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Abstract

The fundamental unit of Z[VN] for square-free N =5mod8 is either &
or 83, where ¢ denotes the fundamental unit of the maximal order of

Q(«/ﬁ ). We give infinitely many examples for each case.
1. Introduction

For N square-free, the ring of integers Oy of a real quadratic field

Q(x/ﬁ ) has an infinite cyclic group of units of index 2. The generator ¢ for

this subgroup is the fundamental unit. The ring of integers Oy has a
subring Ay = Z[«/ﬁ]; this is a proper subring if and only if N =1 mod 4.

The subring also has an infinite cyclic subgroup of units generated by &°;

it is easy to see that e =1 or e = 3; the latter occurs only if N =5 mod 8.

Characterizing those N for which e = 3 is the problem of Eisenstein
in the title of this article. By elementary methods we shall give infinitely
many examples for each of the cases of e =1 or e = 3. This problem has

been addressed in [3] and [4] using other methods.
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2. Main Examples

Basic properties of continued fractions and the relation of equivalence
can be found in [2]. Equivalence of two continued fractions means that
the periodic parts are equal or equivalently that the two real numbers are

related by a linear fractional transformation.

The following examples are well known [4, p. 297]:

Example 2.1. Va® +4 =(a;aT_1,1,1,aT_1, 2aj for any odd integer
a > 1.
Consider ¢ = 4bF1 and N = a? +4, then

4 \/ﬁ+a N +a m+a

1
= =4 =
VN £1 VN -a VN +a N - a?

Y b

Proposition 2.2. Suppose a is odd and greater than 1. For N = a? +4,

JN +1

then is equivalent to JN.

JN +1
4

Proof. For a = 4b ¥ 1 the floor of is b.

Example 2.3. For any odd integer a > 3,

9 a-3 a-3
-4=|la-1;1,—,2,——,1,2a -2 |.
a (a y 1y 9 y Ly 9 , L, Z2a J

As a consequence one can easily show that

2
14Ya” -4 =[2;“;3,1,2a—2,1,a—‘3j.

a-2 2
Let N =a? -4 and put a = 4b +1. For a =4b-1, we have

1 _ 4 _VN+(a-2)
_(b-1) VN - (a-2) a-2

VN -1
4
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For a =4b+1, we obtain

1 B 4 VN +(a-2)
x/ﬁ+1_b_«/ﬁ—(a—2)_ a-2
4

Proposition 2.4. Suppose a is odd and greater than 3. For N = a? -4,

then +1 is equivalent to VN .

JN +1 JN

Proof. For a = 4b +1, we have 1 1s equivalent to 1 + =

which is equivalent to JVN.
Example 2.5. For any integer a > 1, Va® + 1 = (a; 2a).

Proposition 2.6. For N = 4a> +1, where a is odd and greater than 3,

VN +1

then

is not equivalent to VN .

Proof. The numbers u, = (\/ﬁil _[\/ﬁil

-1
1 1 Jj are greater than 1

by definition. They are purely periodic [2] since the conjugates are

1 :x/ﬁﬂﬂx/ﬁﬂ

negative and Y

— J 1s greater than 1.
[ 4

JN +1
4

If is equivalent to VN, then u, has period length one also.

Hence u, = (%;). The continued fraction (%;) satisfies the equation

x2 - 2ax —1 which has the solutions vVa® +1 + a; these cannot be the

same as uy. This contradiction gives the desired result.

3. Relations of Units to Continued Fractions

We suppose that N =5 mod 8 is square-free. It is an elementary

2

exercise to see that the fundamental unit ¢ is a solution to x2 — Ny“ =+4

with x, y odd if and only if e = 3.
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Let A=Ay and O = Op. Consider the ideals I, = [4, VN +1] in
A (the generators are a lattice basis). Extend these ideals to ideals
JN + 1}
2

Jy = 2[2, in O; thus J. is principal since when N = 5 mod 8

the ideal (2) is maximal. An easy calculation shows that [4, JN + 1]2 =
2[4, VN - 1] so that [4, VN +1] is an element of order 1 or 3 in the class
group CI(A).

Lemma 3.1. When N = 5 mod 8 the following are equivalent:
(a) The equation x? - Ny2 = 14 has a solution with odd integers x, y.
(b) There is a non-integral element of norm =4 in Ay.

(c) The ideals 1. are principal.

JN +1

1 are equivalent to JN.

(d) The elements

Proof. It is easy to see that (a) and (b) are equivalent using
N =5 mod 8. The conditions (b) and (c) are also easily seen to be

equivalent since the ideals I, have norm 4. Conditions (c) and (d) are

equivalent using the well-known description of the class group in terms

of equivalence classes of elements according to their continued fractions.

are not on the principal cycle, then the two

If the elements
continued fractions are the reverse of one another since the elements

[4, VN +1] are inverses of one another in the class group of A.

Theorem 3.2. Suppose N =5 mod 8 is square-free. Consider the

surjective natural homomorphism
d:Cl(An) = CLON).

(a) The homomorphism ¢ is an isomorphism if and only if e = 3.

(b) The homomorphism ¢ has kernel generated by [4, VN +1] if and
onlyif e =1.
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Proof. It is well known that ¢ is surjective, that the kernel has order
dividing three, and the order of the kernel is three if and only if condition

(a) of the lemma fails [5]. Using Lemma 3.1 and this remark we see that
the kernel of ¢ is the ideal class of [4, JN + 1], and hence this class is an

element of order 3 if and only if e = 1.

4. Applications

Using a theorem of Erdds [1] it follows that there are infinitely many

square-free integers a® + 4 or 4a® +1 for odd a.

Theorem 4.1. For a odd and greater than 3. There are infinitely many

square-free N = 4a® +1 with e = 1.

VN

+
T_l have cycle lengths

Proof. It follows from Proposition 2.6 that
greater than 1 and hence are not equivalent to VN; thus the ideals
[4, JN £ 1] of Ay are not principal and therefore there is no element of

norm 4 so the fundamental unit € does belong to A y; hence e = 1.

Theorem 4.2. For a odd and greater than 3. There are infinitely many

square-free N = a’® +4 with e = 3.

+ .
Proof. The numbers u, = % are equivalent to JN. Consequently

the ideal [4, VN F1] of A N 1s principal and therefore the fundamental

unit € does not belong to A ; hence e = 3.
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