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Abstract

It is not uncommon that we encounter the situations in which our goal is
to establish an equivalence rather than to detect a difference between
the distributions of the two comparison groups. When the underlying
proportions vary substantially between categories, we may wish to
consider use of the proportion ratio (PR) in establishing equivalence.
This paper develops test procedures for detecting equivalence based on
the PR in paired-sample data for both nominal and ordinal scales. This
paper further develops procedures to accommodate the case of testing for
symmetric equivalence. Finally, this paper includes examples to
illustrate the practical use of the procedures developed here.

1. Introduction

It is not uncommon that we encounter categorical paired-sample data
in which it is much more interesting to test whether the distributions
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between two comparison groups are equivalent rather than equal. For
example, consider the data (Table 1) consisting of 55981 subjects
recording migration in the U.S. taken by Bureau of the Census (Agresti
[1]). We classify each sampled subject according to the geographical area
(Northeast, Midwest, South and West) of his/her residence in the years of
1980 and 1985. The residence locations in different years for the same
subject are correlated and hence naturally form paired-sample data.
When analyzing data with such a large sample size, we would expect to
obtain a strongly significant finding of testing equality even for a tiny
difference in the distributions of residence locations between these years.
Therefore, testing the marginal homogeneity of the distributions
regarding residence locations becomes a rather uninteresting problem.
On the other hand, it can be of interest to find out whether the
distributions of residence locations are equivalent between 1980 and
1985. As a second example, consider the data (Table 2) regarding the
ordinal measurements (the highest grade, the second grade, the third
grade, the lowest grade) of unaided distance vision on eyes over 7477
women (Agresti [1]; Stuart [15]). The measurements on eyes of the same
subjects again naturally form paired-sample data. It is of importance to
study whether the distributions of the unaided distance vision between
the two eyes are equivalent. Note that Lui and Cumberland [12]
considered use of the simple difference to establish equivalence for
ordinal data with matched pairs. Although simple difference is probably
the most commonly-used measure in clinical trials, we need to use
different maximum acceptance level to define equivalence with respect to
simple difference for different categories when the categorical proportions
vary substantially. This may sometimes cause practical difficulty due to
how to select the maximum acceptance levels for various categories. To
alleviate this concern, we focus our discussion on use of the proportion
ratio (PR) rather than simple difference for testing equivalence here.

In this paper, we have developed test procedures for testing
equivalence with respect to the PR in paired-sample data. We have
further developed procedures for testing equivalence between the cell
proportions in a symmetric pattern for both nominal and ordinal data.
Numerous papers on testing equivalence appear elsewhere (Dunnett and
Gent [3]; Westlake [16]; Hauck and Anderson [4, 5]; Liu and Chow [7]; Lu
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and Bean [8]; Lui [9, 10, 13]; Nam [14]). None of them focuses discussion,
however, on hypothesis testing in the situation described here.

2. Hypothesis Testing Procedures

Assume that our data consist of n matched pairs of responses, each
response falling into exactly one of K categories. Assume further that the
two responses within each pair correspond to the two comparison groups
under investigation. Therefore, we can summarize our data in a K x K
table with the rows corresponding to group one, and the columns
corresponding to group two. Suppose that we want to test equivalence

between the distributions of responses for the two comparison groups. Let

n;; (where Zi Zj n;; = n) denote the observed frequency in cell (i, j)
with the cell probability p;;, where i and j=1,2,..., K. Then, the random

vector n' = (ny1, N9, «os MUK, N2> 199, wooy NAK s ooy NK1s NKSs -o» NKK)
follows a multinomial distribution with parameters n and the probability

vector p' = (pn, P125 -++» P1K> P215 P225 +++» P2K 5 +++s PK1> PK25 +++» pKK). We

define the marginal probabilities: p; = Zk pir and p; = Zk pp; for

i=1,2, .., K. Notethat p; and p; simply represent the probabilities of
a randomly selected subject falling into category i for the two comparison
groups, respectively.
2.1. Equivalence testing for nominal data

First, note that if the distributions of the marginal probabilities were
equivalent, we would expect —A < (p; — p;)/p; <A, where A(> 0) is the

maximum acceptable level and is predetermined by the investigator.
Note that —A <(p; — p;)/p; <A if and only if §; < p;/p; < 8,, where

8 =1-A and 5, =1+ A. Therefore, we consider testing the null
hypothesis Hy : p;/p; 28, or p;/p; <§; for somei (i =1, 2, ..., K) versus
the alternative hypothesis H, : §; < p;/p; <398, foralli (i=1,2,..., K).

