with discussion), J. Roy. Statist. Soc. Ser. B 57(2) (1995), 301-369.
- [6] H. Doosti, V. Fakoor, and Y. P. Chaubey, Wavelet linear density estimation for negatively associated sequences, J. Indian Statist. Assoc. (2006), to appear.
- [7] P. Doukhan and J. R. León, Déviation quadratique d'estimateurs de densité par projections orthogonales, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 425-430.
- [8] G. Kerkyacharian and D. Picard, Density estimation in Besov spaces, Statist. Probab. Lett. 13 (1992), 15-24.
- [9] F. Leblanc, Wavelet linear density estimator for a discrete-time stochastic process: L_p -losses, Statist. Probab. Lett. 27 (1996), 71-84.
- [10] Y. Meyer, Ondelettes et Opérateurs, Hermann, Paris, 1990.
- [11] B. L. S. Prakasa Rao, Wavelet linear density estimation for associated sequences, J. Indian Statist. Assoc. 41 (2003), 369-379
- [12] F. Rivaz, M. Amini, and A. Bozorgnia, Moment inequalities and applications for negative dependence random variables, Research Bulletin of Isfehan University (2006), to appear.
- [13] H. Triebel, Theory of Function Spaces, II, Birkhäuser Verlag, Berlin, 1992.
- [14] K. Tribouley, Practical estimation of multivariate densities using wavelet methods, Statist. Neerlandica 49 (1995), 41-62.