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Abstract

In this paper we find a necessary and sufficient condition for a finite
nilpotent group to have an abelian central automorphism group.

1. Introduction

It is natural to try to find a necessary and sufficient condition for a
finite group to have an abelian central automorphism group. In this paper
we find a necessary and sufficient condition in case when the group is
finite and nilpotent, see Theorem 4.1. Since a nilpotent group is the
direct product of its Sylow subgroups, finding a necessary and sufficient
condition for a nilpotent group is equivalent to finding a necessary and
sufficient condition for a p-group. So from now on we work with p-groups.
Also, we saw in [13, 14] that a p-group with a non-trivial abelian
subgroup of its automorphism group can be used to build a key exchange
protocol, useful in public key cryptography. This author in [13, 14] used a
family of groups with commutative central automorphism group in a
Diffie-Hellman type key exchange protocol.
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The most notable of the recent publications in the direction of

understanding the central automorphisms of a finite p-group are [2, 3, 4,

8, 11]. Jamali and Mousavi in [11] provide a necessary and sufficient

condition for a p-group G of class 2, for an odd prime p, to have an

elementary abelian central automorphism group and Curran [2] studies

groups which have an abelian automorphism group, i.e., Miller groups. In

a Miller group all automorphisms are central, so our work contributes to

the study of the central automorphisms of nilpotent groups as well as the

study of Miller groups. For an introduction to Miller groups see [6, 15] or

[14, Section 2.7].

Definition (PN Group). A group G is a purely non-abelian group if it

does not have any nontrivial abelian direct factor.

Adney and Yen in [1, Theorem 4] proved a necessary and sufficient

condition for a finite PN p-group of class 2 to have an abelian central

automorphism group. In this article we extend that result and to a

certain extent their argument to arbitrary finite PN p-groups. We split

the problem into three parts:

(a) Reduce the problem to a problem about abelian groups and

homomorphisms between abelian groups.

(b) Solve the problem in finite abelian groups.

(c) Bring the solution from abelian groups back to non-abelian finite

PN p-groups.

This is not the first time that the theory of abelian groups has been

used in understanding the automorphisms of non-abelian p-groups.

Sanders [16] used a technique quite similar to ours to count the number

of central automorphisms in a finite PN (purely non-abelian) p-group.

2. Central Automorphisms

Let ( )GcAut  be the group of central automorphisms of a group G.

Then an automorphism ( )GAut∈σ  is called a central automorphism if

( ) ( )GZgg ∈σ−1  for all ,Gg ∈  or equivalently, central automorphisms are

the centralizer of the group of inner automorphisms.



w
w

w
.p

ph
m

j.c
om

ABELIAN GROUPS, HOMOMORPHISMS AND CENTRAL … 71

There is another way to think about the central automorphisms. Let
( ).Aut Gc∈σ  Then corresponding to Gg ∈  there is a ( )GZzg ∈σ,  such

that ( ) .,σ=σ ggzg  Corresponding to ( )GcAut∈σ  one can define a map

( )GZG →φσ :  as follows:

( ) .,σσ =φ gzg

It is straightforward to show that the map σφ  is a homomorphism.

Hence corresponding to ( )GcAut∈σ  there is ( )( ).,Hom GZG∈φσ  It is

known that for PN groups the converse is true, see [1, Theorem 1].

There is a connection [1, Theorem 3] between commutativity of the
group of central automorphisms ( )GcAut  and commutativity of the

homomorphisms .σφ

Assume that ( )GcAut  is commutative, then for two maps

( )GcAut, ∈στ  we have that ( )( ) ( )( )gg τσ=στ  which is the same as

( ) ( ) ( )( ) ( ) ( ) ( )( )gggggggg στσττστσ φφφφ=φφφφ

implying, σ, ( )GcAut∈τ  commute if and only if ( )( )GZG,Hom, ∈φφ τσ

commute. Notice that since ( )GZ  is an abelian group, hence ( ) .1=′φσ G

So corresponding to ( )GZG →φσ :  one can define ( )GZ
G
G →
′

φ′σ :  as

( ) ( ).xGx σσ φ=′φ′  Clearly σφ′  is a homomorphism.

