TOPOLOGY AND GEOMETRY OF SUBMANIFOLDS IMMERSED IN SPACE FORMS

ZHANG XUESHAN and FANG TAO

(Received November 14, 2006)

Abstract

Let M^m (m>3) be a compact submanifold immersed in a space form $N^n(c)$ with $c\geq 0$. In this paper, it is showed that if the square length s of the second fundamental form and the mean curvature H of M^m satisfy $s<\frac{m^2}{m-2}H^2+4c$, then for p=2,3,...,m-2, there is no stable integral p-current in M^m , and the homology groups $H_D(M,Z)=0$.

1. Introduction

Let M^m be a submanifold immersed in a Riemannian manifold N^n . Denote by V(N, M) the normal bundle of M^m in N^n . For a smooth section $v \in C(V(N, M))$, the shape operator A_v determined by v satisfies

$$\langle A_{\nu}X, Y \rangle = \langle h(X, Y), \nu \rangle,$$

where $X, Y \in C(TM)$ and h is the second fundamental form of the submanifold M^m .

 $2000\ Mathematics\ Subject\ Classification:\ 53C40,\ 49Q15$

Key words and phrases: space form, submanifold, homology group, stable integral current.

This work was supported by the Foundation Grant of Shanghai Municipal Education Commission, P. R. China.

© 2007 Pushpa Publishing House

Let $\{v_{\lambda}\}$ be an orthonormal basis of the normal space $V_x(N, M)$ and $A_{\lambda} = A_{v_{\lambda}}$. Let s be the square length of the second fundamental form, and H be the mean curvature vector field of the submanifold M^m . Then

$$s = \sum_{\lambda} \mathrm{tr} A_{\lambda}^2, \ \ H = \frac{1}{m} \sum_{\lambda} (\mathrm{tr} A_{\lambda}) v_{\lambda}.$$

For each fixed index λ , choose an orthonormal basis $\{E_a\}$ in T_xM such that

$$A_{\lambda}E_{\alpha}=k_{\lambda_{\alpha}}E_{\alpha},\ \alpha=1,\,2,\,...,\,m.$$

Then

$${\rm tr} A_\lambda \, = \sum_a k_{\lambda_a}, \ \ {\rm tr} A_\lambda^2 \, = \sum_a k_{\lambda_a}^2.$$

And thus

$$\frac{1}{m}\operatorname{tr} A_{\lambda}^2 = \frac{1}{m}\sum_a k_{\lambda_a}^2 \geq \left(\frac{1}{m}\sum_a k_{\lambda_a}\right)^2 = \left(\frac{1}{m}\operatorname{tr} A_{\lambda}\right)^2.$$

So, for any submanifold $M^m \hookrightarrow N^n$, s and H always satisfy the inequality: $s \ge mH^2$.

Relationship between s and H influences the geometric and topological structure of submanifolds. As an extension of the well-known gap theorem in minimal submanifolds, Okumura [3] proved that

Theorem O. Let M^m be a compact connected submanifold immersed in a space form $N^n(c)$ with $c \ge 0$ and satisfy the following condition

(C) the connection of the normal bundle is flat and the mean curvature vector field H is parallel with respect to the connection of the normal bundle.

If

$$s < \frac{m^2}{m-1} H^2 \text{ on } M^m, \tag{1}$$

then M^m is totally umbilical.

Cancelling condition (C), the first author [6] proved that

Theorem Z. Let M^m be an oriented, connected submanifold immersed in a simply connected space form $N^n(c)$, $m = \dim M \ge 4$. If one of the following is satisfied:

$$C_1$$
: M^m is compact, $c \ge 0$, and $s < \frac{m^2}{m-1}H^2$ on M^m ;

$$C_2$$
: M^m is complete, $c > 0$, and $s \le \frac{m^2}{m-1}H^2$ on M^m ,

then M^m is homeomorphic to a sphere.

Shiohama and Xu [4] showed a more generalized result:

Theorem SX. Let M^m be an oriented complete submanifold in a space form $N^n(c)$ with $c \ge 0$. If

$$\sup \left\{ s - \left[mc + \frac{m^3}{2(m-1)} H^2 - \frac{m(m-2)}{2(m-1)} \sqrt{m^2 H^4 + 4(m-1)cH^2} \right] \right\} < 0, \quad (2)$$

then M^m is homeomorphic to a sphere.

