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Abstract 

In this paper we introduce and discuss a similarity distance function 

between symbolic strings recently introduced in [33]. Application to 

phylogenetic tree construction and HRV analysis are considered. 

1. Introduction and Motivations 

The aim of this paper is to introduce and describe a recent approach 
to heuristic estimation of similarity between symbolic sequences. 

While these methods have been already applied to various classes of 
sequences (such as DNA sequences and literary texts), our purpose is to 
suggest the possibility of using this approach also to extract information 
and classify heart rate variability (HRV) sequences. 
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ECG signal constitutes a paradigmatic example of non-linear, non-
stationary noisy process. This one dimensional time series reflects the net 
results of an enormous number of interactions among the cardiovascular 
system, the autonomous nervous system and the external environment; 
nevertheless they still contain valuable information concerning the 
clinical/pathological state of the source [15]. 

Various and quite sophisticated techniques are presently available 
for extracting useful information out of the ECG signal. These approaches 
range from non-linear methods developed in the realm of the theory of 
finite dimensional dynamical systems to time-domain and frequency-
domain spectral analysis [39], as shown in [27]. Recently, also interesting 
tools out of linguistic analysis have been used to study human heartbeat 
[5, 41]. 

The heart rate, defined in terms of the number of myocardial 
contractions, is a complex entity and lays under a plethora of regulatory 
factors (i.e., autonomic nervous system, endocrine setting, circuitry 
resistance, cell membrane plasticity, etc. [4, 11, 12, 22]) some of which act 
even during chaotic functional states like fibrillation [40]. 

Even though physiology and medicine have investigated for long time 
the dynamics behind heart rate functionality and “behavior”, the 
relevance of each single factor is still unknown [42]. It is then interesting 
to discuss the nature of a widely known investigation method: Heart Rate 
Variability (HRV), the analysis of variations in the instantaneous heart 
rate time series using the beat-to-beat RR-intervals. 

HRV accounts for a large portion of the homeostatic efforts of the 
individual, it is an essential part of stress: it is quickly changing to    
grant adaptation to every life-compatible circumstances/stimuli, and 
furthermore it also shows long-range correlations [24]. 

Nevertheless while HRV analysis, introduced in clinical practice in 
the late ‘sixties in obstetrics’ has been used in thousands studies to 
investigate the most different functional parameters in human beings 
(even the effects of geomagnetism on health [32]) and has yield to the 
development of a huge number of analytical methods [15] dedicated to its 
investigation, little light has been shed on its foundation. HRV has 
proved to be a relevant tool to evaluate autonomic system function [13], in 
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particular when it is studied through a quite elementary use of the 
Fourier Analysis [15], and it has proven to be an independent index of life 
expectancy [37], when undergone an even simpler elaboration (i.e., 
statistical evaluation of the time series distribution) [15]. Unfortunately 
when it comes to investigate deeper properties of an individual, the real 
effectiveness of HRV is still unclear, and this posed a challenge to many 
researchers to built a more and more complex and efficient methods for 
extracting valuable information out of HRV data [23, 28]. 

Here we would like to discuss a more general and fundamental 

approach to information extraction out of ECG’s signals. 

Before going into some more details, let us discuss the main ideas and 

considerations underlying our work. First of all, this method relies on the 

existence of a distance function between any two given finite strings out 

of a common alphabet. This distance is obtained by a proper normalized 

estimate of (some kind of) conditional complexity of one string with 

respect to the other. The founding quantity of this construction is the so 

called Lempel and Ziv complexity [26] ( )Sc  associated to any finite string 

S. 

Roughly speaking, ( )Sc  is just a positive integer number counting the 

number of certain new words (substrings) produced along the string itself. 

Little adaptation of this general idea, combined with suitable coding 

of the words leads to some of the very well-known compression programs 

used daily for zipping files on the computer. 

In fact, various similarity metrics based on compression algorithms 

are now available and have been used for clustering various kinds of 

data: from DNA sequences to literary texts, from music melodies to 

proteins, always with encouraging but also disputed results [8, 9, 25, 41]. 

