AN EXTENSION OF THE THOM-PORTEOUS FORMULA TO A CERTAIN CLASS OF COHERENT SHEAVES

TRAVIS LEE

Department of Economics
Cornell University
Ithaca, New York, U. S. A.
e-mail: jtl29@cornell.edu

Abstract

The goal is a theorem which allows computations analogous to the Thom-Porteous formula for a morphism $\sigma: E \rightarrow F$ of coherent sheaves, which are not vector bundles, over a scheme X. In particular if $Y \subset X$ is the subset where either E or F is not a vector bundle, then the goal is to find a class supported on the set $D_{k}(\sigma)=\{x \in X-Y: \operatorname{rank}(\sigma(x)) \leq k\} \cup Y$. S. Diaz has one method for accomplishing this goal: find a blow up $p: \tilde{X} \rightarrow X$ such that the double dual of the pullbacks of E and F, namely $\left(p^{*} E\right)^{* *}$ and $\left(p^{*} F\right)^{* *}$, are vector bundles over \tilde{X}. Hence over \tilde{X} there is a morphism of vector bundles $\left(p^{*} \sigma\right)^{* *}:\left(p^{*} E\right)^{* *} \rightarrow\left(p^{*} F\right)^{* *}$. For an appropriate choice of k, apply the Thom-Porteous formula to compute the fundamental class of $D_{k}\left(\left(p^{*} \sigma\right)^{* *}\right)$. Then $p_{*}\left[\left|D_{k}\left(\left(p^{*} \sigma\right)^{* *}\right)\right|\right]$ is a class supported on $D_{k}(\sigma)$ in X. To derive a formula from this construction it suffices to express the Chern classes of $\left(p^{*} E\right)^{* *}$ and

[^0]Received August 11, 2006
$\left(p^{*} F\right)^{* *}$ in terms of known information about E and F. A formula for these Chern classes is derived for E and F belonging to a certain class of coherent sheaves.

1. Introduction

Given a morphism σ of vector bundles E and F of rank e and f, respectively, over a purely n-dimensional Cohen-Macaulay scheme X, a nonnegative integer $k \leq \min \{e, f\}$, and a degeneracy locus

$$
D_{k}(\sigma)=\{x \in X: \operatorname{rank}(\sigma(x)) \leq k\}
$$

of codimension $(e-k)(f-k)$, the Thom-Porteous formula [2] gives the fundamental class of the degeneracy locus in the Chow group of X in terms of the Chern classes of E and F as follows:

$$
\left[\left|D_{k}(\sigma)\right|\right]=\Delta_{f-k}^{(e-k)}(c(F-E)) \cap[X],
$$

where $c(F-E)$ denotes the formal quotient

$$
c(F-E)=\frac{c(F)}{c(E)}=\frac{1+c_{1}(F) t+c_{2}(F) t^{2}+\cdots}{1+c_{1}(E) t+c_{2}(E) t^{2}+\cdots}
$$

and given a formal sum $c=c_{0}+c_{1}+c_{2}+\cdots, \Delta_{q}^{(p)}(c)$ denotes

$$
\Delta_{q}^{(p)}(c)=\operatorname{det}\left[\begin{array}{ccccc}
c_{q} & c_{q+1} & c_{q+2} & \cdots & c_{q+p-1} \\
c_{q-1} & c_{q} & c_{q+1} & \cdots & c_{q+p-2} \\
\vdots & & & \ddots & \\
c_{q-p+1} & c_{q-p+2} & c_{q-p+3} & \cdots & c_{q}
\end{array}\right]
$$

Example 1. Let \mathbb{P}^{2} be projective space over a field K and let $\sigma: \mathcal{O}_{\mathbb{P}^{2}}^{2}$ $\rightarrow \mathcal{O}_{\mathbb{P}^{2}}^{3}(1)$ be given by the matrix

$$
[\sigma]=\left[\begin{array}{ll}
x & z \\
y & x \\
0 & y
\end{array}\right]
$$

Taking two by two minors gives $D_{1}(\sigma)=\{(0,0,1)\}$. By the Thom-Porteous formula the fundamental class of $D_{1}(\sigma)$ is given as follows, where H is the rational equivalence class of a hyperplane in \mathbb{P}^{2} :

$$
\begin{aligned}
{\left[\left|D_{1}(\sigma)\right|\right] } & =\Delta_{2}^{(1)}\left(\frac{c\left(\mathcal{O}_{\mathbb{P}^{2}}^{3}(1)\right)}{c\left(\mathcal{O}_{\mathbb{P}^{2}}^{2}\right)}\right) \cap\left[\mathbb{P}^{2}\right] \\
& =\Delta_{2}^{(1)}\left(\frac{(1+H t)^{3}}{1}\right) \\
& =\Delta_{2}^{(1)}\left(1+3 H t+3 P t^{2}\right) \\
& =\operatorname{det}[3 P] \\
& =3 P .
\end{aligned}
$$

In this simple example it is possible to verify $3 P$ is the fundamental class of $D_{1}(\sigma) . D_{1}(\sigma)$ is a closed subscheme of \mathbb{P}^{2} supported at the point $(0,0,1)$ so $\left[\left|D_{1}(\sigma)\right|\right]$ is $n P$, where n is the length of the local ring of $D_{1}(\sigma)$ at $(0,0,1)$. The local ring is $\frac{K[x, y]}{\left(x^{2}-y, x y, y^{2}\right)}$ which is a 3 -dimensional vector space over K (with basis $\left\{1, x, x^{2}\right\}$). Hence the fundamental class is $3 P$.

The Thom-Porteous formula applies only to morphisms of vector bundles; however many interesting subschemes can only be described as the degeneracy locus of a morphism of coherent sheaves. Given a morphism $\sigma: E \rightarrow F$ of coherent sheaves over a scheme X, the goal is a formula that allows analogous computations. In fact Harris and Morrison [4] ask, "Is there a Porteous type formula for maps of torsion-free coherent sheaves?" This paper gives such a formula for morphisms of coherent sheaves which meet certain conditions. In particular if $Y \subset X$ is the subset where either E or F is not a vector bundle, the goal is to find a class supported on the set

$$
D_{k}(\sigma) \equiv\{x \in X-Y: \operatorname{rank}(\sigma(x)) \leq k\} \cup Y .
$$

Diaz [1] has one method for accomplishing this goal: find a blow up $p: \widetilde{X} \rightarrow X$ such that the double dual of the pullbacks of E and F, namely $\left(p^{*} E\right)^{* *}$ and $\left(p^{*} F\right)^{* *}$, are vector bundles over \tilde{X}. Hence over \tilde{X} there is a morphism of vector bundles

$$
\left(p^{*} \sigma\right)^{* *}:\left(p^{*} E\right)^{* *} \rightarrow\left(p^{*} F\right)^{* *}
$$

For an appropriate choice of k, apply the Thom-Porteous formula to compute the fundamental class of $D_{k}\left(\left(p^{*} \sigma\right)^{* *}\right)$. Then $p_{*}\left[\left|D_{k}\left(\left(p^{*} \sigma\right)^{* *}\right)\right|\right]$ is a class supported on $D_{k}(\sigma)$ in X. To derive a formula from this construction it suffices to express the Chern classes of $\left(p^{*} E\right)^{* *}$ and $\left(p^{*} F\right)^{* *}$ in terms of known information about E and F. An expression for these Chern classes is provided for E and F belonging to a certain class of coherent sheaves. Section 2 details the result (proofs are given in Section 4), and Section 3 applies the result to a simple example.