Note that the inequality (2) will be reduced to $s < \frac{m^2}{m-1}H^2$ if the ambient space $N^n(c)$ is the Euclidean space E^n .

The above conclusions indicate that for any immersed $M^m \to N^n(c)$, the inequality $s \ge mH^2$ is always hold. If $s < \frac{m^2}{m-1}H^2$ on M^m , then under the conditions of Okumura, M^m is totally umbilical. And when the condition (C) of Okumura is deleted, the M^m , topologically, is a sphere.

In this paper we shall further relax restrictions on s and H and prove the following:

Main Theorem. Let M^m be an oriented compact submanifold immersed in a simply connected space form $N^n(C)$ with $c \ge 0$, $m = \dim M > 3$. If $s < \frac{m^2}{m-2}H^2 + 4c$ on M^m , then for p = 2, 3, ...,

m-2, there are no stable integral p-currents in M^m and

$$H_2(M, Z) = H_3(M, Z) = \cdots = H_{m-2}(M, Z) = 0.$$

Example. As a submanifold, $M^m = S^1 \times S^{m-1}$ can be immersed into E^{m+2} . We can get that

$$s = m$$
, $H^2 = \frac{1}{m^2}[(m-1)^2 + 1]$,

and thus

$$\frac{m^2}{m-1}H^2 < s < \frac{m^2}{m-2}H^2 \text{ on } M^m.$$

The first author [5] proved that for $0 , <math>p \neq m_1$ and $p \neq m_2$, there is no stable integral p-current in $S^{m_1} \times S^{m_2}$ and

$$H_p(S^{m_1} \times S^{m_2}, Z) = 0.$$

This conclusion tells us that when m > 3,

$$H_p(S^1 \times S^{m-1}, Z) = 0, \quad p = 2, 3, ..., m - 2.$$

2. Proof of Main Theorem

For a given integer $p \in (0, m)$, let V be a p-dimensional subspace in $T_x M$ and $\{e_i\}$ be an orthonormal basis of V. Define a selfadjoint linear map $Q^A: V \to V$ associated with the immersion $M^m \to N^n(c)$ by

$$Q^{A}X = \sum_{\lambda} \left[2 \left(\sum_{i} \langle A_{\lambda}^{2} X, e_{i} \rangle e_{i} - B_{\lambda}^{2} X \right) - (\operatorname{tr} A_{\lambda} - \operatorname{tr} B_{\lambda}) B_{\lambda} X \right], \quad (3)$$

where $X \in \mathit{C}(TM)$ and B_{λ} is a map on V associated with A_{λ} defined by

$$B_{\lambda}X = \sum_{i} \langle A_{\lambda}X, e_{i} \rangle e_{i}.$$

 Q^A is independent of the choice of bases of $V_x(N, M)$ and V. Its trace is given by

$$\operatorname{tr}Q^{A} = \sum_{i} \langle Q^{A}e_{i}, e_{i} \rangle = \sum_{\lambda} \left[2\sum_{i,\alpha} \langle A_{\lambda}e_{i}, e_{\alpha} \rangle^{2} - (\operatorname{tr}A_{\lambda} - \operatorname{tr}B_{\lambda})\operatorname{tr}B_{\lambda} \right], \quad (4)$$

where $\{e_{\alpha}\}$ is an orthonormal basis of V^{\perp} which is the orthogonal complement of V in T_xM .

Because $N^n(c)$ is a simply connected space form, it can be considered as a totally umbilical hypersurface of E^{n+1} [1, p.41]. The first author [5] proved the following:

Lemma. Let M^m be a compact submanifold immersed in a totally umbilical hypersurface N^n with the sectional curvature $c \ge 0$ of E^{n+1} , and p be a given integer, $p \in (0, m)$. If for any $x \in M$ and any p-subspace V of T_xM ,

$$trQ^A < p(m-p)c, (5)$$

then there is no stable integral p-current in M^m and $H_p(M, Z) = H_{m-p}(M, Z) = 0$.

