A PROBLEM OF STOCHASTIC GEOMETRY ON A CIRCLE

GIUSEPPE CARISTI and GIOVANNI MOLICA BISCI

(Received September 23, 2006)

Abstract

Let us consider, in the Euclidean plane \mathbf{E}_{2} a fixed convex body \mathbf{K}_{0} and a system $\left\{\mathbf{K}_{1}, \ldots, \mathbf{K}_{m}\right\}$ of n-dimensional convex bodies. Assume that the sets $\mathbf{K}_{i}(i=1, \ldots, m)$ have random positions, being stochastically independent and uniformly distributed in a limited domain of \mathbf{E}_{2}, and denote by \mathcal{S}_{m} the area of the convex body $\mathcal{K}_{m}=\mathbf{K}_{0} \cap\left(\mathbf{K}_{1} \cap \mathbf{K}_{2} \cap \cdots \cap\right.$ \mathbf{K}_{m}). The aim of this paper is the study of the random variable \mathcal{S}_{m}.

1. Introduction

Let us consider \mathbf{E}_{2} be the Euclidean two dimensional space of coordinates x_{1}, x_{2} in which operates the group of Euclidean motion G_{3}.

The elementary Kinematic measure in the plane is

$$
d \mathbf{K}=d P \wedge d O_{1}
$$

where $d P=d x_{1} \wedge d x_{2}$ and $d O_{1}$ is the infinitesimal area element of the 1-dimensional unit circle \mathbf{S}_{1} (see [1]). In this space we consider a fixed convex body \mathbf{K}_{0} and a system $\left\{\mathbf{K}_{1}, \ldots, \mathbf{K}_{m}\right\}$ of m convex sets, which are placed at random with uniform distribution on a limited domain of \mathbf{E}_{2}.

2000 Mathematics Subject Classification: Primary 60D05, 52A22.
Keywords and phrases: geometric probability, stochastic geometry, random sets, random convex sets, integral geometry.

We suppose that the \mathbf{K}_{i} are stochastically independent and that they meet \mathbf{K}_{0}. Since $\mathbf{K}_{0}, \mathbf{K}_{1}, \ldots, \mathbf{K}_{m}$ are convex sets, $\mathcal{K}_{m}:=\mathbf{K}_{0} \cap\left(\mathbf{K}_{1} \cap \mathbf{K}_{2}\right.$ $\left.\cap \cdots \cap \mathbf{K}_{m}\right)$ is a convex set; its area $\mathcal{S}_{m}:=\mu\left(\mathcal{K}_{m}\right)$ is a random variable for which we want to determine the mean value $\mathbb{E}\left(\mathcal{S}_{m}\right)$, the second moment $\mathbb{E}\left(\mathcal{S}_{m}^{2}\right)$ and the variance $\sigma^{2}\left(\mathcal{S}_{m}\right)$. If we assume that the convex sets \mathbf{K}_{i} are congruent to a convex set \mathbf{K}, of area S, we obtain the result of Santaló in [2] and Stoka in [3]. As application we consider a system of random circles $\Sigma_{i}(i=1, \ldots, 4)$ of constant radius R_{i} and a fixed circle of radius R_{0}.

2. Main Results

We assume that the convex set $\mathbf{K}_{i}(i=0,1, \ldots, m)$ has area S_{i} and boundary $\partial \mathbf{K}_{i}$ of length L_{i}. We compute the following integral

$$
I_{1}:=\int_{\left\{\mathbf{K}_{i} \cap \mathbf{K}_{0} \neq \varnothing\right\}} \mathcal{S}_{m} d \mathbf{K}_{1} \cdots d \mathbf{K}_{m}
$$

We put

$$
J_{1}:=\int_{\left\{\mathbf{K}_{i} \cap \mathbf{K}_{0} \neq \varnothing, P \in \mathbf{K}_{0} \cap \mathcal{K}_{m}\right\}} d P d \mathbf{K}_{1} \cdots d \mathbf{K}_{m}
$$

With this positions we have

$$
J_{1}=\int_{\left\{\mathbf{K}_{i} \cap \mathbf{K}_{0} \neq \varnothing\right\}} d \mathbf{K}_{1} \cdots d \mathbf{K}_{m} \int_{\left\{P \in \mathbf{K}_{0} \cap \mathcal{K}_{m}\right\}} d P=I_{1}
$$

