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Abstract

In this paper, we discuss on fuzzy random vector and its probability and

introduce the definition of independent fuzzy random vectors and

likelihood function. We present the sufficient statistic and the

maximum likelihood estimator of mean vector for multivariate normal

distribution. Further, we prove Neyman-Pearson lemma for testing of

mean vector.

1. Introduction

Fuzzy random variables were introduced in the literature by

Kwakernaak [6] and slightly modified by Kruse and Meyer [5]. The

concept of fuzzy random variable was presented by these authors as a

model to describe a fuzzy report of an existing numerical variable

associated with a random experiment, that is, as a fuzzy perception of a

classical random variable (which Kwakernaak, Kruse and Meyer refer to
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as the original random variable). Puri and Ralescu [8] have presented

fuzzy random variables as a model to deal with an existing qualification

process associated with a random experiment. In this paper we will

develop and make use of the concept of fuzzy random variables as

intended by Puri and Ralescu [8] and add some new definitions for the

vectorial case, and we will apply them for statistical inference based on

fuzzy data.

It is the intention of our study to apply the results to the data

communication system and production system. For example, we draw n

data (vectorial) to select one from the production line system and the ith

section of the selection is interrupted for a moment, hence the ith data

(vectorial) becomes vague. Therefore, we need to deal with n size of

random sample with one vague vector and have to make some statistical
decisions about them.

2. Statistical Inference Based on Fuzzy Data

Let ( )PA,,Ω  be a probability space and ( )RF  be the set of all

piecewise continuous functions (fuzzy sets of )R  or all discrete functions

( ) [ ]1,0:~ →ω RX  (subject to certain measurable conditions).

Definition 2.1 (Puri and Ralescu). A fuzzy random variable (F.R.V.)

is a function ( ),:~ RFX →Ω  such that

( ) ( ){ } [ ],1,0;:, ∈α∀×∈ω∈ω α BAXxx

where B  denotes the Borel set of R  and ( ),: RPX →Ωα  such that

( ) { ( ) ( ) }.~~ α≥ω|∈=ωα xXxX R

For a F.R.V. X
~  and ,Ω∈ω  let ( )ωX

~  be a fuzzy set with the membership

function ( ) ( ).~
xX ω

Example 2.1 (Puri and Ralescu). Suppose we toss a coin one time, we

have { }., TH=Ω  If it comes up H, we win about 50 dollars, and if it

comes up T, we win about 10 dollars, then we may write
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( ) ( ) [ ( ) ] ( ) ( ) [ ( ) ] ,101~,501~ 22 ++ −−=−−= xxTXxxHX

where [ ] ( ).0,max aa =+

Definition 2.2 (Zadeh). Let ( )P,, AΩ  be a probability space. Then

a fuzzy event in Ω is a fuzzy set whose membership function

( [ ])1,0:
~~ →ΩAA  is Borel-measurable. The probability of a fuzzy event

A
~

 is defined by Zadeh with the Lebesgue-Stieltjes integral as

( ) ( )∫Ω ω= .
~~

dPAAP

Definition 2.3. By the definition of a F.R.V. ,
~
X  the membership

function ( ) ( )xX ω~
 is a discrete function or continuous function. ( ) ( )xX ω~