It is important to note that the distance used in our experiments and 

introduced in [33] is in fact similar but not identical to the ones cited 

above. Even if the experimental results are basically identical in all the 

cases we have studied, we believe that the one used here has clever 

mathematical aspects and more elementary defining properties, as we 

will thoroughly discuss in [10]. 
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While we leave the details for the next section and references therein, 

we stress here that this complexity and its related distance rely only on a 

general parsing procedure that is completely independent from the 

eventual process/grammar used in the production of the string. This 

parsing procedure, namely the subdivision of the string, is able to capture 

periodic structures or more general motif in the sequence. When this is 

applied to a concatenation of two different sequences, various kinds of 

relative statistical properties and common similarities are naturally 

detected. 

The associated distance function turns this observation into a 

quantitative estimate but it is important to stress that while 

mathematical results are available in specific theoretical setups, such as 

stationary ergodic sources in the limit when the length of the sequences 

goes to infinity, no rigorous conclusions can be drawn when this distance 

is applied to specific categories of finite sequences arising from 

applications. In this case we can just rely on a try and see approach. 

Before discussing the two main classes of biological signals we are 

interested in, namely ECG signals and also DNA sequences, it is 

instructive to comment on a completely different context where these 

similarity distances have been successfully applied: the so called author’s 

attribution problem. 

Authorship attribution is a long standing problem: the challenge is to 

identify the author of an unknown text by identifying a stylistic 

fingerprint characteristic of the writer. In practice, one has a corpus of 

classified literary works and tries to identify the writer (source) that 

likely produced/emitted the unknown text. Various and different 

techniques have been developed for this task: they range from pure 

statistical analysis of words to detailed linguistic analysis based on 

grammar and syntactic structures. 

Successful approaches to this problem have been developed with the 

help also of similarity metrics based on compression algorithms [3, 8]. 

Few years ago a specific competition for a systematic comparison 

between the different methods in authorship attribution has been 
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established [1] and it can now be considered a solid benchmark. The 

problems in the competition are very different: they range from short 

essays from a group of students to Latin authors and French ones. For 

each problem one has a certain number of sample texts from known 

authors and few unknown ones that must be either attributed or 

recognized not to belong to the given set of known writers. The Ad-hoc 

Author Attribution Competition (AAAC) was hosted in June 2004 and the 

results are described in [1]. The most surprising conclusion (at least for 

us) that can be raised from the final results of the contest is the following: 

ad-hoc linguistic methods based on the semantic or grammar structure of 

literary texts tend to perform worst than generic methods that have no 

link with the detailed structure of the string, such as the methods based 

on compression algorithms or on the frequencies of N-grams [1]. 

The distance presented here and introduced in [33] has been tested 

on the material of the AAAC contest and also on the corpus of authors 

used in [3] with satisfactory and competitive results (not presented here). 

Motivated by these results we argued that this distance could also be 

competitive with respect to ad-hoc and more sophisticated methods 

created for analyzing both DNA sequences and ECG time series. 

More precisely, in this paper we address this issue and bring strong 

indications (probably not conclusive) that also in these cases more 

fundamental and elementary approaches to the investigation and 

comparison of the information content in complex biological strings or 

signals can be at least as efficient, if not better than more sophisticated 

and computational demanding ad-hoc methods. 

The paper is organized as follows: in the first section we briefly 

introduce the main definition and mathematical properties of the  

Lempel-Ziv complexity and related distance. Then we discuss some 

recent and also new applications to genetic sequences. The third section 

is devoted to the description of our approach to ECG signals, whereas the 

corresponding experimental results and some remarks about future 

developments are described in the last section. 
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2. L-Z Complexity and Related Distance 

Now we give some of the formal mathematical definitions and 
features of the distance proposed in [33] and essentially already contained 
in [26]. We will then discuss how this turn to be useful in biological 
sequences comparison. 

We start by fixing some notations. Always A  will denote a finite 

alphabet, nA  all possible words (i.e., arbitrary strings) of length exactly 

n and we let ∪ N∈
∗ =

n nAA  be the set of all possible finite strings over 

the given alphabet. In the following we denote by S, Q and R arbitrary 

finite sequences definite over .,,: ∗∈AA RQS  Without loss of generality, 

we might assume { },1,0=A  but sometimes it will be useful to consider 

the ASCII alphabet or the DNA nucleotides set { }.,,, TGCA=A  

( )SL  denotes the length of S, ( )iS  is the i-th element of S, whereas 

( )jiS ,  is the substring of S composed by the elements of S between 

positions i and j (included). The dictionary of S, { },SDic  denotes the set 

of all substrings of S. 

