JP Jour. Algebra, Number Theory & Appl. 7(1) (2007), 69-81

ABELIAN GROUPS, HOMOMORPHISMS
AND CENTRAL AUTOMORPHISMS
OF NILPOTENT GROUPS

AYAN MAHALANOBIS

Department of Mathematical Sciences
Stevens Institute of Technology
Hoboken, NJ 07030, U. S. A.

e-mail: ayan.mahalanobis@stevens.edu

Abstract

In this paper we find a necessary and sufficient condition for a finite
nilpotent group to have an abelian central automorphism group.

1. Introduction

It is natural to try to find a necessary and sufficient condition for a
finite group to have an abelian central automorphism group. In this paper
we find a necessary and sufficient condition in case when the group is
finite and nilpotent, see Theorem 4.1. Since a nilpotent group is the
direct product of its Sylow subgroups, finding a necessary and sufficient
condition for a nilpotent group is equivalent to finding a necessary and
sufficient condition for a p-group. So from now on we work with p-groups.
Also, we saw in [13, 14] that a p-group with a non-trivial abelian
subgroup of its automorphism group can be used to build a key exchange
protocol, useful in public key cryptography. This author in [13, 14] used a
family of groups with commutative central automorphism group in a
Diffie-Hellman type key exchange protocol.
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The most notable of the recent publications in the direction of
understanding the central automorphisms of a finite p-group are [2, 3, 4,
8, 11]. Jamali and Mousavi in [11] provide a necessary and sufficient
condition for a p-group G of class 2, for an odd prime p, to have an
elementary abelian central automorphism group and Curran [2] studies
groups which have an abelian automorphism group, i.e., Miller groups. In
a Miller group all automorphisms are central, so our work contributes to
the study of the central automorphisms of nilpotent groups as well as the
study of Miller groups. For an introduction to Miller groups see [6, 15] or
[14, Section 2.7].

Definition (PN Group). A group G is a purely non-abelian group if it

does not have any nontrivial abelian direct factor.

Adney and Yen in [1, Theorem 4] proved a necessary and sufficient
condition for a finite PN p-group of class 2 to have an abelian central
automorphism group. In this article we extend that result and to a
certain extent their argument to arbitrary finite PN p-groups. We split

the problem into three parts:

(a) Reduce the problem to a problem about abelian groups and

homomorphisms between abelian groups.
(b) Solve the problem in finite abelian groups.

(c) Bring the solution from abelian groups back to non-abelian finite

PN p-groups.

This is not the first time that the theory of abelian groups has been
used in understanding the automorphisms of non-abelian p-groups.
Sanders [16] used a technique quite similar to ours to count the number

of central automorphisms in a finite PN (purely non-abelian) p-group.
2. Central Automorphisms

Let Aut.(G) be the group of central automorphisms of a group G.
Then an automorphism o € Aut(G) is called a central automorphism if

g 'o(g)e Z(G) for all g e G, or equivalently, central automorphisms are

the centralizer of the group of inner automorphisms.



ABELIAN GROUPS, HOMOMORPHISMS AND CENTRAL ... 71

There is another way to think about the central automorphisms. Let
6 € Aut (G). Then corresponding to g € G there is a z, ; € Z(G) such

that o(g) = gz4 ;. Corresponding to ¢ € Aut.(G) one can define a map

b5 : G > Z(G) as follows:
q)cr(g) =Zg,6-

It is straightforward to show that the map ¢, is a homomorphism.
Hence corresponding to o € Aut,.(G) there is ¢, € Hom(G, Z(G)). It is

known that for PN groups the converse is true, see [1, Theorem 1].

There 1s a connection [1, Theorem 3] between commutativity of the

group of central automorphisms Aut.(G) and commutativity of the

homomorphisms ¢.

Assume that Aut.(G) is commutative, then for two maps

1,6 € Aut,.(G) we have that t(c(g)) = o(t(g)) which is the same as

865(8)0:(8)05(9:(2)) = 80:(8)5(8)d: (05 (2))

implying, o, T € Aut.(G) commute if and only if ¢, ¢, € Hom(G, Z(G))
commute. Notice that since Z(G) is an abelian group, hence ¢5(G’) = 1.

So corresponding to ¢5 : G = Z(G) one can define ¢ : % — Z(G) as

¢5(xG") = ¢5(x). Clearly ¢, is a homomorphism.
Consider the map A : Z(G) — G/G’ given by the diagram

Z(G) — G — G/, 1)

where 1 and & are the inclusion and the natural surjection, respectively.