Consider the map ( ) GGGZ ′→λ :  given by the diagram

( ) ,GGGGZ ′ → → πι (1)

where ι and π are the inclusion and the natural surjection, respectively.

Theorem 2.1. Let ( ).Aut, Gc∈τσ  Then στ=τσ  if and only if

.σττσ φ′λφ′=φ′λφ′

Proof. The proof follows from the above discussion.

This theorem enables us to think about commutativity of the
group of central automorphisms of a non-abelian group G in terms of

abelian groups 
G
G
′
 and Z(G) and homomorphisms between these abelian
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groups. So the problem “when is ( )GcAut  commutative?” for a PN group is

transformed into a problem involving abelian groups and homomorphisms
between abelian groups.

This also enables us to ask more general questions about abelian

groups and homomorphisms between abelian groups that is the object of

our study in the next section.

3. c-maps

Definition (c-map). Let A and B be abelian groups and BA →λ :  be

a homomorphism. Then λ is a c-map if fggf λ=λ for all ( ).,Hom, ABgf ∈

The set of all c-maps forms a subgroup of ( ).,Hom BA  We call λ a trivial

c-map if 0=λgf  for all ( ).,Hom, ABgf ∈

In this section we investigate necessary and sufficient conditions for

two finite abelian groups A and B and BA →λ :  a homomorphism

between them to be a c-map. Of course if ,0≡λ  then trivially 0=λgf

for any ( )ABgf ,Hom, ∈  and λ is a c-map.

For the rest of this section we fix A and B to be two finite nonzero

abelian p-groups. From the fundamental theorem of finite abelian groups,

we have

121 ≥⊕⊕⊕= nAAAA n

,121 ≥⊕⊕⊕= mBBBB m

where

( ) ipAaA iii
α== exp,  and ,21 na α≥≥α≥α=

( ) ipBbB iii
β== exp,  and mb β≥≥β≥β= 21

are decompositions of A and B as direct sums of cyclic p-groups. For the

rest of this article we fix nAAA ...,,, 21  as a fixed decomposition of A and

mBBB ...,,, 21  as a fixed decomposition of B and ia  a fixed generator for

,iA  ni ≤≤1  and ib  a fixed generator for ,iB  .1 mi ≤≤
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If BA →λ :  is a homomorphism, then we can write 21 λ+λ=λ

,mλ++  where ii BA →λ :  is defined as follows:

( ) ( ),aa ii λπ=λ

where ii BB →π :  is the projection. We can abuse the notation a little

bit and consider .: BAi →λ  Of course, one can formalize this trivially.

It is easy to see that if each iλ  is a c-map, then λ is a c-map.

Let { }.bpxAx ≤|∈=R Then it is known that

( )
( )
∑

∈

=
ABf

Bf
,Hom

R

and since R  is an abelian group contained in A and if +++ 21 xx

,R∈nx  then from the definition of R  it follows that R∈ix  for ,1=i

....,,2 n  Hence ,21 nRRRR ⊕⊕⊕=  where ii r=R  and ii A∩RR =  for

each i. We assume that ( ) 1
1exp np=R  and ( ) .exp 2

32
n

n p=⊕⊕⊕ RRR

Clearly .21 nna ≥≥

Let ABeij →:  be defined as

( )
( )





 =

=
β−α

.otherwise0

if
,0max

kjap
be i

kij

ji

(2)

It follows from [17, Section 5.8] that { },ije  ;...,,2,1 ni =  mj ...,,2,1=

is a basis for ( )AB,Hom  under addition.

From Equation 2 either ii ar =  or .ii apr ji β−α=  Since 1β  is the

maximum possible, hence 1β−αi  is the least possible for a fixed i and for

all ( ).1 mjj ≤≤  From this we conclude that ( ) ii rbe =11  for all i.

We state some easy and well-known facts in the following lemma

whose proof follows from the above discussion.
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Lemma 3.1. (i) [ ].bpA=R

(ii) ,21 nRRRR ⊕⊕⊕=  where .ii A∩RR =

(iii) If ,ii r=R  then ii ar =  if ib α≥  or ii apr i 1β−α=  if .ib α<

(iv) ( ) ii rbe =11  for all i.