2. Extension of the Thom-Porteous Formula

Definition 1. Let I be a coherent sheaf of ideals on a nonsingular, quasi-projective scheme X of dimension n over a field K. Call I homogeneous of degree $\left(d_{1}, \ldots, d_{k}\right)$ with respect to local parameters at a set of distinct closed points $\left\{x_{1}, \ldots, x_{k}\right\} \subset X$ if there is some choice of local coordinates u_{1}, \ldots, u_{n} defined on neighborhoods U_{i} of x_{i} such that $I\left(U_{i}\right)$ has a set of generators each of which is a degree $d_{i}>0$ homogeneous polynomial in u_{1}, \ldots, u_{n} with coefficients in K. (The dependence of the set of local coordinates u_{1}, \ldots, u_{n} on i has been suppressed.)

Definition 2. Let $\left\{U_{i}\right\}_{i \in \Lambda}$ be an open cover of a scheme X and D be an effective Cartier divisor on X such that $|D| \subset \cup_{i \in \Lambda^{\prime}} U_{i}$ and $|D| \cap U_{i}=\varnothing$ for all $i \notin \Lambda^{\prime}$, where $\Lambda^{\prime} \subset \Lambda$. Write local equations for D as u_{i} on U_{i} for $i \in \Lambda^{\prime}$ and 1 on U_{i} for $i \notin \Lambda^{\prime}$. Let F_{1} and F_{2} be vector bundles of rank f_{1} and f_{2}, respectively on X. Suppose F_{1} splits on $U=\bigcup_{i \in \Lambda^{\prime}} U_{i}$ and write $\left.F_{1}\right|_{U}=L_{1} \oplus \cdots \oplus L_{f_{1}}$. Let $\phi: F_{1} \rightarrow F_{2}$ be a morphism of rank r on
$X-|D|$ dropping rank by $k \geq 1$ on $|D|$. Fix (locally) free bases for F_{1} and F_{2}, respecting the splitting $\left.F_{1}\right|_{U}=L_{1} \oplus \cdots \oplus L_{f_{1}}$, so ϕ has a matrix representation [$\phi]$. Define the j th column vanishing M_{j} of $[\phi]$ on $|D|$ to be the greatest positive integer r such that for every i, each entry of the j th column of $\left[\phi\left(U_{i}\right)\right]$ is in the ideal $\left(u_{i}\right)^{r}$ in $\mathcal{O}_{X}\left(U_{i}\right)$. Let the total column vanishing M be the sum $M=M_{1}+\cdots+M_{f_{1}}$.

Definition 3. A coherent sheaf E over a nonsingular, integral, quasiprojective scheme X of dimension $n \geq 2$ over a field K is nice at a finite set of distinct closed points $\left\{x_{1}, \ldots, x_{k}\right\} \subset X$ if it satisfies the following conditions:

- E has a locally-free resolution

$$
0 \rightarrow E_{2} \xrightarrow{\phi} E_{1} \rightarrow E \rightarrow 0 .
$$

- The first nonzero Fitting ideal I of E is supported on the set $\left\{x_{1}, \ldots, x_{k}\right\}$.
- I is degree d_{i} homogeneous with respect to local parameters at x_{i} for $i=1, \ldots, k$.
- If $p: \widetilde{X} \rightarrow X$ is the blow up of X along I and $e_{i}=p^{-1}\left(x_{i}\right)$, then the total column vanishing of $\left[p^{*} \phi\right]$ on e_{i} is $M_{i}=d_{i}$ for $i=1, \ldots, k$.

The following theorem gives a formula for the Chern class of the double dual of the pullback of a nice sheaf.

Theorem 1. Let X be a nonsingular, integral, quasi-projective scheme of dimension $n \geq 2$ over a field K, and let E be a coherent sheaf over X which is nice at a finite set of distinct closed points $\left\{x_{1}, \ldots, x_{k}\right\}$. Let $p: \widetilde{X} \rightarrow X$ be the blow up of X along the first nonzero Fitting ideal of E, and let L_{i} be the invertible sheaf associated to $p^{-1}\left(x_{i}\right)$ for $i=1, \ldots, k$. Then

$$
c_{t}\left(\left(p^{*} E\right)^{* *}\right)=\frac{c_{t}\left(p^{*} E_{1}\right)}{c_{t}\left(p^{*} E_{2}\right) \cdot\left(1+c_{1}\left(L_{1}\right) t\right)^{M_{1}} \cdots\left(1+c_{1}\left(L_{m}\right) t\right)^{M_{k}}} .
$$

Definition 4. Given a morphism $\sigma: E \rightarrow F$ of coherent sheaves over a scheme X, suppose $Y \subset X$ is the subset where either E or F is not a vector bundle. Let e and f be the ranks of E and F, respectively over $X-Y$, and choose a nonnegative integer $k \leq \min \{e, f\}$. Then the $k t h$ degeneracy locus $D_{k}(\sigma)$ of σ is

$$
D_{k}(\sigma)=\{x \in X-Y: \operatorname{rank}(\sigma(x)) \leq k\} \cup Y .
$$

Definition 5. Given a morphism $\sigma: E \rightarrow F$ of coherent sheaves over a scheme X, let the first nonzero Fitting ideals of E and F be I_{E} and I_{F}, respectively. Let $q_{1}: X_{1} \rightarrow X$ be the blow up of X along I_{E}, and let $q_{2}: \tilde{X} \rightarrow X_{1}$ be the blow up of X_{1} along $q_{1}^{-1} I_{F} \cdot \mathcal{O}_{X_{1}}$. Then $p=q_{1} \circ q_{2}$ $: \widetilde{X} \rightarrow X$ is the double blow up of X along the first nonzero Fitting ideals of E and F.

The following lemma shows the order in which the ideals I_{E} and I_{F} are blown up does not matter.

Lemma 1. Let I_{E} and I_{F} be coherent sheaves of ideals on a noetherian scheme X. Suppose $p_{1}: X_{1} \rightarrow X$ is the blow up of X along I_{E}, and $p_{2}: \tilde{X} \rightarrow X_{1}$ is the blow up of X_{1} along $p_{1}^{-1} I_{F} \cdot \mathcal{O}_{X_{1}}$. Suppose further $q_{1}: Y_{1} \rightarrow X$ is the blow up of X along I_{F} and $q_{2}: \tilde{Y} \rightarrow Y_{1}$ is the blow up of Y_{1} along $q_{1}^{-1} I_{E} \cdot \mathcal{O}_{Y_{1}}$. Then \tilde{X} and \tilde{Y} are isomorphic schemes.