Lempel and Ziv already in the ‘70s [26] proposed to monitor 
whenever part of the string can be produced just by sequentially copying 
a portion of the past string or if, on the contrary, new information is 
produced while reading the sequence: following [26], we shall now recall 
a mechanism of generating a nonnull string S from some proper prefix Q, 
called exhaustive parsing procedure, and associate an integer number 
( )Sc  to it. The complexity ( )Sc  shall then be used to define a distance 

between finite strings, along the lines outlined in [33]. 

More formally, a string S is reproducible from its proper prefix 
( )jSQ ,1=  if QRS =  and ( ) ( ){ }.1,1,1 −∈+= nSDicnjSR  A string S 

is producible from its proper prefix ( )jSQ ,1=  if ( )1,1 −nS  is reproducible 

from Q. In addition to the pure copying involved by the reproduction 
process, the production allows for a single-symbol innovation at the end 
of the copying. 

Any finite, nonnull string S may be represented as the final product 
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of an iterative production process ,P  where the first step is the production 

of ( )1,1S  from the empty string Λ and any following step is such that 

( )mhS ,1  is the result of a production from ( ).,1 1−mhS  Finally, the original 

string S is parsed in t substrings: 

( ) ( ) ( ) ( ),,,1,1,1 1211 nhShhShSnS t−+=  

where t is the complexity of the production process and is denoted by 
( ) .nSc ≤P  

A production process where each step (with the only possible 
exception of the last one) is a production step, but not a reproduction step 
is called exhaustive process and gives rise to the exhaustive parsing of S. 
We denote by ( )Sc  the complexity of the exhaustive parsing of S. 

The exhaustive parsing of S is unique and represents the least 
possible number of production steps in which S may be generated 
(Theorem 1 of [26]). 

We can now use basic properties of this complexity to define a quite 
natural similarity distance between two arbitrary finite strings. 

Given two sequences Q and S, consider the sequence SQ and its 
exhaustive process. By definition, the number of components needed to 
build Q when concatenated to S is ( ) ( ).ScSQc −  This number will be 

lower than or equal to ( )Qc  and this, in turn, would reduce the number  

of exhaustive components. Given a third string R, if R is more similar     

to Q than to S, then we would expect ( ) ( )RcRQc −  to be smaller than 

( ) ( ).ScSQc −  

For example, let ,11010110=S  00110110=R  and .1110010=Q  

Then the exhaustive histories of these sequences would be: 

( ) ( ) ,11010010,01011101 ⋅⋅⋅=⋅⋅⋅= RHSH EE  

( ) 0011101 ⋅⋅⋅=QHE  

yielding ( ) ( ) ( ) .4=== QcRcSc  The exhaustive histories of the sequences 

SQ, and RQ would be: 

001011011110010,000101111011101 ⋅⋅⋅⋅⋅⋅⋅⋅⋅  

respectively. Note that it took two steps to build Q in the production 
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process of SQ. On the other hand, we used only one step to generate Q in 
the production process of RQ. The reason it took more steps in the first 
case is because Q is closer to R than S. In this example we can observe 
this by looking at the pattern 110 which Q and R share. We can 
formulate the number of steps it takes to generate a sequence Q from a 
sequence S by ( ) ( ).ScSQc −  Thus, if R is closer to Q than S, then we 

would expect ( ) ( )RcRQc −  to be smaller than ( ) ( )ScSQc −  as is the case 

in the above example. Based on this idea of closeness, various distances 
can be defined [33]. Here we just recall the two normalized distances that 
we have been using in the numerical experiments: given any two finite 

sequences S, ,∗∈ AQ  we define the function ( )QSd ,  as 

( ) ( ) ( ) ( ) ( )

( ) ( )( )
.

2
1

,
QScSQc

QcQScScSQc
QSd

+

−+−=  

Another possible choice is the following: 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ } .

,max
,max

,1 QcSc
QcQScScSQc

QSd
−−

=  

As shown in Appendix of [33], these two functions do in fact satisfy all 
the properties required for a valid (evolutionary) distance metrics. 