is a measurable function and ( ) ( )XX ω~
 is a classical random variable, the

expectation of ( ) ( )XX ω~
 is

( ) ( ) ( )∫
∞

∞−
ω ,

~
dxxfxX

where ( )xf  is the p.d.f. of r.v. X, such that support X is the reference set

of fuzzy set ( ),~ ωX  therefore we have

( ( ) ( )) ( ( )).~~ ω=ω XPXXE

Definition 2.4. We say ( )′= pXXXX
~...,,~,~~

21  is a fuzzy random

vector, if all ( )piXi ...,,2,1
~ =  be a F.R.V. For a fuzzy random vector X

~

and ,Ω∈ω  let ( )ωX
~

 be a vector of fuzzy sets with the membership

function

( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ( )) .~...,,~,~~
2211

′ωωω=ω pp xXxXxXxX

Definition 2.5. Let g be p.d.f. (p.m.f.) of random vector ,X  for a

fuzzy random vector X
~  and ,Ω∈ω  ( ( ))ωXP

~~  is called the probability

measure of vector of fuzzy sets ( ),~ ωX  defined as



www.p
phm

j.c
om

BAHRAM SADEGHPOUR GILDEH26

(1) if g is continuous, then

( ( )) ( ( ) ( ) ( ))ωωω=ω pXXXPXP
~

...,,
~

,
~~~

21

( ( ) ( ) ( ) ( )∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−
ω∧ω= 2211

~~
xXxX

 ( ) ( )) ( ) ,......,,,
~

2121 pppp dxdxdxxxxgxX ω∧∧

(2) if g is discrete, then

( ( )) ( ( ) ( ) ( ))ωωω=ω pXXXPXP
~

...,,
~

,
~~~

21

( ( ) ( ) ( ) ( )∑∑ ∑ ω∧ω=
1 2

2211
~~

x x x p

xXxX

( ) ( )) ( )....,,,~
21 ppp xxxgxX ω∧∧

Example 2.2. Let X  be a random vector with p.d.f. ( ).,3 ∑µN  Then

we have

( ( )) ( ( ) ( ) ( ))ωωω=ω pXXXPXP
~

...,,
~

,
~~~

21

( ( ) ( ) ( ) ( ) ( ) ( ))∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−
ω∧ω∧ω= 332211

~~~
xXxXxX

 
( ) ( )

.2 321
2
1

2
1 1

dxdxdxe
xx µ−∑′µ−





 −− −

∑π×

Definition 2.6. Let X  be a random vector with p.d.f. ( )θ;xf  ( ∈θ

),sR⊆Θ  and 1
~
X  be a fuzzy random vector associated with p.d.f. ( ),; θxf

and nXXX ...,,, 21  be random vectors with p.d.f. ( ) ( ) ...,,;;; 21 θθ xfxf

( ),; θxfn  respectively. For all ,Ω∈ω  and ( );...,,, 21 jpjjj AAAA =

( ),...,,2 nj =  where ( )pkAjk ...,,2,1( =  are Borel sets of ),R  if

( ( ) ) ( ( )) ( )∏
=

θθθ ∈ω=∈∈ω
n

j
jjnn AXPXPAXAXXP

2
1221 ,

~
...,,,

~

then ( ) nXXX ...,,,~
21 ω  are independent.
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Definition 2.7. Let nXXX ...,,, 21  be i.i.d. with p.d.f. ( ),; θxf  and

1
~
X  be a fuzzy random vector associated with p.d.f. ( ).; θxf  For fixed

,Ω∈ω  ( ) nXXX ...,,,~
21 ω  are called the n size of random sample with

one vague vector, if ( ) nXXX ...,,,
~

21 ω  are independent.

Definition 2.8. Let ( ) niii XXXXXX ...,,,~,...,,, 1121 +− ω  be random

sample of size n with one vague vector ( )ωiX
~  associated with p.d.f.

( ),; θxf  ( ( ) )niii xxXxxxL ...,,,
~

,...,,,, 1121 +− ωθ  is called the likelihood

function of ,11 xX =  ,...,, 1122 −− == ii xXxX  ( ),~ ωiX  ...,,11 ++ = ii xX

,nn xX =  defined as follows:

(1) if ( )θ;xf  is discrete, then

 ( ( ) )niii xxXxxxL ...,,,
~

,...,,,; 1121 +− ωθ

( ) ( ) ( ) ( )∑ ∏
≠=

θθω=
ix

n

ij
jiii xfxfxX

,1

,;;
~

(2) if ( )θ;xf  is continuous, then

 ( ( ) )niii xxXxxxL ...,,,~,...,,,; 1121 +− ωθ

( ) ( ) ( ) ( )∫ ∏
∞

∞− ≠=

θθω=
n

ij
jiii xfxfxX

,1

.;;
~

Example 2.3. Let nXXX ...,,,~
21  be random sample of size n

with one vague vector ( )ω1
~
X  associated with ( ),, IN p µ  where µ  is an

unknown parameter and suppose that the membership function ( )ωiX1
~

( )( )
,

2
12

1 ω−−

= ii mx
e  where ( ) ( )pimi ...,,2,1=ω  is a known real number

(only dependent on ω), if we apply Zadeh’s idea, i.e., ( ( ) ( ) ∧ω 1111
~

xX
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( ) ( ) ( ) ( )) ( ) ( )∏ =
ω=ω∧∧ω

