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Abstract 

A discrete knowledge-processing paradigm is introduced that permits 
knowledge encoding and decoding precision to be traded with 
complexity. The result is the ability to decode very complex systems in 
real time. The encoding of knowledge may take some time depending on 
the precision desired and cannot or at least should not be expected to be 
as immediate as the decoding. The decoding time of course is critical. It 
is not acceptable for a user to wait a long time for an output given input 
(or a decoding of knowledge) from the model even if it is acceptable that 
the encoding may take a very long time. A less precise but timely result 
may be more appropriate than a perfectly precise result that comes too 
late. 

The means to this end, that is, the discrete knowledge-processing 
paradigm may turn out to be more useful than the end itself, as it has 
revealed new ways of analysis and characterization of knowledge. The 
properties of discrete knowledge systems that permit this, would be 
shown in some detail for both low order systems (simple systems) where 
an explicit graphical demonstration is possible and high order systems 
(complex systems) where some abstract visualization may be required. 
Nevertheless, the regression performed, which like conventional neuro-
fuzzy techniques is a complex optimization algorithm, is easily 
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visualized as a rearrangement of components within a high dimensional 
sparse array that produces a model-target data match along with the 
discovery of natural rules. 

The new ways of analysis and characterization of knowledge along with 
interesting and appropriate terminology are introduced and explained. 
The results shown form a limited set of experiments performed that 
support the new concepts introduced from a larger pool of results in a 
study that is ongoing, but which is hopefully sufficient for the reader to 
gain an understanding of the work done. 

1. Introduction 

There is a need to understand the effects of limited resources on 
knowledge processing [15].  These effects only become evident with more 
complex knowledge. Almost all, current neuro-fuzzy systems and their 
chosen applications, by design, do not challenge the resources available 
for implementation of a solution [15]. By complex is meant non-linear 
and high order. By high order is meant systems with many independent 
variables. The term ‘many’ here can be anything from dozens to hundreds 
or even thousands of variables. Properties of such high order systems 
were addressed very early on by Kanerva [10] although they were limited 
to binary systems, along with more recent developments [11, 12]. These 
concepts were later independently adapted to real systems [14], which 
form the basis of much of the work developed here. This need becomes 
immediately evident when any of the current neuro-fuzzy tools are 
considered for such non-linear, high order problems. The fact that such 
complex systems exist, for example, a non-linear system with perhaps a 
hundred independent variables, is indisputable since they can be easily 
created experimentally. This would be clearly demonstrated during the 
course of the paper. It is anecdotal that they exist naturally. The effects 
of limited resources with current neuro-fuzzy systems designs are that 
complex problems cannot be solved. That is, current neuro-fuzzy tools 
cannot be used to model and control complex data beyond a certain order. 

In considering the solution to this problem, it must be addressed how 
similar problems are solved in other domains. For example, in signal 
processing, computational power is limited; thus a sample rate is chosen 
that is within the limits of available processing power and buffers. The 
higher the processing power and the more buffer space available the 
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higher the sample rate possible in practice. There is no signal of any 
complexity that current signal processing designs cannot handle. The 
effect of limited resources is limited bandwidth. This means practically 
that complex signals cannot be represented with perfect precision. This 
has not prevented the tremendous strides in the industry over the years, 
as it may be an understatement to say that perfect precision has been 
found to be quite unnecessary. For example, moving images can be 
compressed by sometimes up to 1:50  (a tremendous loss of precision) 

with almost imperceptible effects. The discrete signal-processing 
paradigm is what permits the effects of limited resources to be so 
expertly managed. The problem with current neuro-fuzzy tools is that 
there is nothing to trade as complexity increases. They are based on the 
equivalent to the continuous signal model paradigm of yesterday and like 
typical continuous models are highly precise universal approximators 
[17]. What is needed is a discrete knowledge processing paradigm 
equivalent to the discrete signal processing paradigm to permit the 
solution of complex problems albeit with some trade-off. 