Proof. [5, Corollary II.7.15] gives unique morphisms $f_{1}: \tilde{Y} \rightarrow X_{1}$ and $f_{2}: \widetilde{X} \rightarrow Y_{1}$ so the following diagram commutes:

Then $f_{1}^{-1}\left(p_{1}^{-1} I_{F} \cdot \mathcal{O}_{X_{1}}\right) \cdot \mathcal{O}_{\tilde{Y}}=q_{2}^{-1}\left(q_{1}^{-1} F \cdot \mathcal{O}_{Y_{1}}\right) \cdot \mathcal{O}_{\tilde{Y}}$ is an invertible sheaf of ideals on \tilde{Y}. Hence [5, Proposition II.7.14] gives a unique morphism $g_{1}: \tilde{Y} \rightarrow \tilde{X}$ factoring f_{1}. Similarly there is a unique morphism $g_{2}: \widetilde{X}$ $\rightarrow \tilde{Y}$ factoring f_{2} :

The sheaf of ideals $q_{2}^{-1}\left(q_{1}^{-1} I_{E} \cdot Y_{1}\right) \cdot \tilde{Y}$ is invertible so $h=g_{2} \circ g_{1}$ is the unique scheme morphism from \tilde{Y} to \widetilde{Y} factoring q_{2}. However the identity morphism also has this property so $g_{2} \circ g_{1}=1$. Similarly $g_{1} \circ g_{2}=1$.

Theorem 2 (Extension of Thom-Porteous formula). Suppose $\sigma: E$ $\rightarrow F$ is a morphism of coherent sheaves over a nonsingular, integral, quasi-projective scheme X of dimension $n \geq 2$ over a field K. Let E and F be nice at a finite set of distinct closed points $\left\{x_{1}, \ldots, x_{l}\right\} \subset X$. Let $p: \widetilde{X}$ $\rightarrow X$ be the double blow up of X along the first nonzero Fitting ideals of E and F. Let e, f, and k be as in Definition 4. Then a class supported on $D_{k}(\sigma)$ is given by the expression

$$
p_{*}\left[\left|D_{k}\left(\left(p^{*} \sigma\right)\right)^{* *}\right|\right]=p_{*}\left(\Delta_{f-k}^{(e-k)}\left(c\left(\left(p^{*} F\right)^{* *}-\left(p^{*} E\right)^{* *}\right)\right) \cap[\tilde{X}]\right),
$$

where the Chern classes of $\left(p^{*} E\right)^{* *}$ and $\left(p^{*} F\right)^{* *}$ are given by Theorem 1.
Proof. Apply the Thom-Porteous formula to the morphism

$$
\left(p^{*} \sigma\right)^{* *}:\left(p^{*} E\right)^{* *} \rightarrow\left(p^{*} F\right)^{* *}
$$

of vector bundles over \tilde{X}.

The following lemma shows the class given by Theorem 2 is unique in a certain sense.

Lemma 2. Let X be a variety and $p_{1}: X_{1} \rightarrow X$ be a blow up. Let $p_{2}: X_{2} \rightarrow X$ be a blow up, and $q: X_{2} \rightarrow X_{1}$ be a morphism making the following diagram commute:

Given vector bundles E and F on $X_{1}, E^{\prime}=q^{*} E$ and $F^{\prime}=q^{*} F$ are vector bundles on X_{2}. Let $e=\operatorname{rank}(E), f=\operatorname{rank}(F), k \leq \min \{e, f\}$, and for the determinantal expressions of the Thom-Porteous formula write

$$
\Delta_{1}:=\Delta_{f-k}^{(e-k)}(c(F-E)) \cap\left[X_{1}\right],
$$

and

$$
\Delta_{2}:=\Delta_{f-k}^{(e-k)}\left(c\left(F^{\prime}-E^{\prime}\right)\right) \cap\left[X_{2}\right] .
$$

Then $q_{*}\left(\Delta_{2}\right)=\Delta_{1}$.
Proof. Since $\Delta_{f-k}^{(e-k)}\left(c\left(F^{\prime}-E^{\prime}\right)\right) \cap\left[X_{2}\right]$ is a polynomial in the Chern classes of $q^{*} E$ and $q^{*} F$, it follows from [2, Theorem 3.2(c)] that

$$
q_{*}\left(\Delta_{2}\right)=\Delta_{f-k}^{(e-k)}(c(F-E)) \cap q_{*}\left[X_{2}\right] .
$$

Let $l=\left[R\left(X_{2}\right): R\left(X_{1}\right)\right]$, where $R(\cdot)$ denotes the field of rational functions. By [2, Section 1.4], $q_{*}\left(\Delta_{2}\right)=l \Delta_{1}$. Since q is a birational morphism, $l=1$.

3. Example

Define morphisms $\alpha: \mathcal{O}_{\mathbb{P}^{2}}^{2}(1) \rightarrow \mathcal{O}_{\mathbb{P}^{2}}^{5}(1)$ and $i: \mathcal{O}_{\mathbb{P}^{2}}^{2} \rightarrow \mathcal{O}_{\mathbb{P}^{2}}^{5}(1)$ by the matrices

$$
[\alpha]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]^{T}
$$

and

$$
[i]=\left[\begin{array}{ccccc}
x_{2} & x_{1} & 0 & x_{3} & 0 \\
0 & 0 & x_{2} & x_{1} & x_{1}
\end{array}\right]^{T}
$$

Let $E \cong \mathcal{O}_{\mathbb{P}^{2}}^{2}(1)$ and F be sheaves defined by the following locally free resolutions:

The morphism $\sigma: E \rightarrow F$ is induced by $\pi_{2} \alpha$ since $\pi_{2} \alpha$ vanishes on $\operatorname{ker}\left(\pi_{1}\right)=0 . E$ and F are torsion-free coherent sheaves with locally free locus $Y=\mathbb{P}^{2}-\{(0,0,1)\}$. $D_{1}(\sigma)=\{(0,1,0),(0,0,1)\}$.

