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Abstract

Let ( )3>mM m  be a compact submanifold immersed in a space form

( )cNn  with .0≥c  In this paper, it is showed that if the square length s

of the second fundamental form and the mean curvature H of mM

satisfy ,4
2

2
2

cH
m
ms +
−

<  then for ,2...,,3,2 −= mp  there is no stable

integral p-current in ,mM  and the homology groups ( ) .0, =ZMH p

1. Introduction

Let mM  be a submanifold immersed in a Riemannian manifold .nN

Denote by ( )MNV ,  the normal bundle of mM  in .nN  For a smooth

section ( )( ),, MNVC∈ν  the shape operator νA  determined by ν

satisfies

( ) ,,,, ν=ν YXhYXA

where ( )TMCYX ∈,  and h is the second fundamental form of the

submanifold .mM
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Let { }λν  be an orthonormal basis of the normal space ( )MNVx ,  and

.
λνλ = AA  Let s be the square length of the second fundamental form,

and H be the mean curvature vector field of the submanifold .mM  Then

( )∑ ∑
λ λ

λλλ ν== .tr1,tr 2 A
m

HAs

For each fixed index λ, choose an orthonormal basis { }aE  in MTx  such

that

....,,2,1, maEkEA aa a
== λλ

Then

∑ ∑ λλλλ ==
a a

aa
kAkA .tr,tr 22

And thus

∑ ∑ 




=










≥= λλλλ

a a

A
m

k
m

k
m

A
m aa

.tr111tr1 22
22

So, for any submanifold ,nm NM →⊂  s and H always satisfy the

inequality: .2mHs ≥

Relationship between s and H influences the geometric and
topological structure of submanifolds. As an extension of the well-known
gap theorem in minimal submanifolds, Okumura [3] proved that

Theorem O. Let mM  be a compact connected submanifold immersed

in a space form ( )cN n  with 0≥c  and satisfy the following condition

(C) the connection of the normal bundle is flat and the mean curvature

vector field H is parallel with respect to the connection of the normal

bundle.

If

2
2

1
H

m
ms
−

<  on ,mM (1)

then mM  is totally umbilical.

Cancelling condition (C), the first author [6] proved that
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Theorem Z. Let mM  be an oriented, connected submanifold

immersed in a simply connected space form ( ),cN n  .4dim ≥= Mm  If

one of the following is satisfied:

:C1  mM  is compact, ,0≥c  and 2
2

1
H

m
ms
−

<  on ;mM

:C2  mM  is complete, ,0>c  and 2
2

1
H

m
ms
−

≤  on ,mM

then mM  is homeomorphic to a sphere.

Shiohama and Xu [4] showed a more generalized result:

Theorem SX. Let mM  be an oriented complete submanifold in a

space form ( )cN n  with .0≥c  If

( )
( )
( ) ( ) ,014

12
2

12
sup 2422

3
<

















−+

−
−−

−
+− cHmHm

m
mm

H
m
mmcs (2)

then mM  is homeomorphic to a sphere.

Note that the inequality (2) will be reduced to 2
2

1
H

m
ms
−

<  if the

ambient space ( )cN n  is the Euclidean space .nE

The above conclusions indicate that for any immersed ( ),cNM nm →

the inequality 2mHs ≥  is always hold. If 2
2

1
H

m
ms
−

<  on ,mM  then

under the conditions of Okumura, mM  is totally umbilical. And when the

condition (C) of Okumura is deleted, the ,mM  topologically, is a sphere.

In this paper we shall further relax restrictions on s and H and prove
the following:

Main Theorem. Let mM  be an oriented compact submanifold

immersed in a simply connected space form ( )CN n  with ,0≥c

.3dim >= Mm  If cH
m

ms 4
2

2
2

+
−

<  on ,mM  then for ...,,3,2=p
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,2−m  there are no stable integral p-currents in mM  and

( ) ( ) ( ) .0,...,, 232 ==== − ZMHZMHZMH m

Example. As a submanifold, 11 −×= mm SSM  can be immersed into

.2+mE  We can get that

[( ) ],111, 2
2

2 +−== m
m

Hms

 and thus

2
2

2
2

21
H

m
msH

m
m

−
<<

−
 on .mM

The first author [5] proved that for ,0 21 mmp +<<  1mp ≠  and

,2mp ≠  there is no stable integral p-current in 21 mm SS ×  and

( ) .0,21 =× ZSSH mm
p

This conclusion tells us that when ,3>m

( ) ,0,11 =× − ZSSH m
p     .2...,,3,2 −= mp

2. Proof of Main Theorem

For a given integer ( ),,0 mp ∈  let V be a p-dimensional subspace in

MTx  and { }ie  be an orthonormal basis of V. Define a selfadjoint linear

map VVQ A →:  associated with the immersion ( )cNM nm →  by

( ) ,trtr,2 22∑ ∑
λ

λλλλλ











−−










−= XBBAXBeeXAXQ

i
ii

A (3)

where ( )TMCX ∈  and λB  is a map on V associated with λA  defined by

∑ λλ =
i

ii eeXAXB .,

AQ  is independent of the choice of bases of ( )MNVx ,  and V. Its trace is

given by
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( )∑ ∑ ∑
λ

λ
α

λλαλ











−−==

i i
iii

AA BBAeeAeeQQ ,trtrtr,2,tr
,

2 (4)

where { }αe  is an orthonormal basis of ⊥V  which is the orthogonal

complement of V in .MTx

Because ( )cN n  is a simply connected space form, it can be considered

as a totally umbilical hypersurface of 1+nE  [1, p.41]. The first author [5]
proved the following:

Lemma. Let mM  be a compact submanifold immersed in a totally

umbilical hypersurface nN  with the sectional curvature 0≥c  of ,1+nE

and p be a given integer, ( ).,0 mp ∈  If for any Mx ∈  and any

p-subspace V of ,MTx

( ) ,tr cpmpQ A −< (5)

then there is no stable integral p-current in mM  and ( ) =ZMH p ,

( ) .0, =− ZMH pm

Now we calculate .tr AQ  Note that { }αeei ,  is an orthonormal basis of

,MTx  we have

∑ ∑
α

ααλλλ +=
i

ii eeAeeAA ,,,tr (6)

∑ λλ =
i

ii eeAB ,,tr (7)

∑ ∑
α

ααλλλ +=
i

ii eeAeeAA ,,tr 222

∑ ∑
α

αλαλλλ +=
i

ii eAeAeAeA .,, (8)

Because

∑ ∑
α

ααλλλ +=
j

ijjii eeeAeeeAeA ,,,
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∑ ∑ ∑
α

αλλλλ +=
i ji i

ijiii eeAeeAeAeA
, ,

22 ,,, (9)

and

∑ ∑ ∑
α α βα

βαλαλαλαλ +=
i

i eeAeeAeAeA
, ,

22 .,,, (10)

Substituting (9) and (10) into (8), we get

∑∑ ∑
α

αλ
≠

λλλ ++=
,

2222 ,2,,tr
i

i
i ji

jiii eeAeeAeeAA

∑ ∑
α β≠α

βαλααλ ++ .,, 22 eeAeeA (11)

By (6) and (7) we have

( )
22

2 ,,tr 









+










= ∑∑

α
ααλλλ eeAeeAA

i
ii

∑
α

ααλλ+
,

,,2
i

ii eeAeeA

22

,, 









+










= ∑∑

α
ααλλ eeAeeA

i
ii

( ) .trtrtr2 λλλ −+ BBA (12)

(11) and (12) gives

( ) ( )∑
α

λλλαλλλ −−=−
,

222 trtrtr,2tr
2
1tr

i
i BBAeeAAA

∑ ∑
α

ααλλ ++
i

ii eeAeeA 22 ,,

∑ ∑
≠ β≠α

βαλλ ++
ji

ji eeAeeA 22 ,,

.,
2
1,

2
1

22











−










− ∑∑

α
ααλλ eeAeeA

i
ii
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Therefore

( )∑
α

λλλαλ −−
,

2 trtrtr,2
i

i BBAeeA

( )
22

22 ,
2
1,

2
1tr

2
1tr 










+










+−= ∑∑

α
ααλλλλ eeAeeAAA

i
ii

∑∑
α

ααλλ −− 22 ,, eeAeeA
i

ii

∑ ∑
≠ β≠α

βαλλ −−
ji

ji eeAeeA .,, 22 (13)

If follows from the Schwarz inequality that

∑∑ λλ ≤










i
ii

i
ii eeApeeA ,,, 2

2

( ) .,, 2
2

∑∑
α

ααλ
α

ααλ −≤









eeApmeeA

Substituting these into (13), we obtain

( )∑
α

λλλαλ −−
,

2 trtrtr,2
i

i BBAeeA

( ) ∑ λλλ 




 −+−≤

i
ii eeApAA 222 ,1

2
tr

2
1tr

∑
α

ααλ




 −−+ .,1

2
2eeApm (14)

Assume 01
2

≥−p  and ,01
2

≥−− pm  that is, .22 −≤≤ mp  By (11)

and (14) we get

( )∑
α

λλλαλ −−
,

2 trtrtr,2
i

i BBAeeA
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( ) 222 tr1
2

,1
2

maxtr
2
1tr λλλ 






 −−






 −+−≤ ApmpAA

[ { } ( ) ].trtr,max
2
1 22

λλ −−= AApmp

Substituting the above inequality into (4), we obtain

[ { } ].,max
2
1tr 22HmspmpQ A −−≤

Hence, if cH
m
ms 4

2
2

2
+

−
<  on ,mM  ,3dim >= Mm  then for ,2=p

,2...,,3 −m

{ } { } ,,min2
,max

2
2

cpmpH
pmp

ms −+
−

<

and thus ( ) .tr cpmpQ A −<  The proof is completed.
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