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Abstract

Let us consider, in the Euclidean plane Eg a fixed convex body Kg and
a system {Kj, ..., K,,} of n-dimensional convex bodies. Assume that the
sets K; (i =1,..,m) have random positions, being stochastically

independent and uniformly distributed in a limited domain of Eo, and
denote by S,,, the area of the convex body K,, = Ko N(K; NKg NN

K,,). The aim of this paper is the study of the random variable S,,.

1. Introduction

Let us consider Eg be the Euclidean two dimensional space of

coordinates x;, x9 in which operates the group of Euclidean motion Gj.

The elementary Kinematic measure in the plane is

dK = dP A dO,

where dP = dx; A dxg and dO; is the infinitesimal area element of the
1-dimensional unit circle S; (see [1]). In this space we consider a fixed
convex body K, and a system {Kj, ..., K,,} of m convex sets, which are

placed at random with uniform distribution on a limited domain of E,.
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We suppose that the K; are stochastically independent and that they
meet K. Since Ky, Ky, ..., K,,, are convex sets, K,, = Ko N (K; N K,
N---NK,,) is a convex set; its area S,, = w(K,,) is a random variable

for which we want to determine the mean value E(S,,), the second

moment E(S2,) and the variance 62(S,,). If we assume that the convex
sets K; are congruent to a convex set K, of area S, we obtain the result of

Santal6 in [2] and Stoka in [3]. As application we consider a system of

random circles X; (i =1, ..., 4) of constant radius R; and a fixed circle of

radius K.

2. Main Results

We assume that the convex set K; (i =0, 1, ..., m) has area S; and

boundary JK; of length L;. We compute the following integral

I, = I S, dK, - dK,,.
{K;NKo =2}

We put

= dPdK, ---dK,,.
! .[{KiﬂKo;t@,PeKoﬂICm} ! "

With this positions we have

dK, ---dK dP = 1I,.

J1 = I{KiﬂK0¢®} mJ.{PeKoﬂK:m}

Taking into account that

dKi = 27'CSi,

Jioew

and by the fact that the convex sets K; are stochastically independent,

we obtain that

m
Jy = 2'"7:’”801_[ S..
i=1
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Hence

m
S, dK; - dK,, = zmnmSOH S;.

J{KiﬂKo =0} -1

But it i1s easy to see, using a classical result of Santalé and the

independence of the convex sets K;, that

m
dK; ---dK,, = 21(Sy + S;) + LoL;).
J.{KiﬂKo¢®} ! m H( m(So i)+ LoL;)

Finally we have the following result
Theorem 2.1. The mean value of the random variable S,, is

omamsS, TT" s
B(S ) = [los

m
l_L.:1 2n(Sy + S;) + LoL;)

Remark. If we assume that the convex sets K; are congruent to a

convex set K of area S and boundary 0K of length L, it is known that [2]:

(27’CS)m SO
@n(Sy + S) + LyL)™

IE‘(Sm) =

Corollary 2.2. The probability that a fixed point P in K belongs to
K,, is given by

m
2’”7:’" . Si
1=1

— :
[ 1., @n(So +5)+ LoLy)

p:

Proof. Easy by the fact that this probability is exactly given by the

expression

J' dPdK, - dK,,
{K;NKo#@, PeKoNK |

dPdK, - dK,,
{Ki ﬂKO 75@, PEKo}
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Using the same arguments of Stoka in [3] we can compute the
variance for the random variable S,,, finding.

Theorem 2.3. The second moment of the random variable S,, is

2‘[ o(K;, m; »)dG
GﬂKOi@

m )
[1., @n(So + )+ LiLo)

E(Sy) =

where
e U2
o(K;, m; &) = J J. Hui(Ki, u)ududv,
0J0 -1

and where dG is the density for sets of lines in the plane Eq, A\ is the
length of the chord determined by the convex body K on the line G and
u;(K;, u) is the measure of all the line segments of length u entirely

contained in the convex body K;.
Remark 2.4. The variance of S, is

1

GQ(Sm) = m
[ 1., @xlSo +8i) + LiLo)

m
22m p2m g2 | | L S?
1=

_ .
[ 1., @n(So + 8+ LoLi)

y 2J O(K;, m; 1)dG —
GﬂKO Fa0)

3. Applications

Let us consider, in the Euclidean plane Eq a fixed circle X of radius
Ry and a system X, ..., £, of circles of constant radius R;. Assume that
the sets X; (i =1,..,4) have random positions, being stochastically
independent and uniformly distributed in a limited domain of E5. We
denote by S, the area of the convex body X4 =X5N(ZN
ToN--NZ 4),
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Theorem 3.1. The mean value of the random variable Sy is