Let $p: \widetilde{\mathbb{P}^{2}} \rightarrow \mathbb{P}^{2}$ be the blow up of \mathbb{P}^{2} along the first nonzero Fitting ideal of F. Let $e, H, p^{*} H$, and P be the rational equivalence classes of the exceptional divisor, a hyperplane in \mathbb{P}^{2}, the pullback of H, and a point, respectively. Then

$$
\begin{aligned}
c_{t}\left(\left(p^{*} F\right)^{* *}\right) & =\frac{c_{t}\left(\mathcal{O}_{\widetilde{\mathbb{P}^{2}}}^{5}(1)\right)}{c_{t}\left(\mathcal{O}_{\widetilde{\mathbb{P}^{2}}}\right) \cdot(1+e t)} \\
& =\frac{\left(1+p^{*} H t\right)^{5}}{1+e t} \\
& =\left(1+5 p^{*} H t+10 P t^{2}\right)\left(1-e t-P t^{2}\right) \\
& =1+5 p^{*} H t-e t+9 P t^{2} .
\end{aligned}
$$

The Thom-Porteous formula gives the fundamental class of $D_{1}\left(\left(p^{*} \sigma\right)^{* *}\right)$ as follows:

$$
\begin{aligned}
{\left[\left|D_{1}\left(\left(p^{*} \sigma\right)^{* *}\right)\right|\right] } & =\Delta_{2}^{(1)}\left(c\left(\left(p^{*} F\right)^{* *}-\left(p^{*} E\right)^{* *}\right)\right) \cap\left[\widetilde{\mathbb{P}^{2}}\right] \\
& =\Delta_{2}^{(1)}\left(1+5 p^{*} H t-e t+9 P t^{2}\right) /\left(\left(1+p^{*} H t\right)^{2}\right) \\
& =\Delta_{2}^{(1)}\left(1+5 p^{*} H t-e t+9 P t^{2}\right)\left(1-2 p^{*} H t+3 P t^{2}\right) \\
& =\Delta_{2}^{(1)}\left(1+3 p^{*} H t-e t+2 P t^{2}\right) \\
& =\operatorname{det}[2 P] \\
& =2 P .
\end{aligned}
$$

To obtain a class in the Chow group $A_{0}\left(\mathbb{P}^{2}\right)$ supported on $D_{1}(\sigma)$ apply the group homomorphism p_{*}

$$
p_{*}\left(\left[\left|D_{1}\left(\left(p^{*} \sigma\right)^{* *}\right)\right|\right]\right)=2 P .
$$

On $\widetilde{\mathbb{P}^{2}}$ the double dual map drops rank at two points. The Thom-Porteous formula counts each of these point once [2, Lemma 12.1]. Thus each of the points $(0,1,0)$ and $(0,0,1)$ in \mathbb{P}^{2} is counted exactly once (each is counted at least once by [2, Section 1.4].

4. Details

Lemma 3 (Existence of partial tensor). Let $\left\{U_{i}\right\}_{i \in \Lambda}$ be an open cover of a scheme X over a field K, and let E be a rank r vector bundle splitting on $U=\bigcup_{i \in \Lambda^{\prime}} U_{i}$, where $\Lambda^{\prime} \subset \Lambda$. Suppose E splits on U as $\left.E\right|_{U}=L_{1} \oplus \cdots \oplus L_{r}$ for line bundles L_{1}, \ldots, L_{r} on U. Let L be a line bundle with associated Cartier divisor D supported on a closed set $|D| \subset U$ such that $|D| \cap U_{i}$ $=\varnothing$ for all $i \notin \Lambda^{\prime}$. Let M_{1}, \ldots, M_{q} be a finite sequence of positive integers with $q \leq r$. Then there is a vector bundle G on X, call it the partial tensor of E with L by the sequence M_{1}, \ldots, M_{q}, such that
(1) $\left.G\right|_{U} \cong\left(L_{1} \otimes L^{M_{1}}\right) \oplus \cdots \oplus L_{q} \otimes L^{M_{q}} \oplus L_{q+1} \oplus \cdots \oplus L_{r}$, and
(2) $\left.G\right|_{U_{i}}=\left.E\right|_{U_{i}}$, for all $i \notin \Lambda^{\prime}$.

If $g_{i, j}: U_{i} \cap U_{j} \rightarrow G L(k, m)$ give the transition data for E and D has local equations $u_{i} \in \mathcal{O}_{X}\left(U_{i}\right)$ with respect to the open cover $\left\{U_{i}\right\}_{i \in \Lambda}$, then G has transition data $\tilde{g}_{i, j}$ given by

$$
\begin{gathered}
{\left[\widetilde{g}_{i, j}\right]=\left[\begin{array}{cccccc}
u_{i}^{M_{1}} & & & & & 0 \\
& \ddots & & & & \\
& & u_{i}^{M_{q}} & & & \\
& & & 1 & & \\
0 & & & & \ddots & \\
& \cdot\left[\begin{array}{ccccc}
u_{j}^{-M_{1}} & & & & \\
& \ddots & & & \\
& & u_{j}^{-M_{q}} & & \\
& & & 1 & \\
0 & & & & \ddots
\end{array}\right]
\end{array}\right]}
\end{gathered}
$$

There is an injective vector bundle morphism $f: E \rightarrow G$ such that for all $i \in \Lambda$

$$
\left[f\left(U_{i}\right)\right]=\left[\begin{array}{llllll}
u_{i}^{M_{1}} & & & & & 0 \\
& \ddots & & & & \\
& & u_{i}^{M_{q}} & & & \\
& & & 1 & & \\
0 & & & & \ddots & \\
& & & & & 1
\end{array}\right],
$$

and G has Chern polynomial $c_{t}(G)=c_{t}(E)\left(1+c_{1}(L) t\right)^{M}$, where $M=M_{1}$ $+\cdots+M_{q}$.

Proof. It suffices to assume $q=1$ and $M_{1}=1$. Shrink the U_{i} if necessary so that L and L_{j} for $j=1, \ldots, r$ are trivial on every U_{i} for $i \in \Lambda^{\prime}$. Let $h_{i, j}: U_{i} \cap U_{j} \rightarrow K^{*}$ and $g_{i, j}: U_{i} \cap U_{j} \rightarrow G L(r, K)$ be the transition functions for L and E, respectively. For $i \in \Lambda^{\prime}$, say $L\left(U_{i}\right)=\left\langle e_{0}\right\rangle$ and $E\left(U_{i}\right)=\left\langle e_{1}, \ldots, e_{r}\right\rangle$. Then define

$$
G\left(U_{i}\right)=\left\langle e_{0} \otimes e_{1}, e_{2}, \ldots, e_{r}\right\rangle
$$

and for $i \notin \Lambda^{\prime}$ define $G\left(U_{i}\right)=E\left(U_{i}\right)$. One needs to specify the transition functions $\tilde{g}_{i, j}$ for G. Consider $i, j \in \Lambda^{\prime}$. There is a function $a_{0}: U_{i} \cap U_{j}$ $\rightarrow K^{*}$ such that $\left[h_{i, j}\right]=\left[a_{0}\right]$. Since E splits on U, there are functions $a_{l}: U_{i} \cap U_{j} \rightarrow K^{*}$ for $l=1, \ldots, r$ such that

$$
\left[g_{i, j}\right]=\left[\begin{array}{lll}
a_{1} & & 0 \\
& \ddots & \\
0 & & a_{r}
\end{array}\right]
$$

For $i, j \in \Lambda^{\prime}$ define

$$
\left[\widetilde{g}_{i, j}\right]=\left[\begin{array}{cccc}
a_{0} a_{1} & & & 0 \\
& a_{2} & & \\
& & \ddots & \\
0 & & & a_{r}
\end{array}\right]
$$