Concerning the practical implementation of these distances, we have 
performed several experiments on various kinds of data and signals 
using both distance functions. Here for the sake of clarity, we report only 
the numerical results obtained using the first distance ( )., ⋅⋅d  The results 

obtained through the use of the second distance are usually very similar; 
only few times they turn out to be slightly worst. 

The implementation required suitable computer programs to 
automate and manage the results. In particular, we build a C program to 
calculate the distance between two arbitrary files and a VB program to 
built and manage the matrix distance associated to any given set of files. 
The VB application uses the C program as a component and applies it to 
all possible pairs of files inside a specific folder; the calculated values are 
then used to produce the matrix distance. The VB application comes with 
an interface that allows the user to choose among different kind of 
analysis and options and it is available upon request. In addition, well-
known free tools have been used to built and visualize different kinds of 
trees associated to the data [35, 36]. 
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Now we turn to the discussion of possible applications of this distance 
to two different kind of biological signals: DNA sequences and ECG 
signals. 

2.1. Phylogenetic tree construction 

One application of this new similarity distance concerns DNA 
sequences and it has been already explored in [33] and also in [2]. We 
now briefly recall their results and describe some new experiments we 
have performed. It is our opinion that both sets of experiments, even if 
they do not bring new concrete advances in genomic, shade some lights 
on the fundamental properties and potentiality of this method. 

Using this metric, we can construct a symmetric distance matrix for 
any given set of DNA sequences and from this we can apply the very 
well- known classical methods for phylogenetic tree construction [20]. It 
is important to remark that this gives a tool which is alternative to all 
the methods based on the best fitness between different tree topologies, 
such as for example Parsimony and Maximum Likelihood methods. 

While these last methods all rely on multiple alignment and on some 
sort of evolutionary model, the method based on the distance arising from 
LZ complexity is so general and fundamental that does not share these 
ambiguity on the choice of the alignment cost criteria and on the 
evolutionary assumptions. As a very important consequence, this distance 
method can also be applied for phylogenetic tree analysis of complete 
genomic sequences, where the multiple alignment based methods cannot 
be used due to the enormous computational costs. 

As it has been nicely discussed in [33], this distance is able to perform 
very well with respect to classical phylogenetic tree methods and also 
with respect similar (but a little more involved) distance-based methods, 
such as the ones using various compression algorithms [7]. 

For example, in [33] a well-known debate concerning the phylogeny of 
eutharian order has been explored with the use of complete mtDNA 
mitochondrial sequences of various Rodents, Ferungulates and Primates 
(see [33] for the detailed list of species used in the experiment). As shown 
there, the resulting tree perfectly agrees with the one in [6]. For 
completeness, we recall that also a second experiment has been performed 
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with an extended data set obtained by the addition of non-murid rodents 
(squirrel, dormouse and guinea pig) and more ferungulate sequences. 
Also in this case, the final consensus phylogeny is in agreement with the 
existing literature (see Figure 2, Figure 3 in [33] and discussion therein). 

It is important to stress again that these experiments have been 
performed using the whole genome sequences, without relying just on the 
coding sequences or individual proteins. 

Stimulated by these results and in order to continue the exploration 
of the use of this distance to DNA sequences, we have performed two 
additional experiments that confirm the validity of the method. 

First of all, we have repeated another experiment already performed 
in [7] with seven complete genomes from [31]: 

Archaea Bacteria Archaeoglobus fulgidus (NC_000917)1, Pyrococcus 
abyssi (NC_000868) and Pyrococcus horikoshii OT3 (NC_000961) 

Bacteria Escherichia coli K-12 MG1655 (NC_000913), Haemophilus 
influenzae Rd (NC_000907), Helicobacter pylori 26695 (NC_000915) and 
Helicobacter pylori strain J99 (NC_000921). 

Also in this case, our distance is able to reproduce the same genome 
tree originated through either alignment methods or method based on 
local DNA mutations: compare Figure 1 with Figure 2 in [7]. 

Finally, we tested our distance on very short DNA sequences 
corresponding to single genes and we get again quite surprising (at least 
for us) results: contrarily to what expected, our LZ distance is able to 
reproduce the correct evolutionary tree also on short single genes. 

Here we present only the results we have obtained using exactly the 
same data as in [7]: single 16S rRNA genes (18S rRNA for Eukaryotes) 
have been selected from GenBank [31]. 