p
i iipp xXxXxX

1 11111212 ,
~~~

 then

 ( ( ) )nxxXL ...,,,
~

; 21 ωµ

( ( )) ( ( )) ( ) ( )
∫
∞

∞−

µ−′µ−−ω−′ω−−

π
= 1

2
1

2
1

2
1

1111

2

1 xde
I

e
xxmxmx

 
( ) ( )∏

=

µ−′µ−−

π
×

n

j

xx jje
I2

2
1

2
1

2

1

( ) ( )
( ( )) ( ( ))

∫
∞

∞−

ω−µ′ω−µ−−






 ω+µ
−

′







 ω+µ
−

π
=

mm
m

x
m

x
e

I

4
1

22

2
1

11

2

1

 
( ) ( )

∏
=

µ−′µ−−

π
×

n

j

xx
xde

I

jj

2
1

2
1

2
1

2

1

( ) ( ) ( ( )) ( ( )) ( ) ( )
,2 22

1
4
1

2
1

2
1 ∑ = µ−′µ−−ω−µ′ω−µ−−−+−

π=
n
j jj xxmm

pnpn

ee

where ( ) ( )( ( ) ( )) ....,,, 21
′ωωω=ω pmmmm

Definition 2.9. For fixed ,Ω∈ω  let ( ) nXXX ...,,,
~

21 ω  be the n size

of random vector with one vague vector associated with p.d.f. ( ),; θxf  and

( )nXXtT ...,,2=  be a statistic. We say T  is sufficient for θ, if

( ( ) ) ( ) ( ),...,,;...,,,~; 221 nn xxhtgxxXL θ=ωθ

where g depends only on t  and θ, and h is independent of θ.

Example 2.4. In Example 2.3 we demonstrated that ( ,, 21 XXX =

)′pXX ...,,3  is sufficient for ,µ  we have
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( ( ) )nxxXL ...,,,
~

; 21 ωµ

( ) ( ) ( ( )) ( ( )) ( ) ( )∑ = µ−′µ−−ω−µ′ω−µ−−−+−

π=
n
j jj xxmm

pnpn

ee 22
1

4
1

2
1

2
1

2

( ( )) ( ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( )
,2 22

1
2

1
2

1
2

1
4
1

h

xxxx
pnpn

g

xx
n

mm n
j jjeee

∑ = −′−−−−+−µ−′µ−−−ω−µ′ω−µ−

π=

where ( )′= pXXXXX ...,,,, 321  and ( )∑ =
=

−
= n

k kii piX
n

X
2

....,,2,1
1

1

Definition 2.10. Let nXXX ...,,,
~

21  be the n size of random sample

with one vague vector ( )ω1
~
X  associated with p.d.f. ( ),; θxf  if there exists

θ̂  such that

( ( ) ) { ( ( ) ) },:...,,,~;max...,,,~;ˆ 2121 Θ∈θωθ=ωθ nn xxXLxxXL

then the estimator θ̂  is called a maximum likelihood estimate of θ.

Example 2.5. Let nXXX ...,,,
~

21  be the n size of random sample

with one vague vector ( )ω1
~
X  associated with p.d.f. ( ),, pp IN µ  where µ

is an unknown vectorial parameter, it is desired ,µ̂  we have

( ( ) )
( ) ( ) ( ( )) ( ( ))ω−µ′ω−µ−−−+−

π=ωµ
mm

pnpn

n exxXL 4
1

2
1

2
1

21 2...,,,~;

( ) ( ) ( ) ( ) ( )
,22

1
2

1 ∑ = −′−−µ−′µ−−−

×
n
j jj xxxxxx

n

ee

hence

 ( ) ( ( ) )nxxXLl ...,,,~;ln 21 ωµ=µ

( ) ( ) ( ) ( ) ( )µ−µ−−−π−−+−= ′ xxnpnpn
2

1ln
2

12ln
2

1

( ( )) ( ( )) ( ) ( )∑
=

′′ −−−ω−µω−µ−
n

j
jj xxxxmm

2

,
2
1

4
1
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( )
( ) ( ) ( ( )) ,0

2
11 =ω−µ−µ−−=

µ∂
µ∂

⇒ mXn
l

( ) ( )
( ) .

12
12ˆ

−
ω+−

=µ⇒