Next consider $i \in \Lambda^{\prime}$ and $j \notin \Lambda^{\prime}$. Here $\left[h_{i, j}\right]=\left[a_{0}\right]$ and there are functions $a_{s, t}: U_{i} \cap U_{j} \rightarrow K^{*}$, such that

$$
\left[g_{i, j}\right]=\left[\begin{array}{lll}
a_{1,1} & \cdots & a_{1, r} \\
& \ddots & \\
a_{r, 1} & \cdots & a_{r, r}
\end{array}\right]
$$

For $i \in \Lambda^{\prime}$ and $j \notin \Lambda^{\prime}$ define

$$
\left[\widetilde{g}_{i, j}\right]=\left[\begin{array}{ccc}
a_{0} a_{1,1} & \cdots & a_{0} a_{1, r} \\
a_{2,1} & \cdots & a_{2, r} \\
& \ddots & \\
a_{r, 1} & \cdots & a_{r, r}
\end{array}\right]
$$

For $i \notin \Lambda^{\prime}$ and $j \in \Lambda^{\prime}$, define $\tilde{g}_{i, j}=\widetilde{g}_{j, i}^{-1}$ (see below for existence of the inverse). Finally for $i, j \notin \Lambda^{\prime}$ define $\tilde{g}_{i, j}=g_{i, j}$.

Now check the $\tilde{g}_{i, j}$ satisfy the following axioms:
(1) $\tilde{g}_{i, j}: U_{i} \cap U_{j} \rightarrow G L(r, K)$,
(2) $\widetilde{g}_{i, i}=1$,
(3) $\widetilde{g}_{i, k}=\tilde{g}_{i, j} \cdot \widetilde{g}_{j, k}$, and
(4) $\widetilde{g}_{i, j}^{-1}=\widetilde{g}_{j, i}$.

It is not hard to see (1) and (2) hold for $\tilde{g}_{i, j}$ since they hold for $g_{i, j}$ and $h_{i, j}$. For axiom (4), first take the case $i, j \in \Lambda^{\prime}$. Here since $h_{j, i}=h_{i, j}^{-1}$ and $g_{j, i}=g_{i, j}^{-1}$,

$$
\left[\widetilde{g}_{i, j}^{-1}\right]=\left[\begin{array}{cccc}
a_{0} a_{1} & & & 0 \\
& a_{2} & & \\
0 & & \ddots & \\
& & & a_{r}
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
a_{0}^{-1} a_{1}^{-1} & & & 0 \\
& a_{2}^{-1} & & \\
0 & & \ddots & \\
0 & & & a_{r}^{-1}
\end{array}\right]=\left[\widetilde{g}_{j, i}\right] .
$$

Next consider $i \in \Lambda^{\prime}$ and $j \notin \Lambda^{\prime}$. Then $\left|\tilde{g}_{i, j}\right|=a_{0}\left|g_{i, j}\right|$ and $\tilde{g}_{i, j}^{-1}=\tilde{g}_{j, i}$ by definition. Finally consider $i, j \notin \Lambda^{\prime}$. Here $\widetilde{g}_{i, j}^{-1}=g_{i, j}^{-1}=g_{j, i}=\widetilde{g}_{j, i}$. This suffices to check axiom (4). Lastly consider axiom (3). First take the case $i, j, k \in \Lambda^{\prime}$. Here the matrices are diagonal so axiom (3) holds for $\widetilde{g}_{i, j}$ since it holds for $g_{i, j}$ and $h_{i, j}$. If $i, j, k \notin \Lambda^{\prime}$, then axiom (3) holds since $\tilde{g}_{i, j}=g_{i, j}$. Suppose $i, j \in \Lambda^{\prime}$ and $k \notin \Lambda^{\prime}$. Then

$$
\begin{aligned}
{\left[\tilde{g}_{i, j}\right] \cdot\left[\tilde{g}_{j, k}\right] } & =\left[\begin{array}{cccc}
a_{0} a_{1} & & & 0 \\
& a_{2} & & \\
& & \ddots & \\
0 & & & a_{r}
\end{array}\right] \cdot\left[\begin{array}{ccc}
b_{0} b_{1,1} & \cdots & b_{0} b_{1, r} \\
b_{2,1} & \cdots & b_{2, r} \\
& \ddots & \\
b_{r, 1} & \cdots & b_{r, r}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
a_{0} b_{0} a_{1} b_{1,1} & \cdots & a_{0} b_{0} a_{1} b_{1, r} \\
a_{2} b_{2,1} & \cdots & a_{2} b_{2, r} \\
& \ddots & \\
a_{r} b_{r, 1} & \cdots & a_{r} b_{r, r}
\end{array}\right] .
\end{aligned}
$$

Note that

$$
\begin{aligned}
{\left[g_{i, k}\right]=\left[g_{i, j}\right] \cdot\left[g_{j, k}\right] } & =\left[\begin{array}{llll}
a_{1} & & & 0 \\
& a_{2} & & \\
& & \ddots & \\
0 & & & a_{r}
\end{array}\right] \cdot\left[\begin{array}{ccc}
b_{1,1} & \cdots & b_{1, r} \\
b_{2,1} & \cdots & b_{2, r} \\
& \ddots & \\
b_{r, 1} & \cdots & b_{r, r}
\end{array}\right] \\
& =\left[\begin{array}{lll}
a_{1} b_{1,1} & \cdots & a_{1} b_{1, r} \\
a_{2} b_{2,1} & \cdots & a_{2} b_{2, r} \\
& \ddots & \\
a_{r} b_{r, 1} & \cdots & a_{r} b_{r, r}
\end{array}\right] .
\end{aligned}
$$

There is a function $h_{i, k}=c_{0}: U_{i} \cap U_{k} \rightarrow K^{*}$, and by definition

$$
\left[\tilde{g}_{i, k}\right]=\left[\begin{array}{ccc}
c_{0} a_{1} b_{1,1} & \cdots & c_{0} a_{1} b_{1, r} \\
a_{2} b_{2,1} & \cdots & a_{2} b_{2, r} \\
& \ddots & \\
a_{r} b_{r, 1} & \cdots & a_{r} b_{r, r}
\end{array}\right]
$$