Taking into account that

$$
\int_{\left\{P \in \mathbf{K}_{i}\right\}} d \mathbf{K}_{i}=2 \pi S_{i}
$$

and by the fact that the convex sets \mathbf{K}_{i} are stochastically independent, we obtain that

$$
J_{1}=2^{m} \pi^{m} S_{0} \prod_{i=1}^{m} S_{i}
$$

Hence

$$
\int_{\left\{\mathbf{K}_{i} \cap \mathbf{K}_{0} \neq \varnothing\right\}} \mathcal{S}_{m} d \mathbf{K}_{1} \cdots d \mathbf{K}_{m}=2^{m} \pi^{m} S_{0} \prod_{i=1}^{m} S_{i}
$$

But it is easy to see, using a classical result of Santaló and the independence of the convex sets \mathbf{K}_{i}, that

$$
\int_{\left\{\mathbf{K}_{i} \cap \mathbf{K}_{0} \neq \varnothing\right\}} d \mathbf{K}_{1} \cdots d \mathbf{K}_{m}=\prod_{i=1}^{m}\left(2 \pi\left(S_{0}+S_{i}\right)+L_{0} L_{i}\right)
$$

Finally we have the following result
Theorem 2.1. The mean value of the random variable \mathcal{S}_{m} is

$$
\mathbb{E}\left(\mathcal{S}_{m}\right)=\frac{2^{m} \pi^{m} S_{0} \prod_{i=1}^{m} S_{i}}{\prod_{i=1}^{m}\left(2 \pi\left(S_{0}+S_{i}\right)+L_{0} L_{i}\right)} .
$$

Remark. If we assume that the convex sets \mathbf{K}_{i} are congruent to a convex set \mathbf{K} of area S and boundary $\partial \mathbf{K}$ of length L, it is known that [2]:

$$
\mathbb{E}\left(S_{m}\right)=\frac{(2 \pi S)^{m} S_{0}}{\left(2 \pi\left(S_{0}+S\right)+L_{0} L\right)^{m}} .
$$

Corollary 2.2. The probability that a fixed point P in \mathbf{K}_{0} belongs to \mathcal{K}_{m} is given by

$$
p=\frac{2^{m} \pi^{m} \prod_{i=1}^{m} S_{i}}{\prod_{i=1}^{m}\left(2 \pi\left(S_{0}+S_{i}\right)+L_{0} L_{i}\right)} .
$$

Proof. Easy by the fact that this probability is exactly given by the expression

$$
p=\frac{\int_{\left\{\mathbf{K}_{i} \cap \mathbf{K}_{0} \neq \varnothing, P \in \mathbf{K}_{0} \cap \mathcal{K}_{m}\right\}} d P d \mathbf{K}_{1} \cdots d \mathbf{K}_{m}}{\int_{\left\{\mathbf{K}_{i} \cap \mathbf{K}_{0} \neq \varnothing, P \in \mathbf{K}_{0}\right\}} d P d \mathbf{K}_{1} \cdots d \mathbf{K}_{m}} .
$$

Using the same arguments of Stoka in [3] we can compute the variance for the random variable \mathcal{S}_{m}, finding.

Theorem 2.3. The second moment of the random variable \mathcal{S}_{m} is

$$
\mathbb{E}\left(\mathcal{S}_{m}^{2}\right)=\frac{2 \int_{\mathbf{G} \cap \mathbf{K}_{0} \neq \varnothing} \Phi\left(\mathbf{K}_{i}, m ; \lambda\right) d \mathbf{G}}{\prod_{i=1}^{m}\left(2 \pi\left(S_{0}+S_{i}\right)+L_{i} L_{0}\right)}
$$

where

$$
\Phi\left(\mathbf{K}_{i}, m ; \lambda\right)=\int_{0}^{\lambda} \int_{0}^{v} \prod_{i=1}^{m} \mu_{i}\left(\mathbf{K}_{i}, u\right) u d u d v
$$

and where $d \mathbf{G}$ is the density for sets of lines in the plane \mathbf{E}_{2}, λ is the length of the chord determined by the convex body \mathbf{K}_{0} on the line \mathbf{G} and $\mu_{i}\left(\mathbf{K}_{i}, u\right)$ is the measure of all the line segments of length u entirely contained in the convex body \mathbf{K}_{i}.