Theorem 2.1. Let o, t € Aut (G). Then ot =100 if and only if
¢,0°7\°¢;: :(I)'To7\o¢'6,
Proof. The proof follows from the above discussion.

This theorem enables us to think about commutativity of the

group of central automorphisms of a non-abelian group G in terms of

abelian groups and Z(G) and homomorphisms between these abelian

G’
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groups. So the problem “when is Aut,.(G) commutative?” for a PN group is

transformed into a problem involving abelian groups and homomorphisms
between abelian groups.

This also enables us to ask more general questions about abelian
groups and homomorphisms between abelian groups that is the object of

our study in the next section.
3. c-maps

Definition (c-map). Let A and B be abelian groups and A: A — B be
a homomorphism. Then A is a c-map if fAg = gAf for all f, g € Hom(B, A).

The set of all c-maps forms a subgroup of Hom(A, B). We call A a trivial
c-map if fAg = 0 for all f, g € Hom(B, A).

In this section we investigate necessary and sufficient conditions for
two finite abelian groups A and B and A : A - B a homomorphism
between them to be a ¢c-map. Of course if A = 0, then trivially fAg =0
for any f, g € Hom(B, A) and X is a c-mabp.

For the rest of this section we fix A and B to be two finite nonzero
abelian p-groups. From the fundamental theorem of finite abelian groups,

we have
A=A 0AD A, n=z2l
B=B ®By, ®---®B, m2>1,
where
A; =(a;), exp(4;) =p* and a = oq > ag > > a,,
B; = (b;), exp(B;) = pP and b = By =By =By,

are decompositions of A and B as direct sums of cyclic p-groups. For the

rest of this article we fix 4;, A,, ..., 4,, as a fixed decomposition of A and
B, By, ..., B,, as a fixed decomposition of B and q; a fixed generator for

A;, 1 <i<n and b; afixed generator for B;, 1 <i < m.

1>
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If x:A—> B is a homomorphism, then we can write A = A; + g

4+ A,,, where &; : A — B; is defined as follows:
Ai(a) = mk(a),

where n; : B —» B; is the projection. We can abuse the notation a little
bit and consider A; : A — B. Of course, one can formalize this trivially.

It is easy to see that if each A; is a c-map, then X is a c-map.

Let R = {x € A|| x| < p®}. Then it is known that

R= >  f(B)
feHom(B, A)
and since R is an abelian group contained in A and if x + x9 + -+ +
x, € R, then from the definition of R it follows that x; € R for i =1,
2,..,n. Hence R=R; ®Ry®---®R,,, where R; =(r;) and R; = R 4, for
each i. We assume that exp(R;) = p™ and exp(Rg ®R3® - ® R, )=p"2.

Clearly a > ny 2 ng.

Let e;; : B — A be defined as

max(0, o; —B ;) oo
p a; if j=k
e;j(by) = ' @

0 otherwise.
It follows from [17, Section 5.8] that {e;;}, i =1,2,..,n; j=1,2 ., m

is a basis for Hom(B, A) under addition.

From Equation 2 either r, =q; or r; = pai_ﬁj a;. Since B; 1is the
maximum possible, hence a; — Py is the least possible for a fixed i and for

all j(1 £ j £ m). From this we conclude that e;; (b;) = r; for all i.

We state some easy and well-known facts in the following lemma

whose proof follows from the above discussion.
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Lemma 3.1. (i) R = A[p®].
i) R=R{®Ry®---@®R,, where R, = R A4;.

(i) If R; = (r;), then r; = a; if b= a; or 1; = p* Pla; if b < a;.

(iv) e;(by) =r; foralli.

@) eyj(b;) = PP for 51,

Theorem 3.2. A homomorphism A : A — B is a c-map if and only if

e;jiley; = 0 whenever i # k or j # L.
Proof. Let fhg =g\f for all f, g e Hom(B, A). Then e;ikey; = epjhe;;

If i =k, then ejhey =0. Since the image of ejley is in A; (1 Ay,

where A; Ay, =0 whenever i # k. If j # [, then ephe;;(b;) = 0. Hence,

e;iler; = 0 whenever ¢ # k or j # L

Conversely, notice that any f € Hom(B, A) can be written as f =
m n
where n;; € Z. Hence we can write [ = Zznijeij’ where
j=li=1

m n
Z 15>
j=li=1
m n
n; € Z and g = ZZnéjeij, where nj; € Z. Hence
j=lim
m n m n
frg = Zznijeij A Z npier;
j=1i=1 k=11=1

n
(njje;ilnije;;) since ejider; = 0 whenever i = k or j # 1

m
= Z ning;(e;he;;)

m n
= Z Z nini(ejihe;) = ghf.
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We use the above theorem to prove:

Theorem 3.3. A homomorphism X : A — B is a c-map if and only if

Mr,) e p™B u>1, 3)
}“1(7‘1) < <pk!b1> k' = min(n’l’ max(nz, B2))’ (4)
k](rl) € <pn1b]> ] > 1. (5)

Moreover, if \ satisfies the above conditions and (A,(r)) = (p®b;), where
K <k <ny, then M(R) = p"B,.