More specifically: 

Archaebacteria H. butylicus (X99553) and Halobaculum gomorrense 
(L37444) 

                                                      
1 Accession number. 
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Eubacteria Aerococcus urina (U64456), M. glauca strain B1448-1 
(X94705) and Rhodopila globiformis (D86513) 

Eukaryotes Urosporidium crescens (U47852), Labyrinthula sp. Nakagiri 
(AB022105). 

The corresponding tree is shown in Figure 2 and again it must be 
compared with the similar one obtained in [7], Figure 2. 

2.2. Symbolic ECG analysis 

ECG signals constitutes a formidable example of noisy, non-stationary 
time series, and as discussed in the introduction a large amount of 
techniques have been proposed to analyze the information contained in 
the signals [15, 39]. 

The similarity distance introduced here has been used against three 
main elementary tasks: clustering of healthy ECG’s signals with respect 
to age, discrimination between normal signals and various congestive 
heart failures and finally classification of NYHA classes [15]. 

In practice we considered 24 h. Holter ECG signals, obtained from 
[14] and also from [27]. 

The necessary coding procedure is the following: first of all we extract 
RR interval sequence ( )jR  from the full ECG signals, disregarding in 

particular all the information contained between these two events, such 
as the P wave, QRS complex, ST segment, etc. Then we perform an 
elementary binary coding by looking at the sign of variability, i.e., we 
construct a new 0, 1 sequence by setting 0=jw  if ,01 >− −jj RR  and 

1=jw  otherwise. 

After this process, the original information has been tremendously 
reduced: an original 24 hours ECG signal of few Mega byte (Mb) is reduce 
to a binary file of about 100 Kb. 

In our opinion it is remarkable that even after this tremendous and 
elementary reduction of the signals, our distance is still capable of 
capturing common features in the signals as our positive and consistent 
results in all the classification experiments shown. 

We believe that this is a feature of our method that deserves future 
investigations. 
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Clearly this binary coding based on the decreasing or increasing of 
two consecutive RR intervals is just the most elementary one. 

More refined coding, for example based on the magnitudes of 
variability explored in the PNNx statistics [30] are currently under 
investigation. A small increasing of the vocabulary used in coding the RR 
sequences should bring to a better performance, while still keeping the 
computational complexity into practical affordable limits. 

We now turn to describe and discuss the experiments performed. 

3. HRV Experimental Results 

In this section we describe the numerical experiments performed with 
our method on several ECG’s from different groups of subjects, where the 
ECG’s signals have been coded as previously described. The data come 
from two main sources: the Physionet archive [14] and also from the 
signals used in [27] and available upon request. 

Initially, we have analyzed and used the data obtained from the group 
of research from Gdansk University (Poland), with the aim of comparing 
our results with the ones obtained by them using multifractal analysis 
[27]. In particular, they performed classification tasks by calculating the 
local exponents of the spectrum associated to the RR series with the use 
of the Wavelet Transform Modulus Maxima Method and also with the 
use of the Multifractal Detrended Fluctuation Analysis ([21, 29, 34] and 
references in [27]). 

As described in [27] and repeated here, two main groups of patients 
have been used: 

nk group made of 90 patients hospitalized during 2001-2004 in the 
1st Department of Cardiology of Medical University in Gdansk, Poland   
(9 women, 81 men, average age: )1057 ±  in whom the reduced left 

ventricular systolic function was recognized by echocardiogram due to the 
low left ventricular ejection fraction %,40LVEF( ≤  mean ,30LVEF =  

,62 ±  7%); 

gk group made of 40 healthy individuals (4 women, 36 men, average 

age: )852 ±  without past history of cardiovascular disease, with both 
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echocardiogram and electrocardiogram in normal range. The left ventricle 

ejection fraction was normal (mean ,68LVEF =  ,40 ±  7%). 

Our first simple task is to detect if the distance is able to discriminate 

between the two groups. In order to investigate this issue, we computed 

the entire matrix distance between all the patients using the full 24 hours 

HRV and performed several experiments. 

For example, we randomly chose n patients from each group ( n≤5  

)10≤  and used them to define the two classes, then for any other patient 

we computed the average distance from the two groups and classified 

accordingly. 

From the results we can clearly and consistently see that patients 

belonging to group nk are on average closer to patients of group nk than 

to patients of group gk, and viceversa: the number of successes range 

between 75% and 85%. 