Now we calculate ${\rm tr}Q^A$. Note that $\{e_i,\,e_\alpha\}$ is an orthonormal basis of T_xM , we have

$$\operatorname{tr} A_{\lambda} = \sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle + \sum_{\alpha} \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle,$$
 (6)

$$\operatorname{tr} B_{\lambda} = \sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle,$$
 (7)

$$\operatorname{tr} A_{\lambda}^{2} = \sum_{i} \langle A_{\lambda}^{2} e_{i}, e_{i} \rangle + \sum_{\alpha} \langle A_{\lambda}^{2} e_{\alpha}, e_{\alpha} \rangle$$
$$= \sum_{i} \langle A_{\lambda} e_{i}, A_{\lambda} e_{i} \rangle + \sum_{\alpha} \langle A_{\lambda} e_{\alpha}, A_{\lambda} e_{\alpha} \rangle. \tag{8}$$

Because

$$A_{\lambda}e_{i} = \sum_{j} \langle A_{\lambda}e_{i}, e_{j} \rangle e_{j} + \sum_{\alpha} \langle A_{\lambda}e_{i}, e_{\alpha} \rangle e_{\alpha},$$

$$\sum_{i} \langle A_{\lambda} e_{i}, A_{\lambda} e_{i} \rangle = \sum_{i,j} \langle A_{\lambda} e_{i}, e_{j} \rangle^{2} + \sum_{i,\alpha} \langle A_{\lambda} e_{i}, e_{\alpha} \rangle^{2}$$
 (9)

and

$$\sum_{\alpha} \langle A_{\lambda} e_{\alpha}, A_{\lambda} e_{\alpha} \rangle = \sum_{\alpha, i} \langle A_{\lambda} e_{\alpha}, e_{i} \rangle^{2} + \sum_{\alpha, \beta} \langle A_{\lambda} e_{\alpha}, e_{\beta} \rangle^{2}.$$
 (10)

Substituting (9) and (10) into (8), we get

$$\operatorname{tr} A_{\lambda}^{2} = \sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle^{2} + \sum_{i \neq j} \langle A_{\lambda} e_{i}, e_{j} \rangle^{2} + 2 \sum_{i, \alpha} \langle A_{\lambda} e_{i}, e_{\alpha} \rangle^{2}$$

$$+ \sum_{\alpha} \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle^{2} + \sum_{\alpha \neq \beta} \langle A_{\lambda} e_{\alpha}, e_{\beta} \rangle^{2}.$$

$$(11)$$

By (6) and (7) we have

$$(\operatorname{tr} A_{\lambda})^{2} = \left(\sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle\right)^{2} + \left(\sum_{\alpha} \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle\right)^{2}$$

$$+ 2 \sum_{i,\alpha} \langle A_{\lambda} e_{i}, e_{i} \rangle \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle$$

$$= \left(\sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle\right)^{2} + \left(\sum_{\alpha} \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle\right)^{2}$$

$$+ 2(\operatorname{tr} A_{\lambda} - \operatorname{tr} B_{\lambda}) \operatorname{tr} B_{\lambda}. \tag{12}$$

(11) and (12) gives

$$\begin{split} \operatorname{tr} A_{\lambda}^{2} - \frac{1}{2} \left(\operatorname{tr} A_{\lambda} \right)^{2} &= 2 \sum_{i,\alpha} \left\langle A_{\lambda} e_{i}, \ e_{\alpha} \right\rangle^{2} - \left(\operatorname{tr} A_{\lambda} - \operatorname{tr} B_{\lambda} \right) \operatorname{tr} B_{\lambda} \\ &+ \sum_{i} \left\langle A_{\lambda} e_{i}, \ e_{i} \right\rangle^{2} + \sum_{\alpha} \left\langle A_{\lambda} e_{\alpha}, \ e_{\alpha} \right\rangle^{2} \\ &+ \sum_{i \neq j} \left\langle A_{\lambda} e_{i}, \ e_{j} \right\rangle^{2} + \sum_{\alpha \neq \beta} \left\langle A_{\lambda} e_{\alpha}, \ e_{\beta} \right\rangle^{2} \\ &- \frac{1}{2} \left(\sum_{i} \left\langle A_{\lambda} e_{i}, \ e_{i} \right\rangle \right)^{2} - \frac{1}{2} \left(\sum_{\alpha} \left\langle A_{\lambda} e_{\alpha}, \ e_{\alpha} \right\rangle \right)^{2}. \end{split}$$