Proof. We assume that conditions (3), (4) and (5) are satisfied. If
u > 1, then A(r,) € p™ B. Hence eghe,, =0 for all s, ¢t and v. If u =1,
then for s > 1, eghe,, (b)) € R;. Now since exp(R;) < p"? and Aj(n) €

(p"?b;) for 1< j<m, hence we have eghe,, =0. From the earlier

discussion it follows that e;;(b;) = r;. Now notice that for ¢ > 1, ej;Ae;;(b;)

=eMr)=0 and ej;hey; (b)) =¢; A(p™2x(Om =By ) 2 0, from the definition

of k'

Conversely, we assume that egke,, = 0 whenever s # u or ¢ # v.

Now e;1(by) = 11, thenfora j > 1, e;jhe;; = 0. That says that

epjrj(ry) = 0 for each j > 1.

Now from Equation 2 either e;;(b;)=r or e;;(b;)= p P . In the first

case clearly 4 () € (p"b;). In the second case it follows from e; jA(r;) =0

that 1;(n) = ijbj = 0. In either case 1 ;(r;) € (p"b;). This proves (5).
Pick a u > 1, then ejjle,; = 0 for all j. This implies that e; jA(r,) = 0

for all j. Since e;;(b;)=n or pnrﬁjrl, hence A ;(r, ) e (p™b;) or Aj(r,) =0

for u > 1 and all j. This proves (3).
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Choose u >1 such that exp(Rg ® R3 ® - ®R,,) = exp(R,) = p"2
and then we have that e,;(b;) = r,, then clearly e,; e;; = 0 implies that

e, M) = 0, hence 1, (11) € (p"2by).

On the other hand ejjhe;; =0 for j>1 implies that

max(0, n —B; max(0,ny —B;

e; Mp )rl) = 0 which implies that p )ell?»(rl) =0 for
all j > 1. This gives us that A;(r;) € (p"b;). The above two arguments
prove (4).

The later assertion of the theorem clearly follows from the fact that

By < k and hence p™b; = 0 forall j > 1.
Corollary 3.4. If ny =ng and L : A > B is a c-map, then A is a
trivial c-map.

Proof. It follows from Theorem 3.3, since k' = n; that A(r;) € p™ B
for all i, hence fi(r;) = 0 for all i and hence fAg = 0.

Corollary 3.5. If b =n; and A is a c-map, then MRy ©® R3 @ ---
® R, )=0. This automatically implies that M(R) is cyclic.

Proof. From Theorem 3.3 it follows that A(r;) = 0 for i > 1.
Now assume there is a j such that exp(B;) = exp(B;) and j > 1.
Then clearly e;j(b;) = r. If & is a c-map, then e;he;;(b;) = 0 implying

that e;;AM(r;) = 0. This tells us that A;(r;) = p™b; which makes A a trivial

c-map. We just established that a necessary condition for A to be a

nontrivial c-map is that exp(B;) > exp(B;) for j > 1.

If ,: A — B is any homomorphism, let p® = exp(ker(})), clearly

¢ < a. We now find a necessary and sufficient condition for ker(A) = R.

Recall that R = A[p®].

Lemma 3.6. ker(L) ¢ R if and only if ¢ < n,.
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Proof. Let ker(A) ¢ R. Since p"*R = 0, hence p™ ker(r) = 0. This
proves that ¢ < n;. Conversely, assume that ¢ < n;. Let x € ker()). Then

p™x =0 hence x € R.

The next lemma comes in handy to settle the question: if ¢ > n;, then

are there any nontrivial c-maps?

Lemma 3.7. p°B = ﬂ ker(f).
f:B—ker(L)

Proof. Let x € p’B. Then x = p°y for some y € B. Then for any
f € Hom(B, ker())), f(x)= p°f(y) = 0, since the exponent of ker(A) is c.

So p°B < ﬂ ker(f). Conversely, assume that x ¢ p°B, then the
f:B—ker(})

image of x in is nontrivial and exp(ciJ = p° = exp(ker(})). Hence

p°B p‘B
there is an f € Hom(B, ker(X)) such that f(x) = 0.