Now $h_{i, k}=h_{i, j} \cdot h_{j, k}$ implies $c_{0}=a_{0} b_{0}$ so axiom (3) holds in this case.
Finally suppose $i \in \Lambda^{\prime}$ and $j, k \notin \Lambda^{\prime}$. Write $\left[g_{i, k}\right]=\left[c_{s, t}\right]=\left[g_{i, j}\right] \cdot\left[g_{j, k}\right]$ $=\left[a_{s, t}\right] \cdot\left[b_{s, t}\right]$. Then

$$
\begin{aligned}
{\left[\widetilde{g}_{i, j}\right] \cdot\left[\widetilde{g}_{j, k}\right]=\left[\widetilde{g}_{i, j}\right] \cdot\left[g_{j, k}\right] } & =\left[\begin{array}{ccc}
a_{0} a_{1,1} & \cdots & a_{0} a_{1, r} \\
a_{2,1} & \cdots & a_{2, r} \\
& \ddots & \\
a_{r, 1} & \cdots & a_{r, r}
\end{array}\right] \cdot\left[\begin{array}{lll}
b_{1,1} & \cdots & b_{1, r} \\
b_{2,1} & \cdots & b_{2, r} \\
& \ddots & \\
b_{r, 1} & \cdots & b_{r, r}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
a_{0} c_{1,1} & \cdots & a_{0} c_{1, r} \\
c_{2,1} & \cdots & c_{2, r} \\
& \ddots & \\
c_{r, 1} & \cdots & c_{r, r}
\end{array}\right] .
\end{aligned}
$$

This is enough to check axiom (3) since $\tilde{g}_{i, j}=\tilde{g}_{i, k} \cdot \widetilde{g}_{k, j}$ together with the other axioms implies $\tilde{g}_{i, k}=\tilde{g}_{i, j} \cdot \widetilde{g}_{k, j}^{-1}=\tilde{g}_{i, j} \cdot \tilde{g}_{j, k}$ and $\tilde{g}_{k, j}=\tilde{g}_{i, k}^{-1}$ $\cdot \tilde{g}_{i, j}=\tilde{g}_{k, i} \cdot \tilde{g}_{i, j}$.

To see the transition data $\tilde{g}_{i, j}$ have the form given in the statement of the lemma, note $a_{0}=u_{i} / u_{j}$. For the morphism $f: E \rightarrow G$, fix an index i. For any open $V \subset U_{i}$ define

$$
\left[f_{i}(V)\right]=\left[\begin{array}{cccc}
\left.u_{i}\right|_{V} & & & 0 \\
& 1 & & \\
& & \ddots & \\
0 & & & 1
\end{array}\right]
$$

This defines a local vector bundle morphism $f_{i}:\left.\left.E\right|_{U_{i}} \rightarrow G\right|_{U_{i}}$ and $\left[\widetilde{g}_{i, j}\right]$ $\cdot\left[f_{j}\right]=\left[f_{i}\right] \cdot\left[g_{i, j}\right]$. So there is a morphism $f: E \rightarrow G$ extending all the $f_{i} . f$ is injective since each $f\left(U_{i}\right)$ is injective. Since f is an isomorphism on $X-|D|$, the cokernel of f is supported on $|D|$. Restrict attention to U, the open neighborhood, where E is trivial of rank r. Form the direct sum of the following exact sequence with $\left.\mathcal{O}_{X}\right|_{U} ^{r-1}$

$$
\left.\left.0 \rightarrow \mathcal{O}_{X}\right|_{U} \xrightarrow{\imath} \mathcal{O}_{X}(D)\right|_{U}
$$

to obtain $\left.f\right|_{U}$

$$
\left.0 \rightarrow E \xrightarrow{f \mid U} G\right|_{U}
$$

Since $\operatorname{coker}(f)\left(U_{i}\right)$ is the zero module whenever $U_{i} \cap|D|=\varnothing$, it follows that $\operatorname{coker}(f) \cong \operatorname{coker}(\mathrm{t}) \cong \mathcal{O}_{D}(D)$. Applying the Whitney sum formula to the short exact sequences

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(D) \rightarrow \mathcal{O}_{D}(D) \rightarrow 0
$$

and

$$
0 \rightarrow E \xrightarrow{f} G \rightarrow \operatorname{coker}(f) \rightarrow 0
$$

shows coker (f) has Chern polynomial $1+c_{1}(L) t$ and G has Chern polynomial $c_{t}(E)\left(1+c_{1}(L) t\right)$.

Lemma 4. Let $\left\{U_{i}\right\}_{i \in \Lambda}$ be an open cover of a scheme X, and D be a Cartier divisor on X such that $|D| \subset \bigcup_{i \in \Lambda^{\prime}} U_{i}$ and $|D| \cap U_{i}=\varnothing$ for all $i \notin \Lambda^{\prime}$, where $\Lambda^{\prime} \subset \Lambda$. Write local equations for D as u_{i} on U_{i} for $i \in \Lambda^{\prime}$ and 1 on U_{i} for $i \notin \Lambda^{\prime}$. Let F_{1} and F_{2} be vector bundles of rank f_{1} and f_{2}, respectively, on X. Suppose F_{1} splits on $U=\bigcup_{i \in \Lambda^{\prime}} U_{i}$ and write $\left.F_{1}\right|_{U}=L_{1} \oplus \cdots \oplus L_{f_{1}}$. Let $\phi: F_{1} \rightarrow F_{2}$ be a morphism of rank r on $X-|D|$ dropping rank by $k \geq 1$ on $|D|$. Fix (locally) free bases for F_{1} and F_{2}, respecting the splitting $\left.F_{1}\right|_{U}=L_{1} \oplus \cdots \oplus L_{f_{1}}$, so ϕ has a matrix representation $[\phi]$. Consider $[\phi]$ decomposed into submatrices whose dimensions are indicated below by subscripts

$$
[\phi]=\left[\begin{array}{cc}
A_{r, f_{1}-r} & B_{r, r} \\
C_{f_{2}-r, f_{1}-r} & D_{f_{2}-r, r}
\end{array}\right]
$$

Assume for all $i \in \Lambda^{\prime}$, the submatrices $B_{r, r}\left(U_{i}\right)$ and $D_{f_{2}-r, r}\left(U_{i}\right)$ have the following form (where the dependence of the entries $h_{s, t}$ on i has been suppressed):

$$
B_{r, r}\left(U_{i}\right)=\left[\begin{array}{cccccc}
h_{1,1} & \cdots & h_{1, r-k} & u_{i}^{M_{1}} h_{1, r-k+1} & \cdots & u_{i}^{M_{k}} h_{1, r} \\
& & \ddots & & \\
h_{r, 1} & \cdots & h_{r, r-k} & u_{i}^{M_{1}} h_{r, r-k+1} & \cdots & u_{i}^{M_{k}} h_{r, r}
\end{array}\right]
$$

and

$$
D_{f_{2}-r, r}\left(U_{i}\right)=\left[\begin{array}{cccccc}
h_{r+1,1} & \cdots & h_{r+1, r-k} & u_{i}^{M_{1}} h_{r+1, r-k+1} & \cdots & u_{i}^{M_{k}} h_{r+1, r} \\
& & & \ddots & & \\
h_{f_{2}, 1} & \cdots & h_{f_{2}, r-k} & u_{i}^{M_{1}} h_{f_{2}, r-k+1} & \cdots & u_{i}^{M_{k}} h_{f_{2}, r}
\end{array}\right]
$$

Let G be the partial tensor of F_{1} and $L=\mathcal{O}_{X}(D)$ by the sequence M_{1}, \ldots, M_{k} such that

$$
G(U)=L_{1} \oplus \cdots \oplus L_{f_{1}-k} \oplus\left(L_{f_{1}-k+1} \otimes L^{M_{1}}\right) \oplus \cdots \oplus\left(L_{f_{1}} \otimes L^{M_{k}}\right)
$$

Then there is a morphism $\psi: G \rightarrow F_{2}$ such that
(1) $\operatorname{im}(\phi) \subset \operatorname{im}(\psi)$ and
(2) $\operatorname{im}\left(\phi_{x}\right)=\operatorname{im}\left(\psi_{x}\right)$ for all $x \notin|D|$.