n

mXn

The distribution of maximum likelihood estimator 
( ) ( )

( ) 







−

ω+−
µ

12
12ˆ
n

mXn
 is

( ) ( )
( )

( )
( ) 











−

−
−

ω+µ−
pp I

n

n
n

mn
N

2

2

12

14
,

12

12

for case ,1=p  see [3].

Example 2.6. Let nXXX ...,,,
~

21  be the n size of random sample

with one vague vector ( )ω1
~
X  associated with p.d.f. ( ),, 0∑µpN  where µ

is an unknown vectorial parameter, it is desired ,µ̂  we have

( ( ) )nxxXL ...,,,
~

;, 210 ω∑µ

( ) ( )
( ) ( )

∫
µ−∑′µ−− −

∑π
ω=

pR

xx
xdexX 1

2
1

2
1

0

101
1

1
01

2

1~

( ) ( )
∏
=

µ−∑′µ−− −

∑π
×

n

j

xx jje
2

2
1

2
1

0

,
2

1 1

if we suppose that ( ) ( )
( ( )) ( ( ))

,~ 112
1

11
ω−′ω−−

=ω
mxmx

exX  then

 ( ( ) )nxxXL ...,,,
~

;, 210 ω∑µ

( ( )) ( ( )) ( ) ( )
∫

µ−∑′µ−−ω−′ω−− −

∑π
=

pR

xxmxmx
xdee 1

2
1

2
1

0

2
1

1
1

0111

2

1

 
( ) ( )

∏
=

µ−∑′µ−− −

∑π
×

n

j

xx jje
2

2
1

2
1

0

.
2

1 1
0
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Therefore,

 ( ( ) )nxxXL ...,,,~;, 210 ω∑µ

( ( ) ) (( ) ) ( ( ) )µ−ω−∑+′µ−ω− −−

+∑=
mIIm

eI
11

02
1

2
1

0

 ( )

( ) ( ) ( ) ( ) ,
2

1

2

1 1
0

1
0

2
1

2
1

0

′µ−µ−∑−−∑
∑π

× −−
−−

−
xxtr

n
Stre

n

n

and

( ) ( ( ) )nxxXLl ...,,,
~

;,ln 210 ω∑µ=µ

( ( ) ) (( ) ) ( ( ) )µ−ω−∑+µ−ω++∑−= −−′ mIImI 11
00 2

1ln
2
1

( ) ( ) ( )
Str

nnn 1
0

1
0 2

1
ln

2
1

2ln
2

1 −− ∑−−−∑−+π−−

( ) ( ) ( ) ,
2

1 1
0

′µ−µ−∑−− − xxtr
n

hence

( )
(( ) ) ( ( ) ) ( ) ( ),1 1

0
11

0 µ−∑−+µ−ω−∑+−=
µ∂
µ∂ −−− xnmII

l

and then

( )
[(( ) ) ( ) ] 11

0
11

0 1ˆ0 −−−− ∑−−−∑+=µ⇒=
µ∂
µ∂

nII
l

[(( ) ) ( ) ( ) ].1 1
0

11
0 XnmII −−− ∑−−ω−∑+×

Definition 2.11. Let nXXX ,,
~

21  be the n size of random sample

with one vague vector ( )ω1
~
X  associated with p.d.f. ( ).; θxf  For fixed

,Ω∈ω  the expectation and the variance of the function =T

( ( ) ( ) )nXXXXt ...,,,
~

211 ω  are defined as
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( ) ( )∫ ∫ ∏
=

θ′=′
p pR R

n

i
ii xdxftTE

1

;

and

( ) ( ) [( ( )) ( ( )) ] ( ) ( ) ( )., TETETTETETTETETTCovTVar ′−′=′−−==

Example 2.7. Let nXXX ...,,,~
21  be the n size of random sample

with one vague vector ( )ω1
~
X  associated with p.d.f. ( )IN ,3 µ  and

( ( ) ( ) ( ) ( ) ) ,,
~

,
~

24531212221111
′+ω+ω= XXXXXXXT

where ( ) ( )
( ( ))

.
~ 2

12
1

11
ω−−

=ω jj mx
jj exX  Then we have

( ) ( )∫ ∫ ∏
=

θ′=′
3 3

5

1

,
R R i

ii xdxftTE

( ( ) ( ) )
( ) ( )









π
+ω= ∫ ∫ ∑ = µ−′µ−−

3 3

5
1 ,

2

1~ 2
1

2
1221111

