SOME RESULTS ON GENERALIZED SOFT SUBGROUPS

AHMAD GHOLAMI

(Received January 4, 2006)

Abstract

This paper is devoted to give some properties of generalized soft subgroups with respect to a variety of groups v, which generalizes the work of Blackburn and Héthelyi [1] and Héthelyi [3] with respect to the abelian variety. It is shown that if A is a v-soft subgroup of index greater than p, then the A-invariant subgroups of $V(G)V^*(N_G(A))$ containing $V^*(N_G(A))$ form a chain and also shown that if the p-group G has a uniserially embedded subgroup P of order p, then either G has a cyclic subgroup of index p or is of maximal class.

1. Introduction and Preliminary Results

Let F_{∞} be a free group freely generated by a countable set $\{x_1, x_2, ...\}$. Let v be a variety of groups defined by a subset V of F_{∞} . We assume that the reader is familiar with the notions of the verbal subgroup, V(G), and the marginal subgroup, $V^*(G)$, associated with a variety of groups v and a given group G. See [2, 8, 9] for more information on variety of groups.

We define a series of a group G with respect to a given variety v as follows:

2000 Mathematics Subject Classification: Primary 20F19, 20F14; Secondary 20E10.

Keywords and phrases: v-soft subgroups, v-CF-groups, variety of groups.

© 2007 Pushpa Publishing House

$$G = V_0(G) \supseteq V_1(G) = V(G) \supseteq V_2(G) \supseteq \cdots \supseteq V_n(G) \supseteq \cdots,$$

where $V_n(G) = [V_{n-1}(G)V^*G]$ for n > 0, which is called the *lower* v-marginal series of G with respect to the variety v. The corresponding upper v-marginal series of G is defined as follows:

$$1 = V_0^*(G) \subseteq V_1^*(G) = V^*(G) \subseteq \cdots \subseteq V_n^*(G) \subseteq \cdots,$$

where, $V_n^*(G)$ will be defined by

$$\frac{V_n^*(G)}{V_{n-1}^*(G)} = V^* \left(\frac{G}{V_{n-1}^*(G)} \right), \quad n > 0.$$

By induction on i, one may check that $V_i^*\!\!\left(\!\frac{G}{V_j^*(G)}\!\right)\!=\!\frac{V_{i+j}^*(G)}{V_j^*(G)},$ for all

 $j \ge 0$. Clearly $V_c(G) = 1$ if and only if $V_c^*(G) = G$, for all $c \ge 0$. (See also [5, 6, 7]).

Let G be a finite p-group, where p is a prime number. As in [3] a proper subgroup H of G is called v-soft if H is a maximal abelian subgroup of G and is of index p in its normalizer with respect to a variety of groups v. The main properties of soft subgroups are given in [3], [4] and [1]. A soft subgroup H of G is always uniserially embedded in G, that is, the subgroups of G containing H form a chain.

A p-group G is called a v-CF-group with respect to variety v, if the index of any term of the lower v-marginal series of G beyond V(G) in its predecessor is at most p. We show that if G has a soft subgroup different from A, then G is a v-CF-group. Our result, in a way, are similar to the works of N. Blackburn and L. Héthelyi in abelian variety. (See also [1]).

Theorem 1.1. Let v be a variety of groups defined by the set of laws V. Suppose that A is a maximal normal abelian subgroup of the non-abelian p-group G and that G/A is cyclic. Suppose that G has soft subgroup G distinct from G. Then

(i)
$$G = AB$$
.

(ii) $d(G/V^*(G)) = 2$, and if $|G:A| = p^{\alpha}$, $G/V(G)V^*(G)$ is of type (p^{α}, p) .

(iii) G is a v-CF-group.

Proof. (i) If B is normal in G, then |G:B|=p, since B is soft, and A is not contained in B, since A, B are self-centralising and distinct: hence G=AB. If B is not normal in G, let M be the unique maximal subgroup of G containing B. Let $R=V(G)V^*(N)$, where $N=N_G(B)$. By [4] Theorem 2, $|G:R|=p^2$ and $M\geq R$; further, if $x\in M\setminus R$, then x is conjugate to an element y of $B\setminus V^*(N)$ and $C_G(y)=B$. Hence if $x\in M\setminus R$, then $x\not\in A$, since A, B are self-centralising and distinct. Hence $A\cap M\leq R$. By [4, Corollary 6], G/R is non-cyclic, so $A\not\leq R$. Hence $A\not\subseteq M$. Since B is soft and AB is a subgroup containing B but not in M, AB=G.

