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Abstract

In this paper, we discuss on fuzzy random vector and its probability and
introduce the definition of independent fuzzy random vectors and
likelihood function. We present the sufficient statistic and the
maximum likelihood estimator of mean vector for multivariate normal
distribution. Further, we prove Neyman-Pearson lemma for testing of

mean vector.
1. Introduction

Fuzzy random variables were introduced in the literature by
Kwakernaak [6] and slightly modified by Kruse and Meyer [5]. The
concept of fuzzy random variable was presented by these authors as a
model to describe a fuzzy report of an existing numerical variable
associated with a random experiment, that is, as a fuzzy perception of a

classical random variable (which Kwakernaak, Kruse and Meyer refer to
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as the original random variable). Puri and Ralescu [8] have presented
fuzzy random variables as a model to deal with an existing qualification
process associated with a random experiment. In this paper we will
develop and make use of the concept of fuzzy random variables as
intended by Puri and Ralescu [8] and add some new definitions for the
vectorial case, and we will apply them for statistical inference based on

fuzzy data.

It is the intention of our study to apply the results to the data
communication system and production system. For example, we draw n
data (vectorial) to select one from the production line system and the ith
section of the selection is interrupted for a moment, hence the ith data
(vectorial) becomes vague. Therefore, we need to deal with n size of
random sample with one vague vector and have to make some statistical

decisions about them.

2. Statistical Inference Based on Fuzzy Data

Let (Q, A, P) be a probability space and F(R) be the set of all

piecewise continuous functions (fuzzy sets of R) or all discrete functions

)N{((D) : R — [0, 1] (subject to certain measurable conditions).

Definition 2.1 (Puri and Ralescu). A fuzzy random variable (F.R.V.)
is a function X : Q — F(R), such that

{0, x): x e Xy(0)} e AxB; Va €0, 1],
where B denotes the Borel set of R and X, : Q — P(R), such that
X, () = {x e R X(0)(x) 2 a}.
Fora FRV. X and o € Q, let X(0) be a fuzzy set with the membership
function X(w)(x).

Example 2.1 (Puri and Ralescu). Suppose we toss a coin one time, we
have Q = {H, T}. If it comes up H, we win about 50 dollars, and if it

comes up 7, we win about 10 dollars, then we may write
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X(H)(x) =1 - (x-50°]",  X(T)(x) = [1 - (x —10)°]",

where [a]" = max(a, 0).

Definition 2.2 (Zadeh). Let (Q, A, P) be a probability space. Then
a fuzzy event in Q is a fuzzy set whose membership function

A (Z : Q — [0, 1]) is Borel-measurable. The probability of a fuzzy event

A is defined by Zadeh with the Lebesgue-Stieltjes integral as

P(A) = jg A(w)dP.

Definition 2.3. By the definition of a F.R.V. )?, the membership
function X(w)(x) is a discrete function or continuous function. X(w)(x)
is a measurable function and X(o)(X) is a classical random variable, the

expectation of X(o)(X) is

[ X,

where f(x) is the p.d.f. of r.v. X, such that support X is the reference set

of fuzzy set X(v), therefore we have
E(X(0) (X)) = P(X(w)).

Definition 2.4. We say X = (X, X,, ..., X'p)' is a fuzzy random
vector, if all )?i (=12, .. p) beaF.R.V. For a fuzzy random vector X

and o € Q, let X(m) be a vector of fuzzy sets with the membership
function

’

X(0) (@) = (X1(0) (1), X3(0)(x3), ... X,(0)(x,))
Definition 2.5. Let g be p.d.f. (p.m.f.) of random vector X, for a
fuzzy random vector X and o € Q, P(X(v)) is called the probability

measure of vector of fuzzy sets X (o), defined as
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(1) if g is continuous, then

P(X(0)) = P(X,(0), Xy(0), ..., X,(0))
[ e R

A A )?p(m)(xp))g(xl, X9, ey Xp)dx1dxg...dxp,
(2) if g is discrete, then
P(X(0)) = P(X1(0), X3(0), ., Xp(0)
=) DD (X)) A Ka(o) (x2)

X1 X9 xp

Ao n Xp() ()8, X, s 2p).
Example 2.2. Let X be a random vector with p.d.f. N3(u, X). Then

we have

P(X(0) = P(X1(0), Xy(0), .. X,(0))
[T ] @) Ralo) ) 2 Fy(o)(x3)

4 (2@ S @)
><|21t§l|7e(2)u E

dxidxodxs.