(v) ( ) ( )
1

,0max
1

1 rpbe jn
jj

β−=  for .1>j

Theorem 3.2. A homomorphism BA →λ :  is a c-map if and only if

0=λ klij ee  whenever ki ≠  or .lj ≠

Proof. Let fggf λ=λ  for all ( ).,Hom, ABgf ∈  Then .ijklklij eeee λ=λ

If ,ki ≠  then .0=λ klij ee  Since the image of klij ee λ  is in ,ki AA ∩

where 0=ki AA ∩  whenever .ki ≠  If ,lj ≠  then ( ) .0=λ lijkl bee  Hence,

0=λ klij ee  whenever ki ≠  or .lj ≠

Conversely, notice that any ( )ABf ,Hom∈  can be written as =f

∑∑
= =

m

j

n

i
ijijen

1 1
,  where .Z∈ijn  Hence we can write ∑∑

= =
=

m

j

n

i
ijijenf

1 1
,  where

Z∈ijn  and ∑∑
= =

′=
m

j

n

i
ijijeng

1 1
,  where .Z∈′ijn  Hence














′λ













=λ ∑∑∑∑

= == =

m

k

n

l
klkl

m

j

n

i
ijij enengf

1 11 1

( )∑∑
= =

′λ=
m

j

n

i
ijijijij enen

1 1

 since 0=λ klij ee  whenever ki ≠  or lj ≠

( )∑∑
= =

λ′=
m

j

n

i
ijijijij eenn

1 1

( )∑∑
= =

λ=λ′=
m

j

n

i
ijijijij fgeenn

1 1

.
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We use the above theorem to prove:

Theorem 3.3. A homomorphism BA →λ :  is a c-map if and only if

( ) ,11 >∈λ uBpr n
u (3)

( ) ( )( ),,max,min 221111 β=′∈λ ′ nnkbpr k (4)

( ) .11
1 >∈λ jbpr j

n
j (5)

Moreover, if λ satisfies the above conditions and ( ) ,111 bpr k=λ  where

,1nkk <≤′  then ( ) .1Bpk=λ R

Proof. We assume that conditions (3), (4) and (5) are satisfied. If

,1>u  then ( ) .1 Bpr n
u ∈λ  Hence 0=λ uvst ee  for all s, t and v. If ,1=u

then for ,1>s  ( ) .svuvst bee R∈λ  Now since ( ) 2exp n
s p≤R  and ( ) ∈λ 1rj

j
n bp 2  for ,1 mj ≤≤  hence we have .0=λ uvst ee  From the earlier

discussion it follows that ( ) .1111 rbe =  Now notice that for ,1>t  ( )1111 bee tλ

( ) 011 =λ= re t  and ( ) ( ( ) ) ,01
,0max

11111
1 =λ=λ β− rpebee tn

tt  from the definition

of .k′

Conversely, we assume that 0=λ uvst ee  whenever us ≠  or .vt ≠

Now ( ) ,1111 rbe =  then for a ,1>j  .0111 =λee j  That says that

( ) 011 =λ re jj  for each .1>j

Now from Equation 2 either ( ) 11 rbe jj =  or ( ) .11
1 rpbe jn

jj
β−=  In the first

case clearly ( ) .1
1 j

n
j bpr ∈λ  In the second case it follows from ( ) 011 =λ re j

that ( ) .01 ==λ β
jj bpr j  In either case ( ) .1

1 j
n

j bpr ∈λ  This proves (5).

Pick a ,1>u  then 011 =λ uj ee  for all j. This implies that ( ) 01 =λ uj re

for all j. Since ( ) 11 rbe jj =  or ,1
1 rp jn β−

 hence ( ) j
n

uj bpr 1∈λ  or ( ) 0=λ uj r

for 1>u  and all j. This proves (3).
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Choose 1>u  such that ( ) ( ) 2expexp 32
n

un p==⊕⊕⊕ RRRR

and then we have that ( ) ,11 uu rbe =  then clearly 0111 =λeeu  implies that

( ) ,011 =λ reu  hence ( ) .111
2bpr n∈λ

On the other hand 0111 =λ jee  for 1>j  implies that

( ( ) ) 01
,0max

11
1 =λ β−

rpe jn
 which implies that 

( ) ( ) 0111
,0max 1 =λβ−

rep jn
 for

all .1>j  This gives us that ( ) .111 bpr k′∈λ  The above two arguments

prove (4).