(ii) Since G/A is cyclic, there exists $b \in B$ such that $G = A\langle b \rangle$. And $|A:A\cap M|=|AM:M|=p$, there exists $a\in A$ such that $A=(A\cap M)\langle a \rangle$. Thus $G=(A\cap M)\langle a,b \rangle$. But

$$V(G) \le A \cap M \le R = V(G)V^*(N).$$

So $A \cap M = V(G)(A \cap M \cap V^*(N)) = V(G)V^*(G)$ (even if $B \triangleleft G$). Thus $|A:V(G)V^*(G)| = p$ and $G = V(G)V^*(G)\langle a,b\rangle$. Hence $G/V(G)V^*(G)$ is of type (p^{α},p) and $d(G/V^*(G)) = 2$.

(iii) Let c = [a, b]. Since $a^p \in V(G)V^*(G)$, $[a^p, b] \in V_2(G)$. Now $[a^p, b] = a^{-p}(a^p)^p = (a^{-1}a^p)^p = [a, b]^p,$

so $[a, b]^p \in V_2(G)$. Since $V(G) = \langle [a, b], V_2(G) \rangle$, $|V(G): V_2(G)| = p$. It follows by an easy induction that $|V_i(G): V_{i-1}(G)| = p$ for $V_i(G) \neq 1$: if $i \geq 3$ and $V_{i-1} = \langle u, V_i(G) \rangle$ with $u^p \in V_i(G)$, then $V_i(G) = \langle [a, u], [b, u], (a, b) \rangle$

 $V_{i+1}(G)$, and [a, u] = 1, since $u \in V(G) \le A$. And $[b, u]^p \in V_{i+1}(G)$, since $[b, u]^p = (u^p)^{-p} u^p = [b, u^p]$. Thus G is v-CF-group.

Corollary 1.2. Suppose that A is a maximal normal abelian subgroup of the non-abelian p-group G such that G/A is cyclic. If there is a soft subgroup B of G contained in the maximal subgroup of G containing A, then |G:A| = p.

Proof. For AB = G cannot hold, so B = A.

We now consider the case |G:A|=p.

Theorem 1.3. Let G is a p-group of class greater than 2 and A is an abelian subgroup of G of index p. Then the following are equivalent.

- (i) Every maximal abelian subgroup of G is v-soft.
- (ii) G has a v-soft subgroups distinct from A.
- (iii) $G/V^*(G)$ is a p-group of maximal class.
- (iv) $|V_2^*(G):V^*(G)|=p$.

Proof. (i) \Rightarrow (ii) is trivial.

- (ii) \Rightarrow (iii) By Theorem 1.1, G is a v-CF-group and $G/V(G)V^*(G)$ is of type (p, p). If $\overline{G} = G/V^*(G)$, $\overline{G}/V(\overline{G})$ is of type (p, p) and \overline{G} is a v-CF-group, so \overline{G} is of maximal class.
 - (iii) \Rightarrow (iv) is trivial.
- (iv) \Rightarrow (i) Let $|V_2^*(G):V^*(G)|=p$ and B is a maximal abelian subgroup of G. Suppose that $N=N_G(B)$, where $A\neq B$. Since G=AB, $N=(N\cap A)B$ and

$$[N \cap A, G] = [N \cap A, AB] = [N \cap A, B] \le A \cap B = V^*(G),$$

so $N \cap A \le V_2^*(G)$. Thus $|N:B| \le |V_2^*(G)B:B| \le |V_2^*(G):V_1^*(G)| = p$ and |N:B| = p, hence B is v-soft.

Theorem 1.4. Let the p-group G has a maximal normal abelian subgoup A for which G/A is cyclic. If $|V^*(G) \cap V(G)| = p$, then G has a v-soft subgroup distinct from A.

Proof. Let $G = A\langle b \rangle$ and $B = C_G(b)$. Now $C_G(b) \cap A = V^*(G)$, and since $G = A\langle b \rangle$, $B = V^*(G)\langle b \rangle$. Hence B is abelian and self centralising. Suppose that $N = N_G(B)$. If $x \in N$, $[x, b] \in B \cap V(G) = V^*(G) \cap V(G)$, since $B \cap A = V^*(G)$. Hence there is a mapping ξ of N/B into $V^*(G) \cap V(G)$ given by $(xB)\Xi = [x, b] (x \in N)$. And ξ is injective, so $|N:B| \leq |V^*(G) \cap V(G)| = p$. Hence |N:B| = p and B is soft.