In the solution developed here, just as discrete signal processing 

revolves around the concept of a sample, discrete knowledge processing 

revolves around the concept of an ‘extract’. An extract is a local, non-

linearly weighted, linear patch of the multidimensional knowledge 

manifold described mathematically in Appendix A. The generalized bell 

shape of extract weightings {Equation (7), Appendix A} which can be 

pulse shaped for large b is a natural counter to the orthogonality of high 

order spaces. Gaussian kernels allowed in other neuro-fuzzy 

architectures but not allowed for the discrete model introduced here, is 

not suitable for high order problems [19]. 

An extract is not necessarily a rule. In fact, a rule may comprise 

many extracts clustered together. Thus, there may be many more 

extracts than rules, which on the surface (no pun intended) may seem to 

aggravate the problem of limited resources. That is, if current processors 

cannot deal with complex conventional solutions with a large number of 

rules, how is it going to deal with an even larger number of extracts?   

Extracts unlike conventional rules are such that they can be easily 

embedded in a multidimensional sparse array structure. This permits 
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extracts being addressed through the array structure (Appendix A) 

rather than an exhaustive search usually applied sequentially, as is done 

with rules in the conventional paradigm [7]. Thus knowledge can be 

encoded and decoded by storage of data in memory components that may 

be weightless, not unlike the networks of Aleksander and Morton [1]. 

However, although the storage components are more complex than the 

basic RAM memory component [3], the concepts are the same. 

This exhaustive search is what actually puts a strain on 
computational resources discussed. An explosion in the number of rules 
with order may strain computational resources regardless of architecture, 
i.e., there may be so many rules that even massive parallel processing 
architectures, long thought to be a panacea cannot cope [2]. The proposed 
Union Rule Configuration (URC) solution of Combs and Andrews [5, 6] 
appears only capable of modeling linear fuzzy systems, and in any event 
does not address any method of regression of rules from data. Other 
typical techniques for dealing with complexity are given in [4]. In this 
new paradigm however, since they do not have to be searched 
exhaustively it does not matter how many extracts there are, the problem 
is tractable for very high orders [16]. The more extracts used the higher 
the precision is. The number of extracts is limited by available physical 
memory storage (buffers) and processing power. 

With this technique knowledge of any complexity can be processed, 
albeit within the precision of the available resources. It is useful at this 
stage and with this new tool to consider how the models of knowledge 
changes with varying numbers and configurations of extracts and what is 
required of complex adaptive learning systems. The signal processing 
analogy would come in very useful in explaining much of the concepts to 
be introduced. 

2. Discrete Knowledge Encoding 

Knowledge can be defined as a possibly complex function that even 
for a stationary system may be mathematically indescribable in closed 
form. Since closed form functions are already well understood, emphasis 
would be placed on non-closed or open form functions, which in 
speculation would comprise the majority of knowledge. The latter as the 



www.p
phm

j.c
om

PROPERTIES OF DISCRETE KNOWLEDGE SYSTEMS 61

name implies is only defined in the limit with large amounts of data.  
That is, the function may change unpredictably with each new data 
point. Sources of such data may be fully determined or underdetermined.  
Underdetermined means that only time and new data would tell what is 
the function. Thus, the testing of knowledge acquired and acquisition 
systems using undetermined sources is never complete. With fully 
determined sources there is no need to wait and see what happens as new 
data can be generated at will. These sources of data can be used to 
effectively test the veracity of knowledge acquired. Fully determined 
open form sources can be produced from either, other trained knowledge 
acquisition systems, or the inverse of non-linear closed form sources that 
may not be closed form itself. Thus the inverse of a non-linear closed form 
source is perhaps the easiest way of typifying knowledge where the 
veracity of any knowledge encoding technique can be easily checked. A 
non-linear closed form source that can be used to demonstrate knowledge 
acquisition for a two dimensional problem that can be depicted 
graphically is the following: 
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This data which cannot be described in mathematically closed form is 
then modified to introduce a distinct semantic rule as follows: 
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A discrete knowledge processing systems with just one extract with 

characteristics ,6.0=a  ,50=β  initial values of ,2=b  [ ]T000=p  

and c shown in Figure 1 would be used to describe how the system 

functions. After training with 100=n  data points, using stochastic 

quantized gradient descent (Appendix A) with learning rate 05.0=η  for 
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1000=N  epochs the results are shown graphically in Figure 1. The 

initial error of 0.11618 was reduced to a final error of 0.0335. As can be 

seen in Figure 1(b) the component location c has moved from its initial 
position on the right of the figure to its final position shown in red. The 

parameters b and p have changed to produce the shape seen in Figure 

1(a) centered on c. This shape is a good match to the data, shown as 
circles, on the diagram of Figure 1(a) as can be seen. 