Definition 2.6. Let X be a random vector with p.d.f. f(x; 0) (0
® c R?), and Xl be a fuzzy random vector associated with p.d.f. f(x; 0),
and X, X,, .., X, be random vectors with p.d.f. fi(x; 0); fo(x; 0), ...,
fo(x; ), respectively. For all ®e Q, and A; = (Aj1, Ajg, ooy Ajp);

(j =2, ..., n), where (Ajk(k =1, 2, ..., p) are Borel sets of R), if

n
Py(X (), Xy € Ay, s X, € 4,) = RX ) [ [R(X; € 4)),
j=2

then )_N(I((o), X,, ..., X, are independent.
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Definition 2.7. Let X, X,, ..., X, be ii.d. with p.d.f. f(x; 0), and
}_Nfl be a fuzzy random vector associated with p.d.f. f(x; 0). For fixed

o e Q, Xl (), Xo, ..., X, are called the n size of random sample with

n

one vague vector, if X 1(@), X,, ..., X, are independent.

Definition 2.8. Let X, X,, .., X, ;, X X, (@), X;,q, ..., X, be random
sample of size n with one vague vector X ;(®) associated with p.d.f.
f(x; 0), L(O, x1, X9, ..., X;_q, )_N(i(m), Xi,1» - X,) is called the likelihood
function of X; =x;, Xy =24, ..., X, ; =%; 1, X (), X =% 0

X, =x,, defined as follows:

n

(1) if f(x; 0) is discrete, then

L(0; 2, Xoy s %;_1, X; (@), %1, o X))

wa@m%mﬂjmw

j=1,#i

(2) if f(x; 0) is continuous, then

L(®; xq, Xg, ..., X;_1, X (@), Xj,15 - X,)

[ R o [ fjion

j=1,#i

Example 2.3. Let )_?1,52, ..., X,, be random sample of size n

with one vague vector }_Z' 1 (o) associated with N »(u, I), where p is an

unknown parameter and suppose that the membership function X'li(co)

L2
=e?2 (m14-m (o) , where m;(w)(i =1, 2, ..., p) is a known real number

(only dependent on ), if we apply Zadeh’s idea, i.e., (Xi1(o)(x17)A
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)?12(03) (x12) A A X1p(03) (xlp ) = Hle Xli(m) (x1;), then

L5 X,0) 23 o 3,

-1 ' -1 /
_ J‘°° eg(&-@(@)) (x-m(0) 1 67(&1—5) (2 -p) d

1 L1
- | 2l |2
n -1 ¢
y 1 87(2,—5) (x-n)
1
J=2|2nl |2
J-oo 1 (xl E+%(w)j [&1 E+%(w)]—_zl(g—m(m))’(g—m(w))
= e
—w 1
| 2 |2
n -1 ¢
N 1 67@;*5) (&j*ﬁ)dx
1 =1
J=2|2nl |2

—(n+)p —(n-1)p

-1 ' -1¢n ¢
P e;(g—m(w))(E—m(w))872j=2(&j—g)(&j—g)

where m(o) = (m; (o), my(o), ..., mp((o))'.

Definition 2.9. For fixed o € Q, let Xl(m), X, ..., X, be the n size
of random vector with one vague vector associated with p.d.f. f(x; 0), and

T =tX,, ..., X,) be a statistic. We say T is sufficient for 6, if
L(6; Xy (o), Xy, ..., x,) = 85 0)h(xy, .., x,,),
where g depends only on ¢ and 6, and A is independent of 6.