Remark 2.4. The variance of \mathcal{S}_{m} is

$$
\begin{aligned}
\sigma^{2}\left(\mathcal{S}_{m}\right)= & \frac{1}{\prod_{i=1}^{m}\left(2 \pi\left(S_{0}+S_{i}\right)+L_{i} L_{0}\right)} \\
& \times\left(2 \int_{\mathbf{G} \cap \mathbf{K}_{0} \neq \varnothing} \Phi\left(\mathbf{K}_{i}, m ; \lambda\right) d \mathbf{G}-\frac{2^{2 m} \pi^{2 m} S_{0}^{2} \prod_{i=1}^{m} S_{i}^{2}}{\prod_{i=1}^{m}\left(2 \pi\left(S_{0}+S_{i}\right)+L_{0} L_{i}\right)}\right)
\end{aligned}
$$

3. Applications

Let us consider, in the Euclidean plane \mathbf{E}_{2} a fixed circle $\boldsymbol{\Sigma}_{0}$ of radius R_{0} and a system $\boldsymbol{\Sigma}_{1}, \ldots, \boldsymbol{\Sigma}_{4}$ of circles of constant radius R_{i}. Assume that the sets $\Sigma_{i}(i=1, \ldots, 4)$ have random positions, being stochastically independent and uniformly distributed in a limited domain of \mathbf{E}_{2}. We denote by \mathcal{S}_{4} the area of the convex body $\boldsymbol{\Sigma}_{4}=\boldsymbol{\Sigma}_{0} \cap\left(\boldsymbol{\Sigma}_{1} \cap\right.$ $\left.\Sigma_{2} \cap \cdots \cap \Sigma_{4}\right)$.

Theorem 3.1. The mean value of the random variable \mathcal{S}_{4} is

$$
\mathbb{E}\left(\mathcal{S}_{4}\right)=\pi R_{0}^{2} \prod_{i=1}^{4} \frac{R_{i}^{2}}{\left(R_{0}+R_{i}\right)^{2}}
$$

Now, fixing $s \in \mathbf{N}$ and a convex body \mathbf{K}_{0}, we put

$$
J_{s}\left(\mathbf{K}_{0}\right):=\int_{\left\{\mathbf{G} \cap \mathbf{K}_{0} \neq \varnothing\right\}} \lambda^{s} d \mathbf{G}
$$

where λ is the length of the chord obtained as intersection between a random line \mathbf{G} and \mathbf{K}_{0}. If $\mathbf{K}_{0}=\boldsymbol{\Sigma}_{0}$ we can compute $J_{s}\left(\boldsymbol{\Sigma}_{0}\right)$ using the following formula due to Stoka [3],

$$
J_{s}\left(\boldsymbol{\Sigma}_{0}\right)=2^{s} \pi B\left(\frac{1}{2}, \frac{s+2}{2}\right) R_{0}^{1+s}
$$

where $B\left(\frac{1}{2}, \frac{s+2}{2}\right)$ is the Bessel function of parameters $\frac{1}{2}$ and $\frac{s+2}{2}$.
If we denote by \mathcal{N} the set of all segments, of length u, that lie completely in Σ_{i}, the measure $\mu(\mathcal{N})$ is computed by means of the elementary Kinematic measure. Hence

$$
\mu(\mathcal{N})=\frac{\pi^{2}}{4}\left(2 R_{i}-u\right)^{2}
$$

then

$$
\prod_{i=1}^{4} \mu_{i}\left(\boldsymbol{\Sigma}_{i}, u\right)=\frac{\pi^{8}}{4^{4}} \prod_{i=1}^{4}\left(2 R_{i}-u\right)^{2}
$$