 

(a) One extract model 

 

(b) Stochastic convergence of one 
extract 

Figure 1. Discrete knowledge regression with single extract. 

What is interesting about this process is that regardless of the initial 

location c of the extract, its final location is always the same (optimum) 

spot within the bottom left quadrant of the figure. This can be seen in 

Figure 2 where the convergence of the single extract with five different 

random starting positions are overlaid. This quadrant not coincidentally 

is the location of the semantic rule of Equation (3). That spot is the best 

spot for that extract to be at to model the surface (or to minimize the 

error between the target data and that of the model). If there were more 

extracts than one, let us say twenty, then almost all twenty would 

converge to (using the specialized gradient decent method mentioned), 

again, the lower left quadrant of the figure, not in the same spot but 

distributed throughout the quadrant as shown in Figure 3. The final error 
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in this case is 5101376.7 −×  reduced from an initial error of 0.0916, 

which is roughly one four hundred and sixty ninth of the final error with 

one extract (increasing numbers of extracts generally increases precision 

of the model or reduces the error). Parameters a, β, n, η, N and initial 

values of b and p for each extract are the same. The surface clearly 

models the data more precisely as can be seen in Figure 3(a) (i.e., all 

points {circles} are coincident with the surface unlike Figure 1(a) making 

them difficult to spot).  Again this restriction (which occurs naturally due 

to optimality) to the lower left quadrant is because this is where the more 

complex part of the surface is, or the rule as indicated in Equation (3). 

This obvious clustering of extracts demonstrates the mechanism whereby 

natural semantic code within knowledge is discovered. 

 
Figure 2. System with one extract and different starting locations 

showing stochastic convergence. 

If there was an overabundance of extracts, for example, 100, then the 

final error is 4102715.7 −×  starting from 0.0752 (initial random placement 

and numbers of extracts result in different initial errors), which is ten 
times that of the error with 20 extracts. The trace of extract mobility 
during training {Figure 4(b)} showing their final positions reveal no 
observable clustering towards the lower left quadrant as observed with 
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lesser numbers of extracts. This is because the lower left quadrant 
already has as many or even more extracts than that with just 20 

extracts clustered there, which gave a very small error of .101376.7 5−×  

It is hard to improve on this error; in fact, the error with 100 extracts has 
gone up, although still very small, which can be attributed to the noise 
introduced by the excess of extract. 

 

(a) Model using 20 extracts 

 

(b) Stochastic convergence of 20 
extracts 

Figure 3. Discrete knowledge regression with twenty extracts. 

 

(a) Model using 100 extracts 
 

(b) Stochastic convergence of 100 
extracts 

Figure 4. Discrete knowledge regression with one hundred extracts. 
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The extract location optimization procedure uses stochastic quantized 

gradient search (Appendix A) and reveals some very interesting features. 

In a system with natural semantics it is important to have just the right 

amount of extracts for these semantics to be discovered. Too many 

extracts and the surface can be modeled very precisely without any 

clustering of extracts. That is, the initial densities of extracts within rule 

regions are sufficient to model rules precisely enough so as not to need 

any further extracts and warrant the movement of extracts from other 

regions. Too few extracts and even if optimally clustered the surface 

model may not be as precise as desired. Perhaps the best strategy is to 

start off with an overabundance of extracts that produces a precise 

superficial model but no semantic model. The numbers of extracts are 

then gradually reduced. The remaining extracts then start to cluster in 

maintaining the precision of the superficial code and in the process 

produce semantic code. The reduction of numbers of extracts is then 

stopped when the precision of the superficial code starts to falter but the 

precision of the semantic code is at its best. 