More precisely, the number of success in classifying patience from the 

gk group is consistently higher than from the nk group: 80%-85% of 

successes in the first case and 75%-80% in the second. One of such 

experiments is reported in Table 1. 

After realizing that our method works quite well and consistently on 

the full 24 hours ECG files, we then tested the distance on much shorter 

portion of the signals. In particular, using again the data from [27], we 

repeated the same experiments on the two 5 hours portion of the signals 

that correspond in general to the patients being awake (nk_w, and gk_w 

groups) or asleep (nk_s, and gk_s groups), respectively. 

The results obtained using the signals belonging to the wake state 
groups (nk_w, gk_w) are basically identical (if not better) to those 
obtained previously using the whole signal (see Table 2 where the 
subjects are the same of those in Table 1). We remark that the binary 
sequences corresponding to these 5 hours interval are very small (few K 
bytes), which clearly implies a very limited set of words created during 
the parsing rule. In our opinion, the good performance of the method even 
on these short sequences represents a clever indication of its consistency 
and efficacy. 
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To visualize the clustering property of our distance, we show in 
Figure 4 the tree generated by the distance matrix computed using       
the group gk_w and 38 patience randomly chosen from the other group. 
It is important to remark that we use the tree to present our data only   
for exposition purposes and qualitative preliminary considerations. 
Quantitative and statistical features of our method have been in fact 
directly extracted from the numerical values of the distance matrix. 

Similar results on a smaller set of data are shown in Table 3 where 
we compare signals of subject in gk_w group with those in nk_w. 

In order to visualize better the ability of the distance to cluster 
patients of the same class, we show in Figure 3 a tree constructed out of 
this matrix distance. 

According to our expectations, the same experiments on the sleeping 
part of the data (nk_s, gk_s groups) give sometimes worst results, 
confirming that the wake part of the signal is clearly the most significant 
one. 

One might suspect that in some of these experiments the individual 
complexity of the signal can be enough for achieving a good classification. 
This supposition turned out to be completely wrong: by calculating the 
single complexity of each file (not reported here), both the classifications 
gk v.s. nk, or weak v.s. sleep fails consistently. 

Namely, the single complexity is far from being able to discriminate 
between the nk and gk groups, i.e., the specific properties of the distance, 
arising from the conditional parsing of one string with respect to the 
other, are really necessary. 

Thanks to the data in [27], we have performed an additional similar 
experiment. In particular, we used the following two sets of data: 

nsr_wake group: these are 13 healthy subjects belonging to [19] 
from which the wake parts of the signals have been extracted. 

chf_wake group: wake part of the signals corresponding to 13 
subjects with congestive heart failure [16]. 

As a common feature to all the experiments, also in this case we can 
note significant differences in the distances starting from the second 
digit. Furthermore, we can also remark that the gap in the second digits 
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becomes smaller when relative distances between healthy subjects (nsr) 
are computed, rather than relative distance between patients of the 
second group (chf). In other words, healthy patients signals are more 
similar to one another than patients with past cardiac events. 

Moreover, also for these experiments we note that the whole 24 hours 
signals of both groups could be substituted by the 5 hours corresponding 
to the wake period without degrading the final results. 

The final outcome of this experiment are shown in Table 4 and in 
Figure 5. 

A second kind of experiment that we have performed consists in 
clustering old patients from young patients, again by measuring the 
relative distances between the binary HRV coding extracted from the 
ECG signals. We have considered two databases: 

old group 13 healthy subject belonging to gk previously described. 

young group 13 healthy and rather young people (age between     
20-40 years). These patients (3 men, 10 women) show no significant 
arrhythmias. The corresponding ECG recordings are available from the 
Physionet archive [20]2. 

Also in this case, we consistently got correct results: a single young 
(old) patient has an averaged distance from the whole group of young 
(old) consistently smaller than the other group. 

In order to give a visual presentation of part of the results, we again 
show a table with the average distances from the two groups (Table 5). 

We have then repeated the same experiment with the data 
downloaded from [18], where we have chosen some individuals of age 
from 60 to 68, and other from 28 to 40 years. The results are shown in 
Table 6 and Figure 6. Again, even if the statistical significance of the 
results can be disputed due to the limited numbers involved, the portion 
of successes is very high and strongly support the validity of the method. 