When we reject the null hypothesis at a nominal a-level, we can state
that the two marginal distributions for the two comparison groups are

equivalent. Let p;; = n;;/n denote the cell sample proportion, which is, in
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fact, the maximum likelihood estimator (MLE) of p;;. We define

D = Zk Dir and p; = Z,, Dpi- Note that the MLE of p;/p; is p;/p;,

for which the sampling distribution is generally skewed, especially when
the sample size n is not large. To improve the normal approximation to

the statistic p,/p;, we consider use of the logarithmic transformation

(Katz et al. [6]; Lui [11]). Using the delta method (Casella and Berger [2]),

we obtain the estimated asymptotic variance log(p;/p; ) to be
Var(log(p;/p;.)) = (bi. + bi — 2bii)/(nbib;.)- ¢))

Define N;(3,) = [(log(p/p1.)) - log(3, )/ (Var(log(p; / b;.))/%, for s = I and

u. On the basis of the intersection-union principle (Casella and Berger

[2]), for a given large sample size n, we would reject H( at the nominal

a-level if

N;(§,) < -Zy and N;(§;) > Z,, @)
held for all i (i =1, 2, ..., K), where Z, is the upper 100(a)th percentile
of the standard normal distribution.

Note that it may also be interesting to find out whether there is an
equivalence in a symmetric pattern of the response proportions between
the two comparison groups. In other words, we want to test the null
hypothesis Hy : pji/p;j 23, or pji/p; <38, for some (i, j) versus the

alternative hypothesis H,, : §; < pj;/p;j < 8, for all (i, j), where (j > i, i
and j =1, 2, ..., K). Again, employing the delta method, we obtain the

estimated asymptotic variance of log (p;; /p;j) to be
Var(log(pj;/ pij)) = (bij + Dji ) (nbji Djj)- 3)

Define R;;(3,) = [(log(pji/ b)) — log(3,)]/(Var(log(p;;/ ﬁij)))m, for s =1

and u. We would reject H(y at the nominal a-level if
le(Su) < —Za and RL](SI) > Za (4)

held for all (i, j), where (i =1,2,.., K-1,andj=i+1,i+2, .., K).
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2.2. Equivalence testing for ordinal data

When the underlying responses are on an ordinal scale, it is more
natural and appealing to consider using the tail distributions (or
equivalently, the cumulative distributions), accounting for the ordered
responses in the data, to establish equivalence between the two

comparison groups. Thus, we define p; = Zf:ipk‘ and p;) = ZkK:ip.k
for i =1, 2, ..., K. We define equivalence between the two tail marginal
distributions when §; < p;)/p(;) < 8, holds for all i. Note that when
i=1, both p(;) and p;) are, by definition, equal to 1 and hence p;)/p),
always falls between §; and §,. We consider testing Hy : p;)/p;). 2 3,
or p)/pe). < 9 for some i(i=2,..., K) versus H, : 8; < p)/pg). < Sy
for all i(i=2,..., K). When we reject the null hypothesis, we state that

the two tail marginal distributions of the two comparison groups are
equivalent.

Following the functional invariance property, we can see that the
A N ~ K . ~ K .

MLE of p)/pG) is D)/ DG)» where pg), =D, b and pgy=D Dy

Again, to improve the normal approximation to the statistic f).(i)/ PG).» we

consider use of the logarithmic transformation. We obtain the estimated
asymptotic variance log(p ;)/p()) to be

Var(log(h,i)/ b)) = (B + by — 2By (nba) b)) (5)

where Z}iizg’:iﬁkk" =2 .. K).
Define the test statistic
Qi(85) = [log(p i)/ b)) — log(8, )/ (Var(log(p i)/ by )

for s =1 and w. Therefore, for a given large sample size n, we would

reject H( at the nominal a-level if

Q;(8,) < -Z, and Q;(8;) > Z, (6)
held for all i (i =2, ..., K).
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To test whether there is a symmetric pattern of equivalence in the
ordinal data, we define p;(;) = Zk:j pir and p(jy; = Zk:]. py; for i and
j =1,2,.., K. When the inequalities: §; < p(;);/p;(j) < 8, hold for all i