Proof. Notice columns $f_{1}-k+1, \ldots, f_{1}$ of [ϕ] vanish on $|D|$ with vanishing orders M_{1}, \ldots, M_{k}. Define

$$
\left[\psi_{i}\right]=\left[\begin{array}{ll}
A\left(U_{i}\right) & B_{i}^{\prime} \\
C\left(U_{i}\right) & D_{i}^{\prime}
\end{array}\right]
$$

where for all $i \in \Lambda$

$$
\left[B_{i}^{\prime}\right]=\left[\begin{array}{ccc}
h_{1,1} & \cdots & h_{1, r} \\
& \ddots & \\
h_{r, 1} & \cdots & h_{r, r}
\end{array}\right]
$$

and

$$
\left[D_{i}^{\prime}\right]=\left[\begin{array}{ccc}
h_{r+1,1} & \cdots & h_{r+1, r} \\
& \ddots & \\
h_{f_{2}, 1} & \cdots & h_{f_{2}, r}
\end{array}\right]
$$

For $i \in \Lambda$, write $\left[\Theta_{i}\right]$ for the following matrix:

$$
\left[\Theta_{i}\right]=\left[\begin{array}{cccccc}
1 & & & & & 0 \\
& \ddots & & & & \\
& & 1 & & & \\
& & & u_{i}^{M_{1}} & & \\
0 & & & & \ddots & \\
u_{i}^{M_{k}}
\end{array}\right] .
$$

Then $\left[g_{i, j}^{F_{2}}\right] \cdot\left[\psi_{j}\right] \cdot\left[\Theta_{j}\right]=\left[g_{i, j}^{F_{2}}\right] \cdot\left[\phi\left(U_{j}\right)\right]=\left[\phi\left(U_{i}\right)\right] \cdot\left[g_{i, j}^{F_{1}}\right]=\left[\psi_{i}\right] \cdot\left[\Theta_{i}\right] \cdot\left[g_{i, j}^{F_{1}}\right]$. In other words, $\left[g_{i, j}^{F_{2}}\right] \cdot\left[\psi_{j}\right]=\left[\psi_{i}\right] \cdot\left[\Theta_{i}\right] \cdot\left[g_{i, j}^{F_{1}}\right] \cdot\left[\Theta_{j}\right]^{-1}=\left[\psi_{i}\right] \cdot\left[g_{i, j}^{G}\right]$. Thus there is a vector bundle morphism $\psi: G \rightarrow F_{2}$ extending all the ψ_{i}. Since the u_{i} are units on $X-|D|$, condition (2) is satisfied. To check
condition (1), suppose $y=\left(y_{1}, \ldots, y_{f_{2}}\right) \in(\operatorname{im}(\phi))\left(U_{i}\right)$ for some $i \in \Lambda^{\prime}$. That is, there is some $\left(x_{1}, \ldots, x_{f_{1}}\right)$ such that $\phi\left(U_{i}\right)\left(x_{1}, \ldots, x_{f_{1}}\right)=\left(y_{1}, \ldots, y_{f_{2}}\right)$. Then by comparing the matrices of $\phi\left(U_{i}\right)$ and $\psi\left(U_{i}\right)$, one observes

$$
\psi\left(U_{i}\right)\left(x_{1}, \ldots, x_{f_{1}-k}, u_{i}^{M_{1}} x_{f_{1}-k+1}, \ldots, u_{i}^{M_{k}} x_{f_{1}}\right)=\left(y_{1}, \ldots, y_{f_{2}}\right)
$$

Lemma 5. Let X be a nonsingular, quasi-projective scheme of dimension $n \geq 2$ over a field K. Suppose E is a coherent sheaf which is nice over a finite set of distinct closed points $\left\{x_{1}, \ldots, x_{k}\right\} \subset X$. Suppose E has locally free resolution

$$
0 \rightarrow F_{2} \xrightarrow{\phi} F_{1} \rightarrow E \rightarrow 0
$$

where F_{1} and F_{2} have rank f_{1} and f_{2}, respectively. Let $p: \tilde{X} \rightarrow X$ be the blow up of X along the first nonzero Fitting ideal of E. Let $e_{i}=p^{-1}\left(x_{i}\right)$ and suppose $[\phi]$ has column vanishing sequence $M_{1}^{i}, \ldots, M_{f_{1}}^{i}$ on e_{i} for $i=1, \ldots, k$. Let G be the partial tensor of $p^{*} F_{2}$ and $L_{i}=\mathcal{O}_{\tilde{X}}\left(e_{i}\right)$ by the sequence $M_{1}^{i}, \ldots, M_{f_{1}}^{i}$ for $i=1, \ldots, k$. Then Lemma 4 gives a sheaf morphism $\psi: G \rightarrow p^{*} F_{1}$. Moreover ψ is injective and

$$
\operatorname{coker}(\psi) \cong\left(p^{*} E\right)^{* *}
$$

Proof. Fix an index i in $1, \ldots, k$, and write $x=x_{i}, e=e_{i}, L=L_{i}$, and $M_{1}, \ldots, M_{f_{1}}=M_{1}^{i}, \ldots, M_{f_{1}}^{i}$. Since E is not locally free at x, $[\phi]$ drops rank at this point, say by $r \geq 1$. Let U be an affine open subset of X containing x such that $F_{1}(U) \cong \mathcal{O}_{X}(U)^{f_{1}}, \quad F_{2}(U) \cong \mathcal{O}_{X}(U)^{f_{2}}$, and $U \cap\left\{x_{1}, \ldots, x_{k}\right\}=\{x\}$. Then the f_{2} row by f_{1} column matrix $[\phi(U)]$ has elements of $\mathcal{O}_{X}(U)$ as entries. Evaluated at the point x, they produce a rank $f_{1}-r$ matrix of elements of the field K. Thus there is a finite sequence of K-linear elementary row operations giving the matrix $[\phi(U)]$ the following form (where I_{s} and $0_{s, t}$ denote the s by s identity and s by
t zero matrices, respectively):

$$
\left[\begin{array}{cc}
I_{f_{1}-r} & 0_{f_{1}-r, r} \\
0_{f_{2}-\left(f_{1}-r\right), f_{1}-r} & 0_{f_{2}-\left(f_{1}-r\right), r}
\end{array}\right] .
$$