Let v be the variety of abelian groups. In this case it follows from above theorem that if G is a v-CF-group (= CF-group) having the usual subgroup A, then G has a soft subgroup B distinct from A. But despite the equivalence of (i) and (iii) in Theorem 1.3, it is not the case that a group G for which $G/V^*(G)$ is a v-CF-group with two generators necessarily has a v-soft subgroup. (See [1] Theorem 1.3).

2. The Main Results

A subgroup H of a p-group G is n-uniserial with respect to a variety of groups v, if for each i=1,...,n, there is no unique subgroup K_i such that $H \leq K_i$ and $|K_i| : H = p^i$. In case the subgroups of G containing H form a chain we say that H is v-uniserially embedded in G. In this section we give some important results of v-soft subgroups which is a vast generalization of soft subgroups in abelian variety.

Theorem 2.1. Let v be a variety of groups defined by the set of laws V. Let A be a v-soft subgroup of index greater than P. Suppose that $N_1 = N_G(A)$, $R = V(G)V^*(N_1)$. Then the A-invariant subgroups of R containing $V^*(N_1)$ form a chain.

Proof. The subgroup of *G* containing *A* form a chain

$$A = N_0 < N_1 < N_2 < \cdots < N_{k-1} = M$$
,

where $\mid G:M\mid =p$ and $N_i=N_G(N_{i-1})$ (i=1,...,k-1). Thus $R\leq M$ and

$$R \cap N_0 \leq R \cap N_1 \leq \cdots \leq R \cap N_{k-1} = R \leq M$$

is a sequence of A-invariant subgroups of R containing $V^*(N_1)$. Let X be an A-invariant subgroup of R containing $V^*(N_1)$. Since $A \leq AX \leq G$, $AX = N_i$ for some i. Thus $X \leq R \cap N_i$ and $|X| \cdot |A \cap X| = |N_i|$. Since $A \cap X \geq V^*(N_1)$,

$$|A:A\cap X| \leq |A:V^*(N_1)| = p,$$

(by [3, Lemma 1]). Hence $|N_i| \le p|X|$. But since $N_i \le R$, $|R \cap N_i| < |N_i|$, so $|X| \ge |R \cap N_i|$. Hence $X = R \cap N_i$. Thus the A-invariant subgroups of R containing $V^*(N_1)$ form a chain

$$V^*(N_1) = R \cap N_0 < R \cap N_1 < \dots < R \cap N_{k-1} = R.$$

Theorem 2.2. Let \vee be a variety of groups defined by the set of laws V. Let G be a non-abelian p-group and for every $x \in G \setminus V^*(G)$, $C_G(x)$ is abelian. Then either G has an abelian subgroup of index p or the exponent of $G \setminus V^*(G)$ is p.

Proof. Let A be a maximal normal abelian subgroup of G. Suppose that $s \in G \setminus A$. Let $H = \langle A, s \rangle$, so H is non-abelian and $V^*(H) < A$. Thus $H/V^*(H)$ has a normal subgroup $Y/V^*(H)$ of order p with $Y \leq A$. If $Y = \langle V^*(H), a \rangle$, $a^p \in V^*(H)$, so $a^p = (a^p)^s = (a^s)^p = (a \cdot [a, s])^p = a^p \cdot [a, s]^p$ and $[a, s]^p = 1$. Also $[a, s] \in V^*(H)$, so $[a, s^p] = [a, s]^p = 1$. Hence $C_G(s^p)$ contains $\langle a, s \rangle$; as this is non-abelian, $s^p \in V^*(G)$.

Thus $s^p \in V^*(G)$ for all $s \in G \setminus A$, in particular G/A is of exponent p. If |G/A| > p, choose $x \in G \setminus A$ with $xA \in V^*(G/A)$ and $y \in G$, $y \notin A\langle x \rangle$. Then $(x^i y^j a)^p \in V^*(G)$ for all $a \in A$ and $(i, j) \notin (0, 0)(p)$. Hence if ξ , η are the automorphisms of the abelian group $A/V^*(G)$ given

by

$$\overline{a}\xi = \overline{a}^x$$
, $\overline{a}\eta = \overline{a}^y$ $(\overline{a} \in A/V^*(G))$,