Therefore

$$2\sum_{i,\alpha} \langle A_{\lambda}e_{i}, e_{\alpha} \rangle^{2} - (\operatorname{tr}A_{\lambda} - \operatorname{tr}B_{\lambda})\operatorname{tr}B_{\lambda}$$

$$= \operatorname{tr}A_{\lambda}^{2} - \frac{1}{2}(\operatorname{tr}A_{\lambda})^{2} + \frac{1}{2} \left(\sum_{i} \langle A_{\lambda}e_{i}, e_{i} \rangle\right)^{2} + \frac{1}{2} \left(\sum_{\alpha} \langle A_{\lambda}e_{\alpha}, e_{\alpha} \rangle\right)^{2}$$

$$-\sum_{i} \langle A_{\lambda}e_{i}, e_{i} \rangle^{2} - \sum_{\alpha} \langle A_{\lambda}e_{\alpha}, e_{\alpha} \rangle^{2}$$

$$-\sum_{i \neq j} \langle A_{\lambda}e_{i}, e_{j} \rangle^{2} - \sum_{\alpha \neq \beta} \langle A_{\lambda}e_{\alpha}, e_{\beta} \rangle^{2}.$$
(13)

If follows from the Schwarz inequality that

$$\begin{split} &\left(\sum_{i}\langle A_{\lambda}e_{i},\,e_{i}\rangle\right)^{2}\leq\,p\sum_{i}\langle A_{\lambda}e_{i},\,e_{i}\rangle^{2},\\ &\left(\sum_{\alpha}\langle A_{\lambda}e_{\alpha},\,e_{\alpha}\rangle\right)^{2}\leq(m-p)\sum_{\alpha}\langle A_{\lambda}e_{\alpha},\,e_{\alpha}\rangle^{2}. \end{split}$$

Substituting these into (13), we obtain

$$2\sum_{i,\alpha} \langle A_{\lambda} e_{i}, e_{\alpha} \rangle^{2} - (\operatorname{tr} A_{\lambda} - \operatorname{tr} B_{\lambda}) \operatorname{tr} B_{\lambda}$$

$$\leq \operatorname{tr} A_{\lambda}^{2} - \frac{1}{2} (\operatorname{tr} A_{\lambda})^{2} + \left(\frac{p}{2} - 1\right) \sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle^{2}$$

$$+ \left(\frac{m - p}{2} - 1\right) \sum_{\alpha} \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle^{2}. \tag{14}$$

Assume $\frac{p}{2}-1 \ge 0$ and $\frac{m-p}{2}-1 \ge 0$, that is, $2 \le p \le m-2$. By (11) and (14) we get

$$2\sum_{i,\alpha}\langle A_{\lambda}e_i,\,e_{lpha}
angle^2-(\mathrm{tr}A_{\lambda}-\mathrm{tr}B_{\lambda})\mathrm{tr}B_{\lambda}$$

$$\leq \operatorname{tr} A_{\lambda}^{2} - \frac{1}{2} (\operatorname{tr} A_{\lambda})^{2} + \max \left\{ \left(\frac{p}{2} - 1 \right), \frac{m - p}{2} - 1 \right\} \operatorname{tr} A_{\lambda}^{2}$$

$$= \frac{1}{2} \left[\max \left\{ p, m - p \right\} \operatorname{tr} A_{\lambda}^{2} - (\operatorname{tr} A_{\lambda})^{2} \right].$$

Substituting the above inequality into (4), we obtain

$$\operatorname{tr} Q^A \le \frac{1}{2} [\max\{p, m-p\}s - m^2 H^2].$$

Hence, if $s < \frac{m^2}{m-2}H^2 + 4c$ on M^m , $m = \dim M > 3$, then for p = 2, $3, \ldots, m-2$,

$$s < \frac{m^2}{\max\{p, m-p\}}H^2 + 2\min\{p, m-p\}c,$$

and thus $trQ^A < p(m-p)c$. The proof is completed.

References

- J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Publishing Company, Amsterdam, 1975.
- [2] H. B. Lawson and J. Simons, On stable integral currents and their application to global problems in real and complex geometry, Ann. of Math. 98 (1973), 427-450.
- [3] M. Okumura, Submanifolds and a pinching problem on the second fundamental tensors, Trans. Amer. Math. Soc. 178 (1973), 285-291.
- [4] K. Shiohama and H. W. Xu, The topological sphere theorem for complete submanifolds, Compositia Mathematica 107 (1997), 221-232.
- [5] Zhang Xueshan, Nonexistence of stable currents in submanifolds of a product of two shperes, Bull. Austral. Math. Soc. 44 (1991), 325-336.
- [6] Zhang Xueshan, Geometry and topology of submanifolds immersed in space forms and ellipsoids, Kodai Math. J. 17 (1994), 262-272.

Department of Mathematics Shanghai University of Engineering Science Shanghai 201620, P. R. China