R R

xxi iie
I

xxX

( ) ( )
( ) ( )

∫ ∫ ∑ = µ−′µ−−

π
ω

3 3

5
1 ,

2

1~ 2
1

2
11212

R R

xxi iie
I

xX

( )
( ) ( )









π
+

∑ = µ−′µ−− 5
12

1

2
12153

2

1 i ii xx
e

I
xx

( )( ) ( )( )













µ+µµ+=

ω−µ−ω−µ−

13
4
1

2
4
1

,
2

1,
2

1 2
22

2
11 mm

ee

and

( )
( )( ) ( )( )

.,
2

1,
2

1
13

4
1

2
4
1 2

22
2

11
′














µ+µµ+=

ω−µ−ω−µ−
mm

eeTE
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Theorem 2.1. Let X  be a random vector with p.d.f. ( )θ;xf  and ,
~

1X

nXX ...,,2  be the n size of random sample with one vague vector ( )ω1
~
X

associated with p.d.f. ( ).; θxf  Then, for any unbiased estimator =T

( ( ) ( ) )nXXXXt ...,,,
~

211 ω  of θ,

( ) ,1−≥ FTVar

where

( ) ( )
( )

,
;log

1
2

















θ′∂θ∂

θ∂
−=′==

∏ =

n

i ixf
EWWEWVarF

and

( )∏
=

θ
θ∂
∂=

n

i
ixfW

1

.;log

Proof. We have

( ) ( )∫ ∫ ∏
=

θ′=′=θ
P PR R

n

i
ni xdxdxdxfttE ,...;

1
21

therefore,

( )∫ ∫ ∏
=

θ
θ∂
∂′=

P PR R

n

i
ni xdxdxdxft

1
21 ...;log1

( ) ( )∫ ∫ ∏ ∏
= =

θ′θ
θ∂
∂=

P PR R

n

i

n

i
nii xdxdxdxftxf

1 1
21 ...;;log

( )∫ ∫ ∏
=

θ′=
P PR R

n

i
ni xdxdxdxftw

1
21 ...;

)( ,, TWCov=

because ( )∫ ∫ ∏ =
=θP PR R

n
i ni xdxdxdxf

1 21 .1...;  We know that
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( )
( ) ( ) 
















′
=′=










∈

′
′

−
−

−
−

2
1

1

1
1

2
at,;max

aBa

aB
xaBaRx

xBx

xa P  (see [8]),

therefore

([ ( )] )
( )

,;1:,max
1

2 PP Ra
aTVara

aFa
RcWcTaCorr ∈∀≤

′

′
=∈′′

−

and it results that ( ) .1−≥ FTVar

The proof of the theorem is complete.

Theorem 2.2 (Neyman-Pearson). Let PRX →Ω:  be a random vector

with p.d.f. ( ) ( { } ).,; 10
sRxf ⊆θθ=Θ∈θθ  Let ( ) nXXX ...,,,~

21 ω  be the

n size of random sample with one vague vector associated with p.d.f.

( ).; θxf  Consider testing of the null hypothesis 00 : θ=θH  against the

alternative hypothesis .: 11 θ=θH  Let

( ) ( ) ( ) ,...;
~

:
1

101
1













α≥θω⊆= ∫ ∫ ∫ ∏
∞

∞− =

−

W

n

i
ni

n xdxdxfxXEWS

where {( ) ( ) ( ,...,,1...,,:...,, 12
1 plxxxxxxE jljpjjn

n =∞<<∞−′=′=−

)}....,,2 nj =

W is called the critical region of the level α of significance, ] [.1,0∈α

Let SW ∈0  satisfy:

(i) if ( ) ,...,, 02 Wxx n ∈′  then

( ) ( ) ( ) ( ) ( ) ( )∫ ∏ ∫ ∏
∞

∞− =

∞

∞− =

θω>θω
n

i

n

i
ii xdxfxXkxdxfxX

1 1
101111 ,;~;~

(ii) if ( ) ,...,, 02
c

n Wxx ∈′  then
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( ) ( ) ( ) ( ) ( ) ( )∫ ∏ ∫ ∏
∞

∞− =

∞

∞− =