There is an obvious correlation with natural brain physiology here, 

which starts off with an overabundance of neurons that die off as the 

brain ages. Semantic knowledge also happens to improve with age. This 

may be merely a coincidence and this observation comes after the fact, 

however if not, then it may warrant further study by researchers in 

another specialization. 

3. High Order Discrete Knowledge Encoding 

High order systems would be those that typically would not be 

attempted to be solved with conventional neuro-fuzzy tools. Thus, the 100 

dimensional example used here would be typical. Like the lower order 

problem above, fully determined open form sources of data would be best 

to test the veracity of the knowledge encoding. It is perhaps easier in this 

case to use one discrete knowledge system with explicit embedded rules 

to generate data that is to be used in training another system to test the 

veracity of the knowledge encoding process. An explicit rule is encoded by 

choosing the position and parameters of a cluster of extracts as follows: 
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(a) 100 dimensional problem 

 

(b) 1000 dimensional problem 

Figure 5. Firing strengths of high order rules. 

A discrete knowledge system with 100 inputs x, each input ix  

quantized into 100 levels corresponding to indices of a sparse array has a 

rule defined using 20 extracts, each with [ ],4...,,4,4=b  ,100=β  

30=a  and ( )cd  uniformly, randomly distributed within a rule hypercube 

of size 10 centered on the array location [ ]50...,,50,50=r  with rule 

firing strength characteristics shown in Figure 1. The plot was obtained 

using 100 data points clustered around the rule center. The rule can be 

described in semantic form as the following: 

If 1x  is ‘medium’ and 2x  is ‘medium’ and … and 100x  is ‘medium’ 

then y is ‘rule firing strength.’ 

The distance from the rule center r is calculated using L-2 norm 

rx −  and from Figure 5 a rule antecedent membership function can 

be abstractly visualized but not plotted that would be a 100 dimensional 

bell shape. 

It is interesting to note that the sparse cell array of this discrete 

knowledge system has 100100  possible locations. This number is difficult 

to imagine. Consider the following: If there were as many rules in the 

discrete knowledge system as the number of elementary particles in the 
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universe (estimated at ),1080  each one defined using 20 extracts with 

rule antecedent membership function as in Figure 1, then the array 

would still be mostly empty with sparsity of .1021001020 11910080 −×=×  

The 100 points generated for the plot of Figure 5 required discrete 

knowledge input decoding which took 35.21 seconds to compute (x86 

Family 6 Model 8 Stepping 3 with 128 MB RAM, commonly known as a 

Pentium III, a very modest machine). This means that a single input is 

decoded in 3521.010021.35 =  seconds on average. Interestingly with 

the impossible number of 8010  rules (i.e., as many as the estimated 

number of elementary particles in the universe) each network input 

decoding would still take about a third of a second. This is only provable 

by extrapolation {Figure 6(b)} since this number of rules far exceeds 

virtual memory storage capability of any present or future computer 

architecture. The point remains however, that if there were more 

realistically only one million ( )6101 ×  rules, which does not exceed 

virtual memory limits and may take some time to encode {Figure 6(a)} 

then decoding input (finding which rule, if any, is applicable) would still 

only take of the order of 0.3521 seconds. This is because the decoding 

time does not increase with the number of rules learnt as can be seen in 

the plot of Figure 6(b), which remains low as the number of rules 

increases. The random variability of processing times seen (throughout 

which the time remains low in comparison to the encoding time, for 

example) is assumed due to other background processes on the machine. 

The equivalent rule for a 1000 input problem with the same 

parameters has firing strength characteristics shown in Figure 5(b). The 

decoding time for 100 points was in this case 338.29 seconds (one 

instance), which means that input took roughly 3.4 seconds per point to 

decode. This time is important because it says in a practical application 

how long a user would have to wait to get a result or response from a 

trained system to input. The array size 1000100  in this case is even more 

difficult to imagine. The decoding time of the 1000 dimensional problem 

is ten times that of the 100 dimensional problem, that is, it goes up 
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linearly with order. This is a property of the sparse array-addressing 

algorithm. Thus a 10000 dimensional input should take roughly 34 

seconds to decode. 