The later assertion of the theorem clearly follows from the fact that

k≤β2  and hence 01 =j
n bp  for all .1>j

Corollary 3.4. If 21 nn =  and BA →λ :  is a c-map, then λ is a

trivial c-map.

Proof. It follows from Theorem 3.3, since 1nk =′  that ( ) Bpr n
i

1∈λ

for all i, hence ( ) 0=λ irf  for all i and hence .0=λgf

Corollary 3.5. If 1nb =  and λ is a c-map, then ( ⊕⊕λ 32 RR

) .0=⊕ nR  This automatically implies that ( )Rλ  is cyclic.

Proof. From Theorem 3.3 it follows that ( ) 0=λ ir  for .1>i

Now assume there is a j such that ( ) ( )1expexp BBj =  and .1>j

Then clearly ( ) .11 rbe jj =  If λ is a c-map, then ( ) 0111 =λ jj bee  implying

that ( ) .0111 =λ re  This tells us that ( ) 111
1bpr n=λ  which makes λ a trivial

c-map. We just established that a necessary condition for λ to be a

nontrivial c-map is that ( ) ( )jBB expexp 1 >  for .1>j

If BA →λ :  is any homomorphism, let ( )( ),kerexp λ=cp  clearly

.ac ≤  We now find a necessary and sufficient condition for ( ) .ker R⊆λ

Recall that [ ].bpA=R

Lemma 3.6. ( ) R⊆λker  if and only if .1nc ≤
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Proof. Let ( ) .ker R⊆λ  Since ,01 =Rnp  hence ( ) .0ker1 =λnp  This

proves that .1nc ≤  Conversely, assume that .1nc ≤  Let ( ).ker λ∈x  Then

01 =xpn  hence .R∈x

The next lemma comes in handy to settle the question: if ,1nc ≥  then

are there any nontrivial c-maps?

Lemma 3.7. ( )
( )

∩
λ→

=
ker:

.ker
Bf

c fBp

Proof. Let .Bpx c∈  Then ypx c=  for some .By ∈  Then for any

( )( ),ker,Hom λ∈ Bf  ( ) ( ) ,0== yfpxf c  since the exponent of ( )λker  is c.

So ( )
( )

∩
λ→

⊆
ker:

.ker
Bf

c fBp  Conversely, assume that ,Bpx c∉  then the

image of x in 
Bp

B
c

 is nontrivial and ( )( ).kerexpexp λ==






 c
c

p
Bp

B  Hence

there is an ( )( )λ∈ ker,Hom Bf  such that ( ) .0≠xf

Taking the two previous lemmas together we show that

Lemma 3.8. If BA →λ :  is a c-map, then ( ) .Bpc⊆λ R  It follows

that if λ is a c-map and ,1nc ≥  then λ is a trivial c-map.

Proof. Since λ is a c-map, hence ,FggF λ=λ  where ( )( )λ∈ ker,Hom BF

and ( ).,Hom ABg ∈  Then clearly 0=λgF  for all ( ).,Hom ABg ∈  Hence

( ) 0=λ RF  for all ( )( ).ker,Hom λ∈ BF  Hence

( ) ( )
( )

∩
λ→

=⊆λ
ker:

.ker
BF

cBpFR

The rest of the argument follows from the fact that ( ) .exp 1np=R

We just saw that for all intended purposes of understanding c-maps

1nc ≥  is irrelevant, because then λ is a trivial c-map. So, from now on

we will work with 1nc <  which implies that ( ) .ker R⊆λ

This has little relevance to the flow of arguments towards the proof of
the main result but is of independent interest. Using the same method as



w
w

w
.p

ph
m

j.c
om

AYAN MAHALANOBIS78

above one can easily prove that

∩
ABf

a fBp
→

=
:

.ker

This yields a lemma, whose proof we leave to the reader and is
corroborated by Theorem 3.3.