Using the previous results we obtain, by direct calculations, that

$$
\mathbb{E}\left(\mathcal{S}_{4}^{2}\right)=\frac{\int_{\left\{\mathbf{G} \cap \boldsymbol{\Sigma}_{0} \neq \varnothing\right\}} \Phi\left(\boldsymbol{\Sigma}_{i}, 4 ; \lambda\right) d \mathbf{G}}{2^{3} \pi^{8} \prod_{i=1}^{4}\left(R_{0}+R_{i}\right)^{2}}
$$

such that

$$
\int_{\left\{\mathbf{G} \cap \boldsymbol{\Sigma}_{0} \neq \varnothing\right\}} \Phi\left(\boldsymbol{\Sigma}_{i}, 4 ; \lambda\right) d \mathbf{G}
$$

$$
\begin{aligned}
= & 2^{11} \pi B\left(\frac{1}{2}, \frac{13}{2}\right) \delta_{0}^{12} \mu_{11}+2^{10} \pi B\left(\frac{1}{2}, 6\right) \delta_{0}^{11} \mu_{10}+2^{9} \pi B\left(\frac{1}{2}, \frac{11}{2}\right) \delta_{0}^{10} \mu_{9} \\
& +2^{8} \pi B\left(\frac{1}{2}, \frac{10}{2}\right) \delta_{0}^{9} \mu_{8}+2^{7} \pi B\left(\frac{1}{2}, \frac{9}{2}\right) \delta_{0}^{8} \mu_{7}+2^{6} \pi B\left(\frac{1}{2}, 4\right) \delta_{0}^{7} \mu_{6} \\
& +2^{5} \pi B\left(\frac{1}{2}, \frac{7}{2}\right) \delta_{0}^{6} \mu_{5}+2^{4} \pi B\left(\frac{1}{2}, 3\right) \delta_{0}^{5} \mu_{4}+2^{3} \pi B\left(\frac{1}{2}, \frac{5}{2}\right) \delta_{0}^{4} \mu_{3},
\end{aligned}
$$

where

$$
\begin{aligned}
\mu_{11}:= & \frac{\pi^{8}}{28160}, \\
\mu_{10}:= & -\frac{\pi^{8}}{5760}\left(R_{1}+R_{2}+R_{3}+R_{4}\right), \\
\mu_{9}= & {\left[\frac{\pi^{8} R_{1}^{2}}{4608}+R_{1}\left(\frac{\pi^{8} R_{2}^{2}}{1152}+\frac{\pi^{8} R_{3}}{1152}+\frac{\pi^{8} R_{4}}{1152}\right)+\frac{\pi^{8} R_{2}^{2}}{4608}\right.} \\
& \left.+R_{2}\left(\frac{\pi^{8} R_{3}}{1152}+\frac{\pi^{8} R_{4}}{1152}\right)+\frac{\pi^{8} R_{3}^{2}}{4608}+\frac{\pi^{8} R_{3} R_{4}}{1152}+\frac{\pi^{8} R_{4}^{2}}{4608}\right], \\
\mu_{8}:= & -\frac{\pi^{8}}{896}\left[R_{1}^{2}\left(R_{2}+R_{3}+R_{4}\right)+R_{1}\left(R_{2}^{2}+4 R_{2}\left(R_{3}+R_{4}\right)\right.\right. \\
& \left.\quad+R_{3}^{2}+4 R_{3} R_{4}+R_{4}^{2}\right)+R_{2}^{2}\left(R_{3}+R_{4}\right) \\
& \left.\quad+R_{2}\left(R_{3}^{2}+4 R_{3} R_{4}+R_{4}^{2}\right)+R_{3} R_{4}\left(R_{3}+R_{4}\right)\right], \\
\mu_{7}= & R_{1}^{2}\left(\frac{\pi^{8} R_{2}^{2}}{672}+R_{2}\left(\frac{\pi^{8} R_{3}}{168}+\frac{\pi^{8} R_{4}}{168}\right)+\frac{\pi^{8} R_{3}^{2}}{672}+\frac{\pi^{8} R_{3} R_{4}}{168}+\frac{\pi^{8} R_{4}^{2}}{672}\right) \\
& +R_{1}\left(R_{2}^{2}\left(\frac{\pi^{8} R_{3}}{168}+\frac{\pi^{8} R_{4}}{168}\right)+R_{2}\left(\frac{\pi^{8} R_{3}^{2}}{168}+\frac{\pi^{8} R_{3} R_{4}}{42}+\frac{\pi^{8} R_{4}^{2}}{168}\right)\right. \\
& \left.+\frac{\pi^{8} R_{3}^{2} R_{4}}{16}+\frac{\pi^{8} R_{3} R_{4}^{2}}{168}\right)+R_{2}^{2}\left(\frac{\pi^{8} R_{3}^{2}}{672}+\frac{\pi^{8} R_{3} R_{4}}{168}+\frac{\pi^{8} R_{4}^{2}}{672}\right) \\
& \left.+R_{2}\left(\frac{\pi^{8} R_{3}^{2} R_{4}}{168}+\frac{\pi^{8} R_{3} R_{4}^{2}}{168}\right)+\frac{\pi^{8} R_{3}^{2} R_{4}^{2}}{672}\right],
\end{aligned}
$$