and j =1, 2, ..., K, we define there is an equivalence between the two
comparison groups Iin a symmetric pattern. We consider testing
Hy @ pyi/pij) 2 8y or pgj/pijy <98 for some (i, j) versus the
alternative hypothesis H, : 8; < p(j)i/pi(j) < 8, for all (i, j). Note that
by definition pi1) = Pi. and Pa)i = Pi- Thus, a symmetric equivalence

pattern defined here for the ordinal data would imply an equivalence
for the marginal proportions: 8; < p;/p; <8, for i =1,2,.., K. By

employing the delta method, we obtain the estimated variance to be
Var(log(p(yi/ bi(j)) = (Bijyi + bij))/ (nbjyibyj)) for j > i and
= (D(j)i + Pij) — 2Pii)/ (nD(jyiPi(j)) for j <1, (7
where pij) =Y, Py and by = B

Define TL] (68) = [IOg(i)(])L /ﬁl(])) - 10g(83 )]/(Var(log([)(])l /f)l(]))))l/z for
s =1 and u. We would reject the null hypothesis H, at the nominal
a-level if

T;(3,) < ~Zo, and T;(3) > Z, ®)

held for all (i, j), whereiand j =1, 2, ..., K.

3. Examples

To illustrate the use of test procedures (2) and (4), we consider the
data (Table 1) consisting of (n =) 55981 subjects about their residence

locations in 1980 and 1985 over the geographic areas: Northeast,
Midwest, South and West (Agresti [1]). Table 1 summarizes the observed
frequency and the sampled proportions f)ij of subjects, as well as the

corresponding marginal proportions p; and p;. For illustration purposes,

suppose we choose the maximum acceptable level of A to be 0.20 and wish
to determine whether the two marginal distributions of residence
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locations are equivalent over different geographical areas between 1980
and 1985 (i.e., 0.80 < p;/p; <1.20 forall i =1, 2, 3, 4). When applying

test procedure (2), we find the values of test statistics N;(1.2) < —1.645
and N;(0.80) > 1.645 for all i =1, 2, 3, 4. Thus, we conclude that there

is a significant evidence at 5% to support that the distributions of the
residence locations in 1980 and 1985 are essentially equivalent. This
conclusion is certainly consistent with the fact that the two marginal
proportions between years of 1980 and 1985 under consideration are
similar to each other: (p; , p ;) = (0.218, 0.213), (ps, po)=(0.260, 0.253),

(p3., P3)=1(0.830,0.339), (P4, p4)=(0.191,0.194); these give the sample
proportion ratio p;/p; tobe 0.977, 0.973, 1.027, and 1.016, which all lie

around of the ratio 1.0. To further investigate whether there is an
equivalence between p;; and pj; in a symmetric pattern, we employ test

procedure (4). We have found that there is no significant evidence to
reject Hy : pj;/p;j = 0.80 or pj;/p; <1.20 for some (i, j) at 5% level

and hence the direction of movement is probably not equivalent with
respect to symmetric pattern. In fact, this finding is consistent with the
observation that the number of subjects moving from Northeast to the
West is almost twice of those moving from the West to the Northeast
(Table 1).

To illustrate the use of procedures (6) and (8), we consider the data
(Table 2) regarding the ordinal measurements (highest grade, second
grade, third grade and lowest grade) of unaided distance vision on eyes
over 7477 women with ages ranging from 30 and 39 years old (Agresti [1];
Stuart [15]). Suppose that we wish to study if the ratio between the tail
marginal proportion of the left eyes relative to that of the right eyes at
the ordinal measurements i, p(;/p(;), falls into the acceptable range

[0.80, 1.20] for all ;. When applying test procedure (6), we find out there
1s a significant evidence to claim that the two tail marginal proportions
are equivalent between the left and the right eyes. Again, this finding is
consistent with the observations on the empirical proportion ratios
(pG)/pG). fori=1,23,4): 1.0, 1.01, 1.03, and 1.06, that are all in the

neighborhood of 1.0. When applying test procedure (8) to detect the
symmetric equivalence, we have found that there is no evidence to
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support that the measurements of unaided distance vision on the two
eyes are symmetrically equivalent. This is because, for example, the ratio
Di4a/D41 = 1.83 is much larger than the upper acceptable limit §, (= 1.20)

for equivalence.
4. Discussion

First, note that pisin {p|p; = p; for all i = 2, ..., K} if and only if p
isin {p|p(;) = p() for all i = 2, ..., K}. Thus, testing hypothesis of the
marginal homogeneity using the marginal proportions is equivalent to

that using the tail distribution of the marginal proportions. By contrast,

we can easily show that the set of inequalities: §; < p;/p; <§, for
i=1,2 3, .. K, implies that the set of inequalities: §; < p‘(i)/p(i)‘ <39,
for 1 =2, 3,..., K, but the converse is no longer true. Thus, an
equivalence with respect to the marginal proportions would implicitly
suggest that an equivalence with respect to the tail distribution of the
marginal proportions, but not vice versa.