This rule in such a high order space represents a very rare 
concurrence of inputs that has special significance. It is interesting to 
note that with such high order problems passive learning is practically 
impossible. That is, the space is so large that the chance of stumbling 
upon a rule by generating random inputs is practically zero. That is all 
inputs would be at the tail of the functions shown in Figure 5. For 
random input and initial random distribution of extracts in the array, the 
rate of change of error function with extract locations would also be 
infinitesimally small. Though small, this rate of change of error, a by-
product of the learning process for random inputs, do indicate where the 
rules are, but these can only be identified once inputs are no longer 
random but directed to this general location. This is a sort of active 
learning where observation of the learning process itself is important to 
learning. Again, in such a high order system without such introspection it 
would be impossible to learn (rules) passively (with random input). 

 

(a) 
 

(b) 

Figure 6. Encoding (a) and decoding (b) times with increasing array 
loading. 

Imagine that a hypothetical 100 dimensional problem had an 
unknown single rule with characteristics shown in Figure 5(a). This rule 
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is to be found by regression using another discrete system, starting with 

20 random extracts (where [ ]4...,,4,4=b  are fixed, ,100=β  )30=a  

and 100 random data points. The random extracts in the array are 
expected, if all goes well, post-regression to cluster around the rule 

position centered on [ ].50...,,50,50=r  What actually occurs, it was 

found, is that to the 100 random data points the rule was completely 
opaque (as discussed above). That is the initial error was of the order of 

something like 230107109.2 −×  (an actual result) which is practically 

zero. With zero error this means that the initial positions of the 20 
random extracts are already the best positions. To understand this, it 
must be remembered that with the single rule in the high order space, 
everywhere else but the rule is zero. The probabilities are that the 
random data points would fall everywhere else, and be so far away from 
extracts that the result is zero, thus the error is zero. The rate of change 
of error with extract position is an even smaller number with a maximum 

among extracts of .106171.4 273−×  It should be no surprise therefore, 

that after 20 epochs of training nothing changes. 

The situation changes completely if the data points were clustered 
around the rule location and not purely random. In this case a typical 

initial error is 4106303.1 ×  which reduces after 20 epochs to 195.7480 

(actual values), with the 20 random extracts locations observed 
converging to the rule position as expected. The membership functions of 
the model and target rules are shown pre-regression and post-regression 
in Figure 7. Changing the distribution of test data points in cycles 

starting with a random set, from the results of regression, although the 

process is a tedious one, can arrive at this same result. So it is not 

necessary to know the result a priori as the clustering of data points the 

regression of which produced the given curves suggest. 
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(a) Pre-regression 

 

(b) Post-regression 

Figure 7. Learning a 100 dimensional rule. 

Such high order systems may be hard to visualize, hopefully this 

restatement of the above would help. Imagine a dish that has 100 

ingredients. Only one combination of these ingredients tastes good. This 

would be a fuzzy combination so a little less or more of each ingredient 

also tastes good and the fuzzy set ‘tastes good’ would have a 

multidimensional bell shape. Finding this combination that tastes good 

cannot be done by mixing random amounts of ingredients together since 

this probability is approximately zero. To find the right combination 

there are two possibilities, either being told where it is, or using the 

results of regression on random experiments to try non-random 

experiments. All of the random experiments are guaranteed to taste 

awful individually (by all probability). However, collectively they point 

almost imperceptibly to the combinations that could be tried. Repeatedly 

trying new combinations based on this perception eventually finds the 

right combination through regression. 

As trivial as the example may seem, it is important to note that this 
problem is one that is specific to high order systems and does not exist for 
low order systems. Finding the right combination and the 
experimentation in doing so can be quite mysterious if the above process 
is opaque. Such purpose in trying experiments is never necessary in low 
order problems, because random experiments alone can easily identify 
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whatever process (rules) exists in a fashion not quite as esoteric but more 
mechanical. 