$$
\begin{aligned}
\mu_{6}= & -\frac{\pi^{8}}{120}\left[R _ { 1 } ^ { 2 } \left(R_{2}^{2}\left(R_{3}+R_{4}\right)+R_{2}\left(R_{3}^{2}+4 R_{3} R_{4}+R_{4}^{2}\right)\right.\right. \\
& \left.+R_{3} R_{4}\left(R_{3}+R_{4}\right)\right)+R_{1}\left(R_{2}^{2}\left(R_{3}^{2}+4 R_{3} R_{4}+R_{4}^{2}\right)\right. \\
& \left.\left.+4 R_{2} R_{3} R_{4}\left(R_{3}+R_{4}\right)+R_{3}^{2} R_{4}^{2}\right)+R_{2} R_{3} R_{4}\left(R_{2}\left(R_{3}+R_{4}\right)+R_{3} R_{4}\right)\right], \\
\mu_{5}= & {\left[R _ { 1 } ^ { 2 } \left(R_{2}^{2}\left(\frac{\pi^{8} R_{3}^{2}}{80}+\frac{\pi^{8} R_{3} R_{4}}{20}+\frac{\pi^{8} R_{4}^{2}}{80}\right)\right.\right.} \\
& \left.+R_{2}\left(\frac{\pi^{8} R_{3}^{2} R_{4}}{80}+\frac{\pi^{8} R_{3} R_{4}^{2}}{20}\right)+\frac{\pi^{8} R_{3}^{2} R_{4}^{2}}{80}\right) \\
& \left.+R_{1}\left(R_{2}^{2}\left(\frac{\pi^{8} R_{3}^{2} R_{4}}{20}+\frac{\pi^{8} R_{3} R_{4}^{2}}{20}\right)+\frac{\pi^{8} R_{2} R_{3}^{2} R_{4}^{2}}{20}\right)+\frac{\pi^{8} R_{2}^{2} R_{3}^{2} R_{4}^{2}}{80}\right], \\
\mu_{4}= & \frac{\pi^{8} R_{1} R_{2} R_{3} R_{4}}{12}\left(R_{1}\left(R_{2}\left(R_{3}+R_{4}\right)+R_{3} R_{4}\right)+R_{2} R_{3} R_{4}\right), \\
\mu_{3}= & \pi^{8} R_{1}^{2} R_{2}^{2} R_{3}^{3} R_{4}^{2} .
\end{aligned}
$$

Finally, with the above notations, we give the following.
Theorem 3.2. The variance of the random variable \mathcal{S}_{4} is

$$
\begin{aligned}
\sigma^{2}\left(\mathcal{S}_{4}\right)= & \frac{1}{2^{3} \pi^{8} \prod_{i=1}^{4}\left(R_{0}+R_{i}\right)^{2}} \\
& \times\left(\int_{\mathbf{G} \cap \Sigma_{0} \neq \varnothing} \Phi\left(\boldsymbol{\Sigma}_{i}, 4 ; \lambda\right) d \mathbf{G}-2^{3} \pi^{10} R_{0}^{4} \prod_{i=1}^{4} \frac{R_{i}^{2}}{\left(R_{0}+R_{i}\right)^{2}}\right) .
\end{aligned}
$$

References

[1] H. Poincaré, Calcul des Probabilités, 2nd ed., Gauthier-Villars, Paris, 1912.
[2] L. A. Santaló, Über das kinematische Maß im Raum, Act. Sci. et Ind. 357, Hermann, Paris, 1936.
[3] M. Stoka, La variance d'une variable aléatoire associée a une famille des ovales du plan euclidien, Bull. Acad. Royale de Belgique, 1973.

Faculty of Economics
University of Messina
98122 (Me), Italy
e-mail: gcaristi@dipmat.unime.it

Faculty of Engineering, DIMET
University of Reggio Calabria
Via Graziella (Feo di Vito)
I-89100 Reggio, Calabria, Italy
e-mail: giovanni.molica@ing.unirc.it