Note also that the inequality: 1 — A < p;/p; <1+ A is not exactly the
same as the inequality: 1 -A < p; /p; <1+ A. Thus, when considering

use of the ratio in establishing equivalence, we need to decide which

parameter p;/p; and p;/p; for use. However, because the value A
is usually chosen to be small, 1/1-A)=1+A and 1/01+A)=1-A.
Therefore, the concern of choosing which ratio p;/p; or p; /p; for use
should not be an issue of important concern in practice.

As noted elsewhere (Hauck and Anderson [5]; Lui [9]), we note that
the test procedures proposed here are actually equivalent to the
procedure, in which we state that there is an equivalence whenever the

corresponding 100(1-2a) percent confidence interval of PR are all

contained in the acceptable range [3;, §,]. For example, consider use of
test procedure (2), in which we reject H, at the nominal o-level if
N;(8,)<—-Zy and N;(8;)>Z, heldforall i (i =1, 2, ..., K). Note that we
can easily show that the conditions: N;(8,) < -Z, and N;(§;) > Z, hold
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for all i if and only if the corresponding 100(1-2a) percent confidence

[, exp(~Zq (Var(og(p; | 5:))*) b bi explZq(Var(og(h,b:))*)/b;]
lie entirely in the acceptable range [§;, 8, ] for the ratio p;/p; . Therefore,
when all the resulting 90% confidence interval of p;/p; are contained in

[8;,8,], we may then reject Hy : p;/p; =8, or p;/p; <8, at 0.05-level.

In summary, this paper has developed test procedures for testing
equivalence with respect to the proportion ratios between categories. This
paper has further showed that we can easily develop test procedures to
accommodate the case for detecting a symmetric equivalence as well. This
paper has also included examples to illustrate the practical usefulness of
these procedures developed here. The results and the findings presented
here should have use for biostatisticians and epidemiologists when they
wish to do hypothesis testing for equivalence in categorical paired-sample
data.

Table 1. The frequency and the frequency proportions (in parenthesis) of
residence in years of 1980 and 1985 for a sample selected by the U. S.
Bureau of the Census, Current Population Reports, Series P-20, No. 420,
Geographical Mobility: 1985, U. S. Government Printing office,
Washington, D. C.

198011985 Northeast | Midwest South West Marginal
Distribution
Northeast 11607 100 366 124 12197
(0.207) (0.002) (0.007) (0.002) (0.218)
Midwest 87 13677 515 302 14581
(0.002) (0.244) (0.009) (0.005) (0.260)
South 172 225 17819 270 18486
(0.003) (0.004) (0.318) (0.005) (0.330)
West 63 176 286 10192 10717
(0.001) (0.003) (0.005) (0.182) (0.191)
Marginal 11929 14178 18986 10888 55981
Distribution (0.213) (0.253) (0.339) (0.194) (1.00)
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Table 2. The frequency and the frequency proportions (in parenthesis) of
measurements on eyes over a sample of 7477 women with ages ranging
from 30 to 39 years old

Right | Left | Highest | Second Third Lowest | Marginal Tail
Eyes|Eyes | Grade Grade Grade Grade |Distribution|Distribution

Highest 1520 266 124 66 1976 7477
Grade (0.203) | (0.036) | (0.017) | (0.009) | (0.264) (1.00)
Second 234 1512 432 78 2236 5501

Grade (0.031) (0.202) | (0.058) | (0.010) (0.302) (0.736)

Third Grade| 117 362 1772 205 2456 3245
(0.016) | (0.048) | (0.237) | (0.027) | (0.328) (0.434)

Lowest 36 82 179 492 789 789
Grade (0.005) (0.011) | (0.024) | (0.066) (0.106) (0.106)

Marginal 1907 2222 2507 841 7477
Distribution| (0.255) | (0.297) | (0.335) | (0.112) (1.00)

Tail 1907 5570 3348 841
Distribution| (1.00) | (0.744) | (0.447) | (0.112)
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