Example 2.4. In Example 2.3 we demonstrated that X = (X;, Xy,

X3, .0y )_(p ), is sufficient for p, we have
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L(E’ XI(OJ), £2’ ceey En)

e R S mo) (aeme) 53 G )

) (em(o) L) o) SHE LR S (e s -5)

’

g h
= 5 5 5 = = 1 <on .
where X = (X;, X,, X5,..., X)) and X; = mZk:ZXk,- (i=1,2,.., D)
Definition 2.10. Let Xl, X,, ..., X, be the n size of random sample

with one vague vector X 1(®) associated with p.d.f. f(x; 0), if there exists

0 such that
L(é; Xl(m), Xgs -y X, ) = max{L(6; Xl(m), Xgs oy X,) 1 0 € O,
then the estimator 0 is called a maximum likelihood estimate of 0.

Example 2.5. Let Xl, X5, ..., X, be the n size of random sample
with one vague vector )_Z'l (w) associated with p.d.f. N,(u, I,,), where p

is an unknown vectorial parameter, it is desired [i, we have

- ~(n+)p —(n=Dp -1 W
L %) 2y x,) =2 2 7 2 o7 mlo)) (p-m(o))

) e—ﬁJ)(@@'(ﬁ)e%z;‘:Q@ %) (x;-%)

’

hence

) = In L(s %,(0). 25, - x,)

e e YN f

n

- - mlo) (- mlo) -5 D ;- B) (&, - F),

=2
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=T )& - mie) -0

2 - DX + mw)
(2n -1) '

U
=

2(”’ — 1)X + ﬂ(ﬁ))j is

The distribution of maximum likelihood estimator E( @n-1)

(2(1% “Dptme) a@n-1)° ]
P (2n -1) ’ (2n - 1)2 p

for case p =1, see [3].
Example 2.6. Let )_Z'l, Xy, ..., X, be the n size of random sample

with one vague vector )_Z'l (w) associated with p.d.f. N,(u, o), where p

is an unknown vectorial parameter, it is desired [i, we have

L(E’ ZO; Xl(m)’ 22’ 'y &n)
o 1 5w 5w
= [, Ki(00) @) ——e dx,
| 2n ZO |§
1 S s
y e X~k e
j:2 | 27‘[ ZO |§
if we suppose that X o) (%) = 67@1 ~mle) (El_M(w», then

L(E; ZO; Xl(m)’ X9y ooy En)

1 d%

:I SEme) @) 1 S 5w
a 2%, [2

n -1 (e
—(x .- > .
N 1 o2 (x;-p) o (x; E)'

1
j:2 | 27‘[ ZO |§
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Therefore,
L(p, Zo; X;(0), xg, oy X,,)

0

x———y e 2 ryots - (nzl)trzl(x—u)(x—u),

and
() = In L(p, o X, (), xg, ..., X,,)
= %llnl To+1|+ %@(w) —) (I + 2N = 1) (m(o) - p)
_ %lm o | + @ml w5l - —(nZ— 1) tr55lS
—@tr%l@—g)@ -,
hence
ol
(”) = (T + 2" - D(m(o) - p)+ (n-1) X' & - p),
and then
l
56(5) =0=f=[(7+ Yot -D-(r-1)2H

<[(1+ 2" - Dm(w) - (n -1) Z5" X].

Definition 2.11. Let )_~(1, X,, X, be the n size of random sample

with one vague vector X,(w) associated with p.d.f. f(x; 8). For fixed

o e Q, the expectation and the variance of the function T =

t(Xl(m) (X,), Xg, ..., X,,) are defined as
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E(T) = .[RP “.J-RP él:l[f(xi; 0)dzx;
and
Var(T) = Cou(T, T) = E[(T - E(T))(T - E(T)) ] = E(TT") - E(T)E'(T).

