REMARKS ON A PROBLEM OF EISENSTEIN

ROGER C. ALPERIN

Department of Mathematics
San Jose State University
San Jose, CA 95192, U. S. A.
e-mail: alperin@math.sjsu.edu

Abstract

The fundamental unit of $\mathbb{Z}[\sqrt{N}]$ for square-free $N=5 \bmod 8$ is either ε or ε^{3}, where ε denotes the fundamental unit of the maximal order of $\mathbb{Q}(\sqrt{N})$. We give infinitely many examples for each case.

1. Introduction

For N square-free, the ring of integers \mathcal{O}_{N} of a real quadratic field $\mathbb{Q}(\sqrt{N})$ has an infinite cyclic group of units of index 2 . The generator ε for this subgroup is the fundamental unit. The ring of integers \mathcal{O}_{N} has a subring $\mathcal{A}_{N}=\mathbb{Z}[\sqrt{N}]$; this is a proper subring if and only if $N=1 \bmod 4$. The subring also has an infinite cyclic subgroup of units generated by ε^{e}; it is easy to see that $e=1$ or $e=3$; the latter occurs only if $N=5 \bmod 8$.

Characterizing those N for which $e=3$ is the problem of Eisenstein in the title of this article. By elementary methods we shall give infinitely many examples for each of the cases of $e=1$ or $e=3$. This problem has been addressed in [3] and [4] using other methods.

2000 Mathematics Subject Classification: 11R65, 11R29.
Keywords and phrases: class group, Eisenstein problem.
Received August 31, 2006

2. Main Examples

Basic properties of continued fractions and the relation of equivalence can be found in [2]. Equivalence of two continued fractions means that the periodic parts are equal or equivalently that the two real numbers are related by a linear fractional transformation.

The following examples are well known [4, p. 297]:
Example 2.1. $\sqrt{a^{2}+4}=\left(a ; \overline{\frac{a-1}{2}, 1,1, \frac{a-1}{2}, 2 a}\right)$ for any odd integer $a>1$.

Consider $a=4 b \mp 1$ and $N=a^{2}+4$, then

$$
\frac{1}{\frac{\sqrt{N} \pm 1}{4}-b}=\frac{4}{\sqrt{N}-a} \frac{\sqrt{N}+a}{\sqrt{N}+a}=4 \frac{\sqrt{N}+a}{N-a^{2}}=\sqrt{N}+a
$$

Proposition 2.2. Suppose a is odd and greater than 1. For $N=a^{2}+4$, then $\frac{\sqrt{N} \pm 1}{4}$ is equivalent to \sqrt{N}.

Proof. For $a=4 b \mp 1$ the floor of $\frac{\sqrt{N} \pm 1}{4}$ is b.
Example 2.3. For any odd integer $a>3$,

$$
\sqrt{a^{2}-4}=\left(a-1 ; 1, \frac{a-3}{2}, 2, \frac{a-3}{2}, 1,2 a-2\right)
$$

As a consequence one can easily show that

$$
1+\frac{\sqrt{a^{2}-4}}{a-2}=\left(2 ; \frac{\overline{a-3}}{2}, 1,2 a-2,1, \frac{a-3}{2}\right)
$$

Let $N=a^{2}-4$ and put $a=4 b \pm 1$. For $a=4 b-1$, we have

$$
\frac{1}{\frac{\sqrt{N}-1}{4}-(b-1)}=\frac{4}{\sqrt{N}-(a-2)}=\frac{\sqrt{N}+(a-2)}{a-2}
$$

For $a=4 b+1$, we obtain

$$
\frac{1}{\frac{\sqrt{N}+1}{4}-b}=\frac{4}{\sqrt{N}-(a-2)}=\frac{\sqrt{N}+(a-2)}{a-2} .
$$

Proposition 2.4. Suppose a is odd and greater than 3. For $N=a^{2}-4$, then $\frac{\sqrt{N} \pm 1}{4}$ is equivalent to \sqrt{N}.

Proof. For $a=4 b \pm 1$, we have $\frac{\sqrt{N} \pm 1}{4}$ is equivalent to $1+\frac{\sqrt{N}}{a-2}$ which is equivalent to \sqrt{N}.

Example 2.5. For any integer $a>1, \sqrt{a^{2}+1}=(a ; \overline{2 a})$.
Proposition 2.6. For $N=4 a^{2}+1$, where a is odd and greater than 3 , then $\frac{\sqrt{N} \pm 1}{4}$ is not equivalent to \sqrt{N}.

Proof. The numbers $u_{ \pm}=\left(\frac{\sqrt{N} \pm 1}{4}-\left\lfloor\frac{\sqrt{N} \pm 1}{4}\right\rfloor\right)^{-1}$ are greater than 1 by definition. They are purely periodic [2] since the conjugates are negative and $-\frac{1}{\bar{u}_{ \pm}}=\frac{\sqrt{N} \mp 1}{4}+\left\lfloor\frac{\sqrt{N} \pm 1}{4}\right\rfloor$ is greater than 1 .