4 R-Z
B(s,) - nR2] [—F
1:1[ (Ro + R;)?

Now, fixing s € N and a convex body K, we put

J.(Ky) = J' 25dG,
s(Ko) (GNKg#2}

where )\ is the length of the chord obtained as intersection between a

random line G and K. If K; = £, we can compute J4(X;) using the

following formula due to Stoka [3],

Js(EO) = ZSTCB(%, %)Ré+s:

where B(%, %) is the Bessel function of parameters % and %

If we denote by N the set of all segments, of length u, that lie

completely in X;, the measure p(N') is computed by means of the

elementary Kinematic measure. Hence

2
W) = T @R —w)”,

then
4 8 4
T 2
i@, u)=— | | CR; —uw)”

Using the previous results we obtain, by direct calculations, that

I O(Z;, 4; 1)dG
E(S?l) _ {Gﬂf.oi@}
3 sTT* 2
2n°[ | (Ro +Ry)
such that
J' (L;, 4; M)dG
{GNZo =D}
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= 2117:3(%, %)6%%11 + 21%3(%, 6)5 yo + 2%3@ 121j80 g

+ 28TCB(; , 120j50l18 + 27713(; gj80u7 + 26113( )6(7)”6

5 7 4 5 3 1 5).4
+2 TCB(2 2)80;15 + 2 TCB( )80114 +2 nB(E, 5)8()“3,
where
p— TES
M1 = 98160
Mo = —zran (B + Ry + Ry + Ry),

8 p2 8 p2 8 8 8 p2
“gz{an+R(nR2+TtR3+rcR4]+nR2

5760

11152 " 1152 ' 1152 4608

R SRy . n°R, . n°R2 ) n°RyRy .\ n° R}
2| 1152 T 1152 | 4608 1152 = 4608 |

8
pg = — 896 2o [RE(Ry + Ry + Ry) + Ry(R5 + 4Ry(R3 + Ry)

+ R? + 4RyR, + R?)+ R2(Ry + Ry)

+ Ry(R? + 4RyR, + R?) + RyR,(Ry + Ry)),

8 p2 8 8 8 p2 8 8 p2
H7:{R12[Tc R2+R2[1r R3+nR4J+nR3+TcR3R4 n:R4J

168 ' 168 672 168 ' 672

8 8 8 p2 8 8 p2
21 T R3 T R4 T R3 T R3R4 I R4
+R1(R2( 168 " 168 | T2 Tes T 42 ' 16s

8 p2 8 2 8 p2 8 8 p2
s R3 R4 T R3R4 2| T R3 T R3R4 Y R4
16 168 |t @2 T 168 T 672

8 p2 8 2 8 p2 p2
T R3 R4 T R3R4 T R3 R4
- R{ 168 168 | 672 |
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TC8

He = —m[Rf(Rg(R:s + Ry) + Ry(R§ + 4R3R, + RY)

+ RyRy(R3 + Ry)) + Ry (R2(R? + 4R3R, + R?)

+4RyR3Ry(Ry + Ry) + RIR]) + RyRsRy(Ry(Ry + Ry) + RyRy)),

{RIZ( Rg(nigRg | ORRy n8R§]

Mo = 80 20 80

n{m, faa) e

N R{ RZZ(ESI;%R“ . n812§f?)RZJ . nsRélggRZJ . nSRil(‘)%ng}
Hy = TCSRIZE#(EH (Ry(R3 + Ry) + RgRy) + RyR3Ry),

2p2 2
ny = ©°RERSRIR?.
Finally, with the above notations, we give the following.
Theorem 3.2. The variance of the random variable S, is

1
3 8TT* \2
22728 [ ., (o + R)

c2(Sy) =

4 R2

y O(Z;, 4 1)dG - 287 ORAT— |,
UGQZOM l [1[ (Ro + R;)?

References

[1] H. Poincaré, Calcul des Probabilités, 2nd ed., Gauthier-Villars, Paris, 1912.

[2] L. A. Santalé, Uber das kinematische MaR im Raum, Act. Sci. et Ind. 357, Hermann,
Paris, 1936.

[8] M. Stoka, La variance d’une variable aléatoire associée a une famille des ovales du
plan euclidien, Bull. Acad. Royale de Belgique, 1973.



374 GIUSEPPE CARISTI and GIOVANNI MOLICA BISCI

Faculty of Economics

University of Messina

98122 (Me), Italy

e-mail: gcaristi@dipmat.unime.it

Faculty of Engineering, DIMET
University of Reggio Calabria

Via Graziella (Feo di Vito)

1-89100 Reggio, Calabria, Italy
e-mail: giovanni.molica@ing.unirc.it