In the last experiment we tried to recognize the NYHA class of 
individual patients with classified congestive heart failure. Various 
Holter ECG’s files were downloaded from [17] and consist of patients 

                                                      
2 The original physionet database consists of 18 nsr records, from these we have removed 
patients with age greater than 40 years. 
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belonging to classes I, II and III of the NYHA classification. After the 
usual binary coding, we repetitively chose few signals out of each class 
and use them as reference data for classification. We then picked 
randomly other unknown HRV strings and used the minimum averaged 
distance from the previously defined sets to attribute the NYHA 
classification. Our method is able to distinguish quite well the subjects in 
classes I and III, whereas quite often it consistently attributes to class III 
patients that were classified in class II. Because of the small number of 
trials, the numerical results are not statistical significant and are not 
presented here. More numerical experiments on bigger corpus of data are 
currently performed with preliminary positive indications. In any case 
this classification is quite subjective, being related to the general 
conditions of the patience, and it is not surprising if it will turn out to be 
difficult to detect a sharp boundary between classes II and III of the 
NYHA classification using our or others statistical methods. 
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Figure 1. Full genome tree. 

 
Figure 2. rRNA tree. 

 
Figure 3. Tree of distances of subjects in gk_w group and nk_w group. The 

patients are the same as those in Table 3. 
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Figure 4. Tree generated by the distance matrix computed using the group gk_w 
and 38 patients randomly chosen from the nk_w group. 

 

Figure 5. Distance tree out of subjects from the chf and nsr groups. 
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Figure 6. Distance tree based on two groups of old and young subjects. 

The patients are the ones of Table 6. 

Table 1. Averaged distances of each patient from gk_group = (gk30_nn, gk31_nn, …, 

gk39_nn) and nk_group = (nk30_nn, nk31_nn, …, nk39_nn), respectively. Wrong 

classifications are marked in red 

 gk_group nk_group 

gk02_nn 0,950977 0,955649 
gk03_nn 0,9512 0,959749 
gk04_nn 0,951591 0,957155 
gk05_nn 0,949889 0,953167 
gk06_nn 0,949679 0,958141 
gk07_nn 0,951273 0,962977 
gk08_nn 0,951308 0,962828 
gk09_nn 0,949684 0,95644 
gk10_nn 0,950085 0,959365 
gk11_nn 0,949688 0,954517 
gk13_nn 0,94936 0,95906 
gk14_nn 0,949817 0,957204 
gk15_nn 0,951751 0,964054 
gk16_nn 0,949499 0,952967 
gk17_nn 0,950058 0,956208 
gk18_nn 0,951352 0,958267 
gk19_nn 0,950012 0,957825 
gk20_nn 0,953429 0,965333 
gk21_nn 0,950678 0,959302 
gk22_nn 0,950278 0,958852 
nk10_nn 0,953073 0,952105 
nk11_nn 0,955284 0,950414 
nk12_nn 0,951612 0,954686 
nk13_nn 0,955527 0,950697 
nk14_nn 0,95358 0,958575 
nk15_nn 0,952657 0,950346 
nk16_nn 0,95545 0,952969 
nk17_nn 0,975155 0,969354 
nk18_nn 0,976497 0,964703 
nk19_nn 0,952482 0,950202 
nk20_nn 0,960154 0,955664 
nk21_nn 0,960711 0,95591 
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nk22_nn 0,956478 0,95132 
nk23_nn 0,961284 0,959017 
nk24_nn 0,949156 0,956412 
nk25_nn 0,959659 0,957893 
nk26_nn 0,966242 0,958213 
nk27_nn 0,960459 0,952844 
nk28_nn 0,950147 0,953585 
nk29_nn 0,953256 0,953296 
nk30_nn 0,95347 0,953471 