If $\frac{\sqrt{N} \pm 1}{4}$ is equivalent to \sqrt{N}, then $u_{ \pm}$has period length one also. Hence $u_{ \pm}=(\overline{2 a} ;)$. The continued fraction ($\left.\overline{2 a} ;\right)$ satisfies the equation $x^{2}-2 a x-1$ which has the solutions $\sqrt{a^{2}+1} \pm a$; these cannot be the same as $u_{ \pm}$. This contradiction gives the desired result.

3. Relations of Units to Continued Fractions

We suppose that $N=5 \bmod 8$ is square-free. It is an elementary exercise to see that the fundamental unit ε is a solution to $x^{2}-N y^{2}= \pm 4$ with x, y odd if and only if $e=3$.

Let $\mathcal{A}=\mathcal{A}_{N}$ and $\mathcal{O}=\mathcal{O}_{N}$. Consider the ideals $I_{ \pm}=[4, \sqrt{N} \pm 1]$ in \mathcal{A} (the generators are a lattice basis). Extend these ideals to ideals $J_{ \pm}=2\left[2, \frac{\sqrt{N} \pm 1}{2}\right]$ in \mathcal{O}; thus $J_{ \pm}$is principal since when $N=5 \bmod 8$ the ideal (2) is maximal. An easy calculation shows that $[4, \sqrt{N}+1]^{2}=$ $2[4, \sqrt{N}-1]$ so that $[4, \sqrt{N}+1]$ is an element of order 1 or 3 in the class group $C l(\mathcal{A})$.

Lemma 3.1. When $N=5 \bmod 8$ the following are equivalent:
(a) The equation $x^{2}-N y^{2}= \pm 4$ has a solution with odd integers x, y.
(b) There is a non-integral element of norm ± 4 in \mathcal{A}_{N}.
(c) The ideals $I_{ \pm}$are principal.
(d) The elements $\frac{\sqrt{N} \pm 1}{4}$ are equivalent to \sqrt{N}.

Proof. It is easy to see that (a) and (b) are equivalent using $N=5 \bmod 8$. The conditions (b) and (c) are also easily seen to be equivalent since the ideals $I_{ \pm}$have norm 4. Conditions (c) and (d) are equivalent using the well-known description of the class group in terms of equivalence classes of elements according to their continued fractions.

If the elements $\frac{\sqrt{N} \pm 1}{4}$ are not on the principal cycle, then the two continued fractions are the reverse of one another since the elements [4, $\sqrt{N} \pm 1]$ are inverses of one another in the class group of \mathcal{A}.

Theorem 3.2. Suppose $N=5 \bmod 8$ is square-free. Consider the surjective natural homomorphism

$$
\phi: C l\left(\mathcal{A}_{N}\right) \rightarrow \operatorname{Cl}\left(\mathcal{O}_{N}\right) .
$$

(a) The homomorphism ϕ is an isomorphism if and only if $e=3$.
(b) The homomorphism ϕ has kernel generated by $[4, \sqrt{N}+1]$ if and only if $e=1$.

Proof. It is well known that ϕ is surjective, that the kernel has order dividing three, and the order of the kernel is three if and only if condition (a) of the lemma fails [5]. Using Lemma 3.1 and this remark we see that the kernel of ϕ is the ideal class of $[4, \sqrt{N}+1]$, and hence this class is an element of order 3 if and only if $e=1$.

4. Applications

Using a theorem of Erdŏs [1] it follows that there are infinitely many square-free integers $a^{2} \pm 4$ or $4 a^{2}+1$ for odd a.

Theorem 4.1. For a odd and greater than 3. There are infinitely many square-free $N=4 a^{2}+1$ with $e=1$.

Proof. It follows from Proposition 2.6 that $\frac{\sqrt{N} \pm 1}{4}$ have cycle lengths greater than 1 and hence are not equivalent to \sqrt{N}; thus the ideals [4, $\sqrt{N} \mp 1]$ of \mathcal{A}_{N} are not principal and therefore there is no element of norm 4 so the fundamental unit ε does belong to \mathcal{A}_{N}; hence $e=1$.

Theorem 4.2. For a odd and greater than 3. There are infinitely many square-free $N=a^{2} \pm 4$ with $e=3$.

Proof. The numbers $u_{ \pm}=\frac{\sqrt{N} \pm 1}{4}$ are equivalent to \sqrt{N}. Consequently the ideal $[4, \sqrt{N} \mp 1]$ of \mathcal{A}_{N} is principal and therefore the fundamental unit ε does not belong to \mathcal{A}_{N}; hence $e=3$.

References

[1] P. Erdŏs, Arithmetical properties of polynomials, J. London Math. Soc. 28 (1953), 416-425.
[2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford, 1979.
[3] N. Ishii, P. Kaplan and K. S. Williams, On Eisenstein's problem, Acta Arith. 54 (1990), 323-345.
[4] W. Sierpinski, Elementary theory of numbers, Polish Academy of Sciences, Vol. 42, Warsaw, 1964.
[5] P. Stevenhagen, On a problem of Eisenstein, Acta Arith. 74(3) (1996), 259-268.

