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Abstract

The fundamental unit of [ ]NZ  for square-free 8mod5=N  is either ε

or ,3ε  where ε denotes the fundamental unit of the maximal order of

( ).NQ  We give infinitely many examples for each case.

1. Introduction

For N square-free, the ring of integers NO  of a real quadratic field

( )NQ  has an infinite cyclic group of units of index 2. The generator ε for

this subgroup is the fundamental unit. The ring of integers NO  has a

subring [ ];NN Z=A  this is a proper subring if and only if .4mod1=N

The subring also has an infinite cyclic subgroup of units generated by ;eε

it is easy to see that 1=e  or ;3=e  the latter occurs only if .8mod5=N

Characterizing those N for which 3=e  is the problem of Eisenstein

in the title of this article. By elementary methods we shall give infinitely
many examples for each of the cases of 1=e  or .3=e  This problem has

been addressed in [3] and [4] using other methods.
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2. Main Examples

Basic properties of continued fractions and the relation of equivalence

can be found in [2]. Equivalence of two continued fractions means that

the periodic parts are equal or equivalently that the two real numbers are

related by a linear fractional transformation.

The following examples are well known [4, p. 297]:

Example 2.1. 
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Proposition 2.2. Suppose a is odd and greater than 1. For ,42 += aN

then 
4

1±N  is equivalent to .N

Proof. For 14 ∓ba =  the floor of 
4

1±N  is b.

Example 2.3. For any odd integer ,3>a
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Let 42 −= aN  and put .14 ±= ba  For ,14 −= ba  we have
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For ,14 += ba  we obtain
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Proposition 2.4. Suppose a is odd and greater than 3. For ,42 −= aN

then 
4

1±N  is equivalent to .N

Proof. For ,14 ±= ba  we have 
4

1±N  is equivalent to 
2

1
−

+
a

N

which is equivalent to .N

Example 2.5. For any integer ( ).2;1,1 2 aaaa =+>

Proposition 2.6. For ,14 2 += aN  where a is odd and greater than 3,

then 
4

1±N  is not equivalent to .N

Proof. The numbers 
1
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 ±−±= NNu  are greater than 1

by definition. They are purely periodic [2] since the conjugates are

negative and 
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u

∓  is greater than 1.

If 
4

1±N  is equivalent to ,N  then ±u  has period length one also.

Hence ( ).;2au =±  The continued fraction ( );2a  satisfies the equation

122 −− axx  which has the solutions ;12 aa ±+  these cannot be the

same as .±u  This contradiction gives the desired result.

3. Relations of Units to Continued Fractions

We suppose that 8mod5=N  is square-free. It is an elementary

exercise to see that the fundamental unit ε is a solution to 422 ±=− Nyx

with x, y odd if and only if .3=e
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Let NAA =  and .NOO =  Consider the ideals [ ]1,4 ±=± NI  in

A  (the generators are a lattice basis). Extend these ideals to ideals








 ±=± 2
1,22 NJ  in ;O  thus ±J  is principal since when 8mod5=N

the ideal (2) is maximal. An easy calculation shows that [ ] =+ 21,4 N

[ ]1,42 −N  so that [ ]1,4 +N  is an element of order 1 or 3 in the class

group ( ).ACl

Lemma 3.1. When 8mod5=N  the following are equivalent:

(a) The equation 422 ±=− Nyx  has a solution with odd integers x, y.

(b) There is a non-integral element of norm 4±  in .NA

(c) The ideals ±I  are principal.

(d) The elements 
4

1±N  are equivalent to .N

Proof. It is easy to see that (a) and (b) are equivalent using
.8mod5=N  The conditions (b) and (c) are also easily seen to be

equivalent since the ideals ±I  have norm 4. Conditions (c) and (d) are

equivalent using the well-known description of the class group in terms
of equivalence classes of elements according to their continued fractions.

If the elements 
4

1±N  are not on the principal cycle, then the two

continued fractions are the reverse of one another since the elements

[ ]1,4 ±N  are inverses of one another in the class group of .A

Theorem 3.2. Suppose 8mod5=N  is square-free. Consider the

surjective natural homomorphism

( ) ( ).: NN ClCl OA →φ

(a) The homomorphism φ is an isomorphism if and only if .3=e

(b) The homomorphism φ has kernel generated by [ ]1,4 +N  if and

only if .1=e
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Proof. It is well known that φ is surjective, that the kernel has order

dividing three, and the order of the kernel is three if and only if condition

(a) of the lemma fails [5]. Using Lemma 3.1 and this remark we see that

the kernel of φ is the ideal class of [ ],1,4 +N  and hence this class is an

element of order 3 if and only if .1=e

4. Applications

Using a theorem of Erdŏs [1] it follows that there are infinitely many

square-free integers 42 ±a  or 14 2 +a  for odd a.

Theorem 4.1. For a odd and greater than 3. There are infinitely many

square-free 14 2 += aN  with .1=e

Proof. It follows from Proposition 2.6 that 
4

1±N
 have cycle lengths

greater than 1 and hence are not equivalent to ;N  thus the ideals

[ ]1,4 ∓N  of NA  are not principal and therefore there is no element of

norm 4 so the fundamental unit ε does belong to ;NA  hence .1=e

Theorem 4.2. For a odd and greater than 3. There are infinitely many

square-free 42 ±= aN  with .3=e

Proof. The numbers 
4

1±=±
Nu  are equivalent to .N  Consequently

the ideal [ ]1,4 ∓N  of NA  is principal and therefore the fundamental

unit ε does not belong to ;NA  hence .3=e
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