4. Properties of Discrete Knowledge 

The above fully determined open formed sources demonstrate that 
knowledge can be encoded discretely regardless of complexity. If there 
was such an unknown 100 dimensional system with an embedded rule or 
rules, those rules as above can be found accordingly. There is nothing 
that prevents a 100 dimensional system or even a 1000 dimensional 
system from being identified to some level of precision determined by 
available resources. With underdetermined open form sources, only with 
time and corroboration of new data with that of the model would be the 
veracity of the encoding mechanism demonstrated above, reveal itself in 
application. The result of regression as demonstrated above is a 
movement of extracts about a sparse array into which they are embedded 
(and adjustment of other extract parameters). How those extracts 
arrange themselves can reveal very interesting properties of the system 
under study and raises certain questions as follows: 

• What does it mean if regardless of the number of extracts used no 

clustering takes place post-regression? 

• What does it mean if extracts form themselves into checkerboard 

patterns post-regression? 

• What does the granularity (number of squares) of the checkerboard 

pattern formed post-regression, if any, signify? 

• If extracts locations are fixed into checkerboard patterns and 

regression performed (on the other parameters) what is being 
modeled? 

It is postulated here that checkerboard patterns among extracts can 

be considered as components of knowledge, just as sinusoidal patterns are 

considered components of signals. With careful thought it is easy to see 
why, the checkerboard pattern entails reciprocating high and low 
complexity regions just like the sinusoid (but on a multidimensional 
scale). So a checkerboard pattern would indicate ‘pure’ knowledge and its 
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granularity becomes its ‘regularity’ (frequency). A regularity component is 

knowledge represented by a clustering of extracts into a checkerboard 
pattern of certain granularity. Like pure signals, pure knowledge would 
be hard to come by naturally and natural knowledge can be assumed 
composed of many pure components of varying regularity. Thus 
regression using extracts fixed into a specific checkerboard pattern 
detects a specific regularity component of knowledge. The checkerboard 
patterns have the added advantage of being able to be interpreted 
semantically (as a grid of rules). 

While it is clearly articulated in the literature that fuzzy sets can be 

used to describe rules that model some target system, no distinction is 

made between natural rules and formulated rules. For example, if the 

target system were a straight-line function (flat plane or hyper-

dimensional plane), then rules used to describe this function are all 

formulated. By definition the output monotonically changes with input; 

there are no natural rules. On the other hand a target system which is 

‘pure’ knowledge (as defined above) has distinct regions of high 

complexity and low complexity or natural rules that can be discovered.   

In this case a regularity component can be found that would be a better 

match than the others, i.e., it has a fundamental regularity component. 

Such systems can be termed as semantic knowledge systems (equivalent 

to periodic signals) and the former superficial knowledge systems 

(aperiodic signals). Pure semantic knowledge (pure periodic signal) would 

have natural rules whose antecedent membership functions form a 

regular grid, or whose post-regression extracts cluster into a 

checkerboard pattern. 

Thus, knowledge that always has a superficial code (a 

multidimensional surface or manifold) may also have a natural semantic 

code or variations in complexity of the surface that produces natural 

clustering of post-regression extracts. Conventional continuous fuzzy 

inference systems assign a certain number of rules to a problem and then 

seek to identify these rules using regression. Discrete fuzzy inference 

systems do not assume any rules at all, but expect that the clustering of 

extracts post-regression would identify rules. If such clustering does not 

occur, then the assumption can be that there are no distinct natural 
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rules. Otherwise semantic code can be artificially obtained from 

fundamental (regularity) components. That is, the result of regression 

with extracts fixed into a checkerboard pattern, which would result in 

formulated rules rather than natural rules. 

Merriam-Webster online dictionary defines ‘reasoning’ as follows, ‘to 

discover, formulate, or conclude by the use of reason’. The keyword here 

is ‘formulate’ that indicates that rules can be invented if not naturally 

‘discovered’. Fundamental Regularity Knowledge Components are 

invented rules that seek to explain a phenomenon. These invented rules 

may well be and be known to be a course description of the phenomenon. 

Just as a pure sinusoidal fundamental frequency component of a signal 

may be and is known to be a course description of a signal, even a flat 

manifold (linear system) that causes no clustering of extracts whatsoever 

post-regression has knowledge regularity components with well-defined 

rules that can be used to describe the system. 