Lemma 3.9. A homomorphism λ is a trivial c-map if and only if

( ) .1 Bpn⊆λ R

We are now in a position to prove the main theorem of this article.

Theorem 3.10. Let BA →λ :  be a homomorphism. Then λ is a
non-trivial c-map if and only if

( ) ,Bpk=λ R  where 1nkc <≤

and ( )λker
R  is cyclic.

Proof. The only if part follows from Theorem 3.3 and Lemma 3.8.

To see the if part, assume that ( ) ,Bpk=λ R  where 1nkc <≤

and ( )λker
R  is cyclic. Without loss of generality we assume that

( ) .
ker 1bpk≅

λ
R  Hence there is some R∈r  such that ( ) .1bpr k=λ  Also

from ,1 cn >  it follows that .1nr =  We show that ( ) 0=λ ibgf  for all f,

( )ABg ,Hom∈  and .2≥i

It is clear that k
i pb ≤  for 2≥i  and ( ) ,usrbg i +=  where λ∈ Keru

and .1 sp kn |−  Then .1 knpss −′=  Hence ( ( )) ( ) 01
11 =′=+′λ − bpsfurpsf nkn

and this proves the theorem.

It is interesting to note what happens in case of a c-map λ such that
( )( ) ( )( )λ=λ cokerexpkerexp  which implies that .bc ≤

Notice that .0==− BpBpp bccb  Now if ( ) ,Bpx c∈λ  then ( ) ,0=λ − xp cb

i.e., ( ).ker λ∈− xp cb  This says that 0==− xpxpp bcbc  which implies

.R∈x  Now assume that ( )( ) ( )( ),cokerexpkerexp λ=λ  then we have that

( ).Image λ⊆Bpc  Hence for any Bpy c∈  there is an Ax ∈  such that
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( ) .yx =λ  This implies that .R∈x  Hence ( ).Rλ⊆Bpc  Using Lemma 3.8

we just proved the following lemma:

Lemma 3.11. Let BA →λ :  be a c-map and ( )( ) =λkerexp

( )( ).cokerexp λ  Then ( ) .Bpc=λ R

4. Back to p-groups

In this section we use the theorems from the last section to find
a necessary and sufficient condition, in the same spirit as in Adney and
Yen [1, Theorem 4], for the group of central automorphisms of a finite
PN p-group G to be abelian. We have seen before that there is a
one-to-one correspondence between the central automorphisms in G

and homomorphisms from 
G
G
′
 to ( ).GZ  Now the central automorphisms

commute if and only if ( )
G
GGZ
′

→λ :  defined by ( ) Gxx ′=λ  is a c-map.

We use all the notation from the last section with the understanding that

( )GZ  represents A and 
G
G
′
 represents B. Since the group G is no longer

abelian, even though 
G
G
′
 and ( )GZ  are abelian, we will no longer use +

to denote the group operation. Clearly then the kernel of λ is ( ) .GGZ ′∩

Notice that for a p-group G of class 2, ( )GZG ⊆′  and ( )
( )

.expexp 





=′

GZ
GG

This means that ( ) .expexp 






′
≤′

G
GG  This clearly implies that .bc ≤

Theorem 4.1. Let G be a PN p-group and ( )( ).exp GGZpc ′= ∩  Then

the central automorphisms of G commute if and only if either

( )
1np

G
G








′
⊆λ R

or

( ) ,
kp

G
G








′
=λ R  where 1nkc <≤

and ( ) GGZ ′∩
R  is cyclic.
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Proof. This theorem follows from Theorem 3.10. Notice that λ in this

case is the map from Equation 1.

We should mention the relation of our theorem with that of the

[1, Theorem 4]. The authors work there only with p-groups of class 2. In

that case we have that ( ) ( )λ=λ cokerker  and hence ( ) Bpc=λ R  which is

the same as Adney and Yen’s condition .KR =  Again since in a p-group

of class 2, ( ) G′=λker  their condition reads as .1 Gx
G

cp ′=
′
R
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