θω<θω
n

i

n

i
ii xdxfxXkxdxfxX

1 1
101111 ,;~;~

where ,0>k  then 0W  is a best critical region of the level α of significance

for testing 00 : θ=θH  against .: 11 θ=θH

Proof. For any ,SW ∈  we have

( ) ( ) ( )∫ ∫ ∫ ∏
∞

∞− =

θω
W

n

i
ni xdxdxfxX

1
101 ...;~

( ) ( ) ( )∫ ∫ ∫ ∏
∞

∞− =

α=θω=
0 1

101 ,...;~
W

n

i
ni xdxdxfxX

so that

( ) ( ) ( )∫ ∫ ∫ ∏
∞

∞− − =

θω
00 1

101 ...;~
WWW

n

i
ni xdxdxfxX

( ) ( ) ( )∫ ∫ ∫ ∏
∞

∞− − =

θω=
0 1

2101 ,...;~
WWW

n

i
ni xdxdxdxfxX

from (i) and (ii),

( ) ( ) ( )∫ ∫ ∫ ∏
∞

∞− =

θω
0 1

2111 ...;~
W

n

i
ni xdxdxdxfxX

( ) ( ) ( )∫ ∫ ∫ ∏
∞

∞− =

θω−
W

n

i
ni xdxdxfxX

1
111 ...;~

( ) ( ) ( )∫ ∫ ∫ ∏
∞

∞− − =

θω=
00 1

111 ...;~
WWW

n

i
ni xdxdxfxX

( ) ( ) ( )∫ ∫ ∫ ∏
∞

∞− − =

θω−
0 1

111 ...;~
WWW

n

i
ni xdxdxfxX
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( ) ( ) ( )∫ ∫ ∫ ∏
∞

∞− − =

θω≥
00 1

101 ...;~
WWW

n

i
ni xdxdxfxXk

( ) ( ) ( )∫ ∫ ∫ ∏
∞

∞− − =

θω−
0 1

101 ...;~
WWW

n

i
ni xdxdxfxXk

.0=

The proof of the theorem is completed.

Example 2.8. Let ( ) nXXX ...,,,~
21 ω  be the n size of random sample

with one vector vague associated with p.d.f. ( ),, IN p µ  where { },,
10

µµ∈µ

and the membership

( ) ( )
( ( )) ( ( ))

,
~ 112

1

11
ω−′ω−−

=ω
mxmx

exX

where ( )ωm  is known and independent of .µ  It is desired to test the

simple hypothesis 
00 : µ=µH  against 

11 : µ=µH  under the level α of

significance, we have

( )
( ) k

L

L
HReject >

µ

µ
⇔

0

1
0

but

( )
( )

( ) ( ) ( ( )) ( ( ))

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ( )) ( ( ))

( ) ( ) ( ) ( ) ( )∑

∑

=

=

−′−−µ−′µ−−−

ω−µ′ω−µ−−−+−

−′−−µ−′µ−−−

ω−µ′ω−µ−−−+−

π

π

=
µ

µ

n
j jj

n
j jj

xxxxxx
n

mm
pnpn

xxxxxx
n

mm
pnpn

ee

e

ee

e

L

L

200

00

211

11

2
1

2
1

4
1

2
1

2
1

2
1

2
1

4
1

2
1

2
1

0

1

2

2

[( ) ( ) ( ) ( )]00112
1 µ−′µ−−µ−′µ−−−

=
xxxx

n

e

 
[( ( )) ( ( )) ( ( )) ( ( ))]

,00114
1 ω−µω−µ−ω−µω−µ− ′′

×
mmmm

e
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therefore,

( )
( ) k

L

L
>

µ

µ

0

1

[ ( ) ( ) ( ) ( )] 11010010
2

2
1 kxn >µ−µ′µ−µ+µ−′µ−µ−−⇒

( ) ( ) .2010
kx <µ−′µ−µ⇒

It is known that under hypothesis ( ) ( ),,0~,:
000 INxH pµ−µ=µ

therefore,

( ) ( )

( ) ( )
( ),1,0~

1010

010 N
x

µ−µ′µ−µ

µ−′µ−µ

and

(( ) ( ) ) α=µ=µ|<µ−′µ−µ
02010

kxP

( ) ( )

( ) ( ) ( ) ( )
α=

















µ−µ′µ−µ
<

µ−µ′µ−µ

µ−′µ−µ
⇒

1010

2

1010

010 kx
P

( ) ( )

( ) ( )
.

1010

010
0 α<

µ−µ′µ−µ