5. Discrete Knowledge Modeling and Control Systems 

There are other advantages to the above paradigm apart from the 

ability to trade precision for complexity making high order modeling and 

control problems tractable. In addition to solving problems that could not 

have been solved before because of complexity, it is extremely fault 

tolerant in doing so. That is, if extracts are lost (for whatever reason, 

memory corruption, communication failure etc.) it is still capable of being 

a very effective knowledge model. It must be remembered that extracts 

(although they use similar generalized bell shaped weighting 

characteristics) are not the equivalent of rules in the conventional neuro-

fuzzy paradigm. In fact, many extracts may comprise a rule. The loss of 

an extract does not mean the loss of a rule. Even with increasing numbers 

of extracts lost, provided that they are randomly selected, no single rule is 

ever lost, but result in a gradual degradation of performance of the entire 

system. Again there is direct analogy with discrete signal processing 

where the loss of a sample or even many samples is highly tolerated. 

Extracts as mentioned are non-linearly weighted local linear models 

of the process. This locality and linearity means that effectively from the 
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perspective of an extract the process is linear. Thus, in control systems, 

very powerful linear quadratic regulation techniques can be used that 

takes into account the weighting and location of extracts combined into a 

global command position as discussed in [13]. This effectively means 

variable performance control of non-linear processes in real time that is 

intuitive and tractable. 

6. Discussion 

The results presented above describe a 100 dimensional system with 

rules artificially encoded in the system, then attempts to find these rules 

or identify the system both superficially (data match) and semantically 

using discrete knowledge regression processes. The results show 

conclusively that this is possible, the regression is successful and the 

residual error acceptable. These results also show graphically the 

mechanism of this regression for a lower order problem. The technique 

discussed has also been applied to real complex data, for example, stock 

market data among others known to exhibit chaos [8, 18]. Because these 

sources are underdetermined (there is no way to corroborate its accuracy) 

results are perhaps not as conclusive as that presented here. The rules 

artificially encoded in a target system represent a real benchmark for 

testing the veracity of the regression using another system. If it can find 

artificial rules encoded in high order complex systems presumably it can 

find natural rules in high order complex real world systems. 

The fact that the system functions at all in such a high order 

environment is at this stage taken for granted. That is, its ability to 

produce results in real time for very high order systems is indisputable. 

Conventional neuro-fuzzy systems, for example, ANFIS [9] start to hang 

up (that is, take too long to respond) when the number of inputs is still 

well within double digits. There is a rational for this advantage, as 

discussed, trading precision for real time processing (very much like 

discrete signal processing) so it is definitely not ‘pie in the sky’. It also 

opens up a new channel of thinking about knowledge that perhaps did 

not exist before. 

It may be correct to characterize our global societies current output 
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recently using modern information technology as generating a 

tremendous amount of data, but very little knowledge. Large amounts of 

very high order multidimensional and multispectral data are produced by 

modern society with a wealth of knowledge encoded that we know almost 

nothing about. Maybe at some point in the future a discussion of the 

knowledge components and regularity of this or that source of knowledge 

(or the equivalent) would not be so unusual, if not completely unheard of, 

as it is now. At this point it may not be appropriate to speculate about 

applications until the technology is tried and tested on a wider scale, but 

it seems plausible that possible applications may be as hard to envisage 

as that of discrete signal processing in its early stages of development. 

The new channel of thinking about knowledge opened has produced a 

terminology of its own that seems to fall so naturally into place that it is 

difficult to think of alternatives. For example, the Latin for the word 

‘regular’ is ‘regularis’ which means ‘according to rule’. The checkerboard 

patterns produced by clustering extracts indicate the formation of rules 

and it is difficult to think of a more appropriate term for the results of 

regression using these patterns than ‘regularity components’. Some terms 

used and descriptions formally defined follow, for which the reader can 

form an independent opinion of their effectiveness: 

Extract: A snippet of knowledge obtained from 

regression that is generally more than 

individual data points but less than an 

entire rule. A rule is often comprised of 

many extracts. An extract may take 

many data points to define. 