Table 2. Averaged distances of each patient from gk_group = (gk30_w, gk31_w, …, 
gk39_w) and nk_group = (nk30_w, nk31_w, …, nk39_w), respectively. Wrong 
classifications are marked in red 

 gk_group nk_group 

gk02_w 0,944999 0,949697 
gk03_w 0,942169 0,949849 
gk04_w 0,94477 0,949449 
gk05_w 0,946066 0,947472 
gk06_w 0,943874 0,953748 
gk07_w 0,945075 0,960126 
gk08_w 0,94387 0,955866 
gk09_w 0,943006 0,951416 
gk10_w 0,941327 0,954052 
gk11_w 0,942418 0,945749 
gk13_w 0,940751 0,948664 
gk14_w 0,942632 0,954633 
gk15_w 0,943504 0,956356 
gk16_w 0,94459 0,947752 
gk17_w 0,940355 0,949688 
gk18_w 0,944521 0,950204 
gk19_w 0,942666 0,946773 
gk20_w 0,944984 0,960437 
gk21_w 0,943947 0,955633 
gk22_w 0,944009 0,95303 
nk10_w 0,94555 0,94192 
nk11_w 0,950804 0,942961 
nk12_w 0,94292 0,943463 
nk13_w 0,950983 0,941804 
nk14_w 0,949428 0,952428 
nk15_w 0,947493 0,944664 
nk16_w 0,950896 0,944168 
nk17_w 0,970349 0,962885 
nk18_w 0,964134 0,948842 
nk19_w 0,946231 0,942469 
nk20_w 0,948818 0,946029 
nk21_w 0,966554 0,953678 
nk22_w 0,953546 0,942596 
nk23_w 0,960295 0,954839 
nk24_w 0,943758 0,952151 
nk25_w 0,953903 0,949325 
nk26_w 0,961058 0,949702 
nk27_w 0,966069 0,951091 
nk28_w 0,944156 0,947916 
nk29_w 0,949629 0,948452 
nk30_w 0,945028 0,942885 
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Table 4. Averaged distances obtained by comparing non healthy patients 
(chf), with healthy subjects (nsr). For any single individual, the average 
is calculated with respect to the remaining patient in each group. Wrong 
classifications are marked in red 

 chf nsr 

chf01_w 0,988736 0,993407 

chf02_w 0,992512 0,994858 

chf03_w 0,971186 0,996126 

chf04_w 0,980403 0,991931 

chf05_w 0,980736 0,992299 

chf06_w 0,979843 0,9914 

chf07_w 0,974151 0,993553 

chf08_w 0,994647 0,99748 

chf09_w 0,969402 0,994815 

chf10_w 0,966486 0,992431 

chf11_w 0,979891 0,99794 

chf12_w 0,981962 0,992295 

chf13_w 0,973136 0,996432 

nsr01_w 0,994181 0,925976 

nsr02_w 0,993675 0,928663 

nsr03_w 0,993803 0,923911 

nsr04_w 0,994018 0,935523 

nsr05_w 0,994254 0,925418 

nsr06_w 0,994561 0,930583 

nsr07_w 0,993325 0,922587 

nsr08_w 0,994585 0,938982 

nsr09_w 0,994489 0,923555 

nsr10_w 0,994857 0,926272 

nsr11_w 0,994628 0,92443 

nsr12_w 0,994004 0,931252 

nsr13_w 0,994587 0,923272 
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Table 5. Averaged distances obtained by comparing young patients [18] 
(recorded with numbers) against old individuals (gk). For any single 
individual, the average is calculated with respect to the remaining 

patients in each group. Wrong classifications are marked in red 

 Young Old 

16272 0,948901182 0,94897375 

16273 0,949356636 0,952352833 

16420 0,951251364 0,95512975 

16483 0,957391273 0,95428375 

16539 0,955175818 0,9531345 

16773 0,954099182 0,952232333 

16786 0,951502545 0,953977667 

16795 0,949578455 0,9527505 

17052 0,950846545 0,955799333 

17453 0,949297455 0,950581 

18177 0,951735364 0,953157417 

18184 0,954342545 0,951167333 

gk11_nn 0,952366167 0,949516818 

gk12_nn 0,951272333 0,949272273 

gk13_nn 0,950989583 0,9476455 

gk14_nn 0,950517167 0,9487745 

gk15_nn 0,955528917 0,9496472 

gk16_nn 0,948811833 0,9510059 

gk17_nn 0,95274075 0,9486855 

gk18_nn 0,955450167 0,9518555 

gk19_nn 0,953471583 0,9502753 

gk20_nn 0,95707775 0,9512193 

gk21_nn 0,952414667 0,9481727 

gk22_nn 0,95289925 0,9486232 



w
w

w
.p

ph
m

j.c
om

MIRKO DEGLI ESPOSTI et al. 78

 
g 