µ−′µ−µ
⇔⇒ z

x
HReject

Example 2.9. Let ( ) nXXX ...,,,~
21 ω  be the n size of random sample

with one vector vague associated with p.d.f. ( ),, IN p µ  where { },,
10

µµ∈µ

and the membership ( ) ( )
( ( )) ( ( ))

,~ 112
1

11
ω−′ω−−

=ω
mxmx

exX  where ( )ωm  is

known and independent of .µ  It is desired to test the simple hypothesis

00 : µ=µH  against 
11 : µ≠µH  under the level α of significance by the

method G.L.R., we have
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( )
( ) ( ) ( ) ( ( )) ( ( ))







ω−µω−µ−µ−′µ−−−=
µ

µ
′ mmxxn

L

L
0000

0
4
1

2
1exp

ˆ

( ) ( ) ( ) ( )








−
ω+−

−
′








−
ω+−

−−−+
12

12
12

12
2

1
n

mxn
x

n
mxn

xn

( ) ( ) ( ) ( ) ( ) ( ) ,
12

12
12

12
4
1












 ω−

−
ω+−′







 ω−

−
ω+−

+ m
n

mxn
m

n
mxn

( ) (( ) ( ) ( )


 µ−′µ−−

−
−=

00
21

122
1exp xxn
n

( ) ( ) ( ( )) ( ( )) ( ( ))) ,
2
112

0000 

ω−µ′ω−µ+ω−µ′µ−−− mmmxn

( )
( ) 1
ˆ

0 0
0 <<

µ

µ
<⇔ k

L

L
HReject

( ) ( ) ( ) ( ) ( ) ( ( ))ω−µ′µ−−−µ−′µ−−⇔ mxnxxn
0000

2 121

( ( )) ( ( )) kmm ′>ω−µ′ω−µ+
00

(( ) ( ) ( ( ))) (( ) ( )
000

11 µ−−′ω−µ−µ−−⇔ xnmxn

( ( ))) .
0

km ′>ω−µ−

It is known that under hypothesis ,:
00 µ=µH

( ) ( ) ( ( )) ( ( ) ( ) ).1,~1 2
000

InmNmXnY p −µ−ωω−µ−µ−−=

Therefore 
( ) ( )

2
2

~
1 pn

YY
χ

−

′
 with the non-central parameter

( ( ) ) ( ( ) )

( )
.

1 2
00

−

µ−ω′µ−ω

n

mm

Hence

( ) .2
1,0 α−χ>′⇔ pYYHReject
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Conclusion

(1) The M.L.E. µ̂  of µ  by random vector sample of size n with one

vague vector ( )ωX
~

 from ( ( ))0or, ∑µ IN p  is different from ( ,, 21 XXX =

) ( ) ,...,,2,11...,,
13 





 ==′ ∑ =

piX
n

XXX
n
k kiip  which is the M.L.E. of

µ  by n size of classical random vector sample from ( ( )).or, 0∑µ IN p

(2) For n statistical vector with one vague vector in crisp statistics,

we usually use the 1−n  stable vector to test the hypothesis 
00 : µ=µH

against .:
11 µ=µH  It is shown in Example 2.8 that we can use all the

vectors (including the vague vector) to have the same result by our

method.

(3) For n statistical vector with one vague vector in crisp statistics,

we usually use the 1−n  stable vector to test the hypothesis 
00 : µ=µH

against .:
01 µ≠µH  It is shown in Example 2.9 that we can use all the

vectors (including the vague vector) to have the same result by our

method. But their M.L.E.s are different.
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