Example 2.7. Let )_Z'l, Xy, ..., X, be the n size of random sample

with one vague vector X 1(®) associated with p.d.f. N3(p, I) and
T = (X11(0) (X11) + Xo9,  Xi2(0) (X12) X3 + Xo4)

S j-mj(o)’

where )N(lj (0)(x1;) = e . Then we have

)= ] (T s 00
i=1

71 5 - ' P
B J‘R3”.IRS()~(11(°°)(9511)+ng) - 1 822":1(& )& E),
| 2nl [2

-1 5 2
1 5 2ia (x;-1) (&i—g)’

_[Rg _[R3 Xig(0) (212) o |%

_712?:1 (1) (z;-n)

1
(x53 + 231) ¢

| 2l |2
[ Feem@P 1 Fheemee)
\/5 Ko, \/5 > U3 M1
and
-1 9 -1 o] '
1 5 (m-m(e) 1 —(ng—mg())
E(Z)Z[ﬁe‘l s +M2,Ee4 2 ,M3+H1J-
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Theorem 2.1. Let X be a random vector with p.d.f. f(x; 0) and Xl’

Xy, ..., X, be the n size of random sample with one vague vector )_N(l((o)

associated with p.d.f. f(x; 0). Then, for any unbiased estimator T =

t(Xl(w) (Xl)’ XQ’ s )—{n) Ofe,

Var(T) > F7!,
where
n
, *log [ ] £l 0)
F =Var(W)= EWW') = -E aege{ ,
and

Proof. We have
n
0=E(l)= J‘RP ...JRPQ g'[@i; 0)dx,dx,...dx ,,
therefore,

n
1= JRP RPé %logl_llf@i; 0)dx,dx,...dx,
1=

n n
B ,
- .[RP | e glog ] [ fas 0 [ | £ais 00y day.dx,
=1 =1

n
=1
= Cov(W, T),

because .[RP .[RP H?:l f(x;; 6)dx,dx,...dx, =1. We know that
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)2 -1
max[%- x e RPJ =a'Bla,|at x = B (see [8]),

(x'Bx) o (a'B_l a)%l
therefore
2 P a'Fla P
max([Corr(a'T, cW)|° :ce R")=—=—=-<1; VaeR",
- a'Var(T)a -

and it results that Var(T) > F7L.
The proof of the theorem is complete.

Theorem 2.2 (Neyman-Pearson). Let X : QO — RP be a random vector
with p.d.f. f(x; 8)(0 € ® = {8y, 6;} < R®). Let X,(0), X, ..., X,, be the

n size of random sample with one vague vector associated with p.d.f.
f(x; 0). Consider testing of the null hypothesis H : 0 = 0, against the

alternative hypothesis Hy : 6 = 07. Let

S = {W cr i | Xl(m)@)f[ flx;; 0)dx,...dx, > a},
=1

!

where E"™! = {(xy, .., x,))

j=2,..,n)

r
tx; o= (Xj1, 000 Xjp) —0<xjy <0(l=1,.., p,

W is called the critical region of the level a of significance, o. € |0, 1.

Let Wy € S satisfy:

Q) if (X, .y x,) € Wy, then
[* 2] ] fasonds, > k[~ Zi@@]] s 00)dx,
- i=1 - i=1

() if (xg, o x,,) € W§, then
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o0 ~ n o0 ~ n

[ Z@@][]re:endy, <k| Z@@]] e 00)ds,
® i=1 ® i=1

where k > 0, then W, is a best critical region of the level o of significance

for testing Hy : 0 = 0y against Hy : 6 = 0.

Proof. For any W € S, we have

j:o J.W IX1(®) (E)ﬁ f(&i; eo)dﬁn---d&

[, R @]i[ s 0p)dx, -z, = o

so that

[ ] — ~~I21<w>@>1i[ flas: 00)dz, .dx,

] Xﬁ@@)il[f@i; 0 )dady..d,

from (1) and (@ii),

j_o; IWO I)_?l(w) ({)ﬂ fx;; 01)dx dxy...dx,
_Ijoij...Ij_?l(m)(g)ﬁ flx;; 61)dx,,...dx;
g BIROL R (ELES

S S p @]j oy 0y)d, .,
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S0 I PR SCTES) § AT

e [T (z)ljf@i; 00)dx, .z,

= 0.

The proof of the theorem 1s completed.