Taking the two previous lemmas together we show that

Lemma 3.8. If L : A — B is a c-map, then MR) < p°B. It follows

that if L is a c-map and ¢ > nq, then X is a trivial c-map.

Proof. Since A is a c-map, hence FAg = gAF, where F € Hom(B, ker())
and g € Hom(B, A). Then clearly Fig = 0 for all g € Hom(B, A). Hence
FMR) =0 for all F € Hom(B, ker(1)). Hence

MR) c ﬂ ker(F) = p°B.
F:B—ker())

The rest of the argument follows from the fact that exp(R) = p™.

We just saw that for all intended purposes of understanding c-maps
¢ > ny 1is irrelevant, because then A is a trivial c-map. So, from now on
we will work with ¢ < n; which implies that ker(X) < R.

This has little relevance to the flow of arguments towards the proof of
the main result but is of independent interest. Using the same method as
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above one can easily prove that
p®B = ﬂ ker f.
f:B—>A

This yields a lemma, whose proof we leave to the reader and is
corroborated by Theorem 3.3.

Lemma 3.9. A homomorphism A is a trivial c-map if and only if
MR) c pMB.
We are now in a position to prove the main theorem of this article.

Theorem 3.10. Let L : A — B be a homomorphism. Then A\ is a
non-trivial c-map if and only if

MR) = p"B, where ¢ < k < m

and is cyclic.

_R
ker(})
Proof. The only if part follows from Theorem 3.3 and Lemma 3.8.

To see the if part, assume that A(R)= pB, where c<k<n

and _R_ is cyclic. Without loss of generality we assume that
ker(})

—kef(k) = <pkbl>. Hence there is some r € R such that A(r) = pkbl. Also
from n; > ¢, it follows that | r | = n;. We show that fAg(b;) = 0 for all f,

g € Hom(B, A) and i > 2.

It is clear that | b; | < p® for i > 2 and g(b;) = sr + u, where u e Ker)
and p™ % |s. Then s = s’p™ . Hence f(M(sp™ "r + u)) = f(s'p™b;) = 0
and this proves the theorem.

It is interesting to note what happens in case of a c-map A such that
exp(ker(1)) = exp(coker(X)) which implies that ¢ < b.

Notice that p®~“p°B = p®B = 0. Now if A(x) € p°B, then A(p?°x) = 0,

b-c b

ie., p’“x e ker()). This says that p°p®x = pPx = 0 which implies

x € R. Now assume that exp(ker(1)) = exp(coker())), then we have that

p°B < Image()L). Hence for any y € p°B there is an x € A such that
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Mx) = y. This implies that x € R. Hence p°B < A(R). Using Lemma 3.8

we just proved the following lemma:
Lemma 3.11. Let L: A —> B be a c-map and exp(ker())) =
exp(coker())). Then MR) = p°B.

4. Back to p-groups

In this section we use the theorems from the last section to find
a necessary and sufficient condition, in the same spirit as in Adney and
Yen [1, Theorem 4], for the group of central automorphisms of a finite
PN p-group G to be abelian. We have seen before that there is a
one-to-one correspondence between the central automorphisms in G

Q, to Z(G). Now the central automorphisms

G

and homomorphisms from
. . G . .

commute if and only if A : Z(G) — red defined by A(x) = xG' is a c-map.

We use all the notation from the last section with the understanding that

Z(G) represents A and g represents B. Since the group G is no longer

GI
abelian, even though % and Z(G) are abelian, we will no longer use +
to denote the group operation. Clearly then the kernel of A is Z(G)N G".

Notice that for a p-group G of class 2, G' < Z(G) and exp(G') = exp[—Z?G)j'

This means that exp(G') < exp(%). This clearly implies that ¢ < b.

Theorem 4.1. Let G be a PN p-group and p° = exp(Z(G) N G'). Then

the central automorphisms of G commute if and only if either

nl

p
MR) < (g)
or
G\
MR) = (5) , where ¢ < k < ng

is cyclic.

and __R__
ZG)NG
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Proof. This theorem follows from Theorem 3.10. Notice that A in this

case is the map from Equation 1.

We should mention the relation of our theorem with that of the

[1, Theorem 4]. The authors work there only with p-groups of class 2. In
that case we have that ker(1) = coker(r) and hence A(R) = p°B which is

the same as Adney and Yen’s condition R = K. Again since in a p-group

of class 2, ker(L) = G’ their condition reads as % = <x{’CG'>.
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