Knowledge regularity component: Model of target system as a result of 

regression using arrays with extracts 

formed into clusters fixed into 

checkerboard patterns. Higher 

regularity components have more 

clusters than lower regularity 

components. 

Fundamental knowledge regularity component: The component that post-regression 

produces the best model of the target 

system than all other components. 
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Semantic knowledge: Knowledge with natural rules that are 

represented on the manifold as regions of 

relatively high complexity. Training 

using arrays embedded with mobile 

extracts result in clustering of extracts 

around regions of high complexity or the 

natural rules. 

Superficial knowledge: Knowledge with no natural rules, no 

regions of relatively higher complexity 

than others on the manifold. Training 

using arrays embedded with mobile 

extracts result in no clustering of 

extracts. 

7. Conclusion 

The new paradigm and mechanism of discrete knowledge processing 

discussed has revealed very interesting properties of such systems and 

opened up the field to new channels of thought about knowledge and how 

it is processed. It argues the case of the need for such a paradigm, which 

trades precision for complexity. This is not such an unprecedented trade 

as one might think having successfully been negotiated in other fields 

using similar mechanisms. One may also agree that the need to 

eventually deal with complexity as it emerges in man made systems or is 

discovered in natural systems is indisputable. This may lead to a better 

understanding of such systems and a decoding of the wealth of knowledge 

that exists. At some point in time such knowledge may be as well 

understood as signals are today. This understanding of signals has 

spawned the information age (the Internet etc.), it is open to speculation 

what if anything; this new paradigm may spawn. One thing is very clear, 

which is that there is a lot more to discover within this emergent 

paradigm than presented here and it may be worthwhile for others to join 

in the efforts. 
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Appendix A 

Discrete knowledge regression 

The adaptive parameters are extract locations c, non-linear 

weighting pulse shapes b, and linear parameters p. The width of the non-

linear weighting pulses a is small and fixed. With ,1>>β  changing b 

does not change the width of the pulse. Thus, pulse widths remain fixed, 
which is the basis for functionality while embedded in the sparse array 
(that is, reading data from small sub-hypercube of the array effectively 

gives output y below). 

All m extracts are embedded in a sparse array structure A, 

( ) [ ] ,,1,,, 000
0 miA iiid i

== pcbc  (1) 

[ ] [ ] ,...,,,,...,,, 2121
T

n
T

n bbbccc == bc  

[ ] ,,,,...,,, 121 Rpbcppp iii
T

n ∈= +p  (2) 

[ ] .:1: nn NRd →  (3) 

Pre-regression ( )bac ,U0 ∈i  (rectangular uniform distribution initially) 

[ ] Nbbbb T
i ∈= ,...,,,0b  (4) 

[ ] .0...,,0,00 T
i =p  (5) 

The output function for given input nR∈x  is 

i

m

i
i fwy ∑

=

=
1
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[ ( ) ( ) ( ) ]1,11,11222,11111,11 ... ++−++−+−= nnnn pcxpcxpcxpw  

[ ( ) ( ) ( ) ] ...... 1,22,22222,22111,22 ++−++−+−+ +nnnn pcxpcxpcxpw  

[ ( ) ( ) ( ) ]1,,222,111, ... ++−++−+−+ nmmnnnmmmmmm pcxpcxpcxpw  

 (6) 

∏∏
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>>β
−

β+

==
n

j
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ijj
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j
iji

ij

a
cx

ww
1

2
1

.1,

1

1  (7) 

The goal is to get the output function to match the target function ( ),ŷ  

i.e., for error function 

( ) ( ( ) ) [ ] [ ].,,,,,ˆ
1

2 pbc==−= ∑
=

pbc

M

k

kk yye θθθθθθ  (8) 

Find ,∗θ  where ( ).minarg θθ e=∗  

It uses stochastic quantized gradient descent, 
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k

ii ef θ∇+=+ θθ  

( )) [ ( ( ) ) ( ) ],sgn( c
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This is looped for each data point Mk ...,,1=  giving ,Mθ  

., ∞→→ ∗ MM θθ  (12) 

Post-regression ( )bac ,U∉M
i  and may cluster forming rules etc., M

ib  

and M
ip  may no longer be flat or zero, respectively. 
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