then $\overline{a}^{x^i y^j} = \overline{a} \xi^i \eta^j$, so

$$(x^iy^j)^p\{\overline{a}((\xi^i\eta^j)^{p-1}+\cdots+\xi^i\eta^j+1)\}=1$$

for all $\overline{a} \in A/V^*(G)$. Hence

$$((\xi^{i}\eta^{j})^{p-1} + \dots + \xi^{i}\eta^{j} + 1) = 0$$

for all $(i, j) \neq (0, 0)(p)$. But then

$$0 = \left(\sum_{i=0}^{p-1} \xi^i\right) \cdot \left(\sum_{j=0}^{p-1} \eta^j\right) = \sum_{j=0}^{p-1} \eta^j + \sum_{j=0}^{p-1} \left(\sum_{i=1}^{p-1} (\xi \eta^j)^i\right) = 0 + \sum_{j=0}^{p-1} (-1).$$

Thus $p \cdot 1 = 0$ and $A/V^*(G)$ is elementary abelian. Thus the exponent of $G/V^*(G)$ is p.

v-soft subgroups are uniserially embedded, but this is also possible for subgroups P of order p, although these are never soft. In the following we investigate this situation.

Theorem 2.3. Let v be a variety of groups defined by the set of laws V. Suppose that the p-group G has a uniserially embedded subgroup P of order p. Then either G has a cyclic subgroup of index p or is of maximal class (coclass 1).

Proof. We proceed by induction. It is trivial if $P \triangleleft G$, since G/P has only one maximal subgroup and is therefore cyclic. So we suppose this is not the case, then the class k of G is at least 2. Let N be a subgroup of order p contained in $V_k(G)$, where

$$G = V_0(G) \supseteq V_1(G) = V(G) \supseteq V_2(G) \supseteq \cdots \supseteq V_k(G) \supseteq 1$$

is the lower v-marginal series of G with respect to the variety v. Thus $N \triangleleft G$ and $P \neq N$, and PN/N is uniserially embedded in G/N. By the inductive hypothesis, either G/N has a cyclic subgroup of index p or is of maximal class.

Suppose first that G/N is of maximal class. If $N = V_k(G)$, then G is of maximal class. Otherwise $|V_k(G):N| = p$ and $V_k(G)$ is marginal and elementary abelian of order p^2 . Since P is not normal, $P \not\leq V_k(G)$; but P normalizes all the p+1 subgroups of $V_k(G)$ of order p and is contained in at least p+1 subgroups of order p^2 , contrary to the hypothesis.

Now suppose that G/N has a cyclic subgroup M/N of index p. If M is cyclic there is nothing to prove, so we suppose M is abelian of type (p^r, p) . If r = 1, then $|G| = p^3$ and G is of maximal class. If $r \geq 2$, then M has a characteristic subgroup K of order p such that M/K is not cyclic. Hence $K \neq N$ and $K \triangleleft G$. Then PK and PN are subgroups of order p^2 containing P, so PK = PN = L, say. Thus $L = KN \leq V^*(G)$ and $P \triangleleft G$.

References

- N. Blackburn and L. Héthelyi, Some further properties of soft subgroups, Arch. Math. (Basel) 69 (1997), 365-371.
- [2] N. S. Hekster, Varieties of groups and isologisms, J. Austral. Math. Soc. Ser. A 46(1) (1989), 22-60.
- [3] L. Héthelyi, Soft subgroups of p-groups, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 27 (1984), 81-85.
- [4] L. Héthelyi, On subgroups of p-groups having soft subgroups, J. London Math. Soc. (2) 41(3) (1990), 425-437.
- [5] C. R. Leedham-Green and S. Mckay, Baer-invariants, isologism, varietal laws and homology, Acta Math. 137 (1976), 99-150.
- [6] M. R. R. Moghaddam, The Baer-invariant of a direct product, Arch. Math. (Basel) 33 (1979), 504-511.
- [7] M. R. R. Moghaddam and A. R. Salemkar, Varietal isologism and covering groups, Arch. Math. (Basel) 73 (1999), 1-8.
- [8] M. R. R. Moghaddam, A. R. Salemkar and A. Gholami, Some properties on isologism of groups and Baer-invariant, Southeast Asian Bull. Math. 24(2) (2000), 255-261.
- [9] H. Neumann, Varieties of Groups, Springer-Verlag, Berlin, 1967.

Faculty of Sciences, University of Kashan, Kashan, Iran e-mail: gholami@kashanu.ac.ir