Example 2.8. Let Xl(m), X, ..., X, be the n size of random sample

with one vector vague associated with p.d.f. N, (u, I), where pe {EO’ 51}’

and the membership

-1 ,
X 1) (x) = 87(&1 -m(o)) (x; —m(m)),

where m(®) is known and independent of p. It is desired to test the

simple hypothesis Hj : Bo= g against Hjp : M= under the level o of

significance, we have

but

L
Reject Hy < % >k
—(n+1 —(n-1 -1 '
, e AR (o) o)
~(n-1) = -1¢n _ _
L(p,) e 2 &-p,) @‘51)e72j=2(£j—£) (x;-X)
L(y,) zf(ngl)pn*(n%)l??e%(ﬁofm(w))'(goﬂ(w))

2*1)(@0)’(@@0)6‘712;12 (- (x;-%)

=
e

_ _"T—l[@_gl)'@—gl)—(E—EO)'@—EO)]

N e—%[(gl ~m(o)) (i ~m(0)~(y ~m(0)) (1, ~m(e))]

’



STATISTICAL INFERENCE BASED ON FUZZY RANDOM ... 37

therefore,

L(w,)

>k
L(Eo

~—

P 20y ) E - )+ (g 1) g — )] > Ry

= (g, — 1) @ -py) < ko

It is known that under hypothesis Hq : p = p, (x - Ho) ~ N, (0, I),

therefore,
- X —
o Tt B8 g,y
\/(Eo — i) (g — 1))
and
P((p, —gl)'(i—go) <kglp=p)=a
Lopl B o) E-py) ko .,

\/(Eo Y ) (o —1y) \/(Eo —H )y (1) — 1)

(o — 1) E - 1)
= Reject Hy < —2—=1 =0 <z,.

\/(Eo - ) (Eo - E1)

Example 2.9. Let Xl(m), X, ..., X, be the n size of random sample

with one vector vague associated with p.d.f. Np (u, I), where pe {EO’ El}’

-1 ,
and the membership )_Nf o) (%) = 67@1 ~m()) (&1 -m(w)

, where m(o) is
known and independent of p. It is desired to test the simple hypothesis
Hop:p=p, against Hy : p # By under the level a of significance by the

method G.L.R., we have
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L(Eo) _ exp{ n-1_

T = oy T € g @ )~ g~ m(0) g, - m(o)

+_

2 - 2n -1 - 2n -1

n-1 (f _2n-Dx + m(w))' (f _2n-Dx + m(w))

+L{ZnDEs mlo) m(w)j, (Zn-DErmlo) m(w)j},

4 2n -1 2n -1
= exp{— ﬁ((n ~1)%(x - EO)'(Z - Eo)

~2n-1)(x - ,) (1, - m(o) + %(go - m()) (1, - m(m)))},
L
Reject Hy © 0 < —= <k <1

e r-1PE-p) E-py)-200-D)E-p,) 1, -m©)
+ (1 = m(o)) (g, = m(©) > &

& (1 -1E - py) - (1, - m@) (2~ 1) (E - p,)
= (p, -~ m(w)) > k.

It is known that under hypothesis Hy : p = o

Y = (n-1)&X - ) - (1, - m©) ~ Ny(mlo) - p,, (r=1)°1).

Therefore ( Y Z)Q ~ X(2p) with the non-central parameter
n-1
(m(®) - 1, ) (m() - )
(n -1y |
Hence

Reject Hy < Y'Y > x(zp) -
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Conclusion

(1) The M.L.E. E of p by random vector sample of size n with one

vague vector X (o) from N p(1, I(or X)) is different from X = (X, X,,
v v V(v 1 . L
X3 X)) (Xi = ;Z;e:l X, =12 .., p)), which is the M.L.E. of

p by n size of classical random vector sample from N, (p, I(or X))

(2) For n statistical vector with one vague vector in crisp statistics,

we usually use the n — 1 stable vector to test the hypothesis Hy, : B=H,
against Hy : p = B It is shown in Example 2.8 that we can use all the

vectors (including the vague vector) to have the same result by our
method.

(3) For n statistical vector with one vague vector in crisp statistics,

we usually use the n — 1 stable vector to test the hypothesis Hy : p = p 0
against Hj : BE . It i1s shown in Example 2.9 that we can use all the

vectors (including the vague vector) to have the same result by our
method. But their M.L.E.s are different.
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