This sequence of row and operations corresponds to changing the local trivializations of F_{1} and F_{2}. Since X is a nonsingular, quasi-projective scheme of dimension n, one may shrink U to a smaller affine open set as necessary so there are functions $u_{1}, \ldots, u_{n} \in \mathcal{O}_{X}(U)$ giving local coordinates near x. Choose them so the first nonzero Fitting ideal I of E is degree $d>0$ homogeneous in u_{1}, \ldots, u_{n}. Write $U=\operatorname{Spec}(R)$ so $I(U)$ is generated by a finite number of degree d homogeneous polynomials in u_{1}, \ldots, u_{n} over R, say by the polynomials p_{1}, \ldots, p_{t}. Since I is supported at x, one has $u_{1}^{d}, \ldots, u_{n}^{d} \in I(U)$. Let $\left\{U_{i}\right\}_{i \in \Lambda} \cup U$ be an open cover of X such that $x \notin U_{i}$ for all $i \in \Lambda$. Write $W=p^{-1}(U)$ and $W_{i}=p^{-1}\left(U_{i}\right)$ for $i \in \Lambda$. On W the blow up \widetilde{X} has equations $\left\{u_{i} t_{j}=u_{j} t_{i} \mid i=1, \ldots, n\right.$ and $j=1, \ldots, n\} \subset X \times \mathbb{P}^{n-1}$ ([3] 1.4). Let V_{i} be the open set $\left\{t_{i} \neq 0\right\} \cap W$ for $i=1, \ldots, n$. Then the divisor e has equations u_{i} on V_{i}. Since $I(U)$ is generated by degree d polynomials $\left(p^{-1} I \cdot \mathcal{O}_{\tilde{X}}\right)\left(W \cap V_{i}\right) \subset\left(u_{i}^{d}\right)$. Since $u_{i}^{d} \in I(U)$, one has $\left(p^{-1} I \cdot \mathcal{O}_{\tilde{X}}\right)\left(W \cap V_{i}\right)=\left(u_{i}^{d}\right)$. Thus $\left(p^{-1} I \cdot \mathcal{O}_{\tilde{X}}\right)(W)$ $=\left(e^{d}\right)$. The hypotheses of Lemma 4 hold so there is a morphism $\psi^{\prime}: G^{\prime}$ $\rightarrow p^{*} F_{1}$, where G^{\prime} is the partial tensor of $p^{*} F_{2}$ with L by the sequence $M_{1}, \ldots, M_{f_{1}}$. To see ψ^{\prime} is injective, notice ϕ has rank f_{1} on $X-\{x\}$ so $p^{*} \phi$ has rank f_{1} on $\widetilde{X}-|e| . \psi^{\prime}$ has the same rank as $p^{*} \phi$ on $\widetilde{X}-|e|$. Choose a point $y \in|e|$ and suppose $y \in V_{i}$ for some fixed index i. The first nonzero Fitting ideal of E is generated by the $f_{1} \times f_{1}$ minor determinants of [ϕ]. Since the Fitting ideal is degree d homogeneous with respect to $u_{1}, \ldots, u_{n},[\phi]$ has at least one $f_{1} \times f_{1}$ minor determinant, call it Π, of degree exactly d in u_{1}, \ldots, u_{n}. Compared to [$\left.\phi\right]$, columns $j=f_{1}-r$ $+1, \ldots, f_{1}$ of [ψ^{\prime}] lack a factor of $u_{i}^{M_{j}}$. Hence the corresponding minor
determinants of [ψ^{\prime}] lack a factor of u_{i}^{M}, where $M=M_{1}+\cdots+M_{f_{1}}$. Therefore the $f_{1} \times f_{1}$ minor determinant of [ψ^{\prime}] corresponding to Π has degree $d-M=0$ in u_{i} so it is nonzero at y. Thus ψ^{\prime} has rank f_{1} at y. Since y was chosen arbitrarily in $|e|, \psi^{\prime}$ has rank f_{1} everywhere. Repeat this argument for each $x_{i} \in\left\{x_{1}, \ldots, x_{k}\right\}$ to obtain an injective morphism $\psi: G \rightarrow p^{*} F_{1}$, where G is the partial tensor of $p^{*} F_{2}$ and L_{i} by the sequence $M_{1}^{i}, \ldots, M_{f_{1}}^{i}$ for $i=1, \ldots, k$.

Let $f: p^{*} F_{2} \rightarrow G$ be the morphism given by Lemma 3. ψ forms a commutative square with $1_{p^{*} F_{2}}$

There is a unique induced morphism $h: p^{*} E \rightarrow \operatorname{coker}(\psi)$ which is surjective by Lemma 5 . To see $\operatorname{ker}(h)$ is torsion, let W_{0} be a nonempty affine open subset of \tilde{X} such that $W_{0} \cap\left|e_{i}\right|=\varnothing$ for $i=1, \ldots, k$. Take sections over W_{0} to obtain a diagram of modules with exact rows, where $f\left(W_{0}\right)$ is a module isomorphism

By Lemma 5, $h\left(W_{0}\right)$ is an isomorphism. $\operatorname{ker}(h)$ is torsion since it is supported on a proper closed subset of \tilde{X}. Thus there is an exact sequence of sheaves

$$
0 \rightarrow \operatorname{ker}(h) \rightarrow p^{*} E \xrightarrow{h} \operatorname{coker}(\psi) \rightarrow 0 .
$$

Since $\operatorname{ker}(h)$ is torsion, applying $\operatorname{Hom} \mathcal{O}_{\tilde{X}}\left(\cdot, \mathcal{O}_{\tilde{X}}\right)$ gives

$$
0 \rightarrow(\operatorname{coker}(\psi))^{*} \rightarrow\left(p^{*} E\right)^{*} \rightarrow(\operatorname{ker}(h))^{*}=0
$$

$\operatorname{coker}(\psi) \cong(\operatorname{coker}(\psi))^{* *}$ since coker (ψ) is a vector bundle so applying $\operatorname{Hom} \mathcal{O}_{\tilde{X}}\left(\cdot, \mathcal{O}_{\tilde{X}}\right)$ again gives the desired result.

Proof of Theorem 1. The theorem follows from Lemma 3 and the Whitney sum formula applied to the following short exact sequence from Lemma 5:

$$
0 \rightarrow G \xrightarrow{\psi} p^{*} F_{1} \rightarrow \operatorname{coker}(\psi) \rightarrow 0 .
$$

References

[1] S. Diaz, Porteous's formula for maps between coherent sheaves, Michigan Math. J. 52 (2004), 507-514.
[2] W. Fulton, Intersection Theory, Springer-Verlag, New York, 1997.
[3] J. Harris and P. Griffiths, Principles of Algebraic Geometry, Wiley, New York, 1978.
[4] J. Harris and I. Morrison, Moduli of Curves, Springer-Verlag, New York, 1998.
[5] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.

[^0]: 2000 Mathematics Subject Classification: 14C15, 14C17, 14C99.
 Keywords and phrases: Thom-Porteous formula, coherent sheaves, intersection theory, Chern class.

 Communicated by Luca Chiantini

