ON THE FIRST DERIVED LIMITS

DAE-WOONG LEE

(Received November 5, 2006)

Abstract

In this note, another characteristic feature of the first derived limits is discussed.

1. Introduction and Result

Let $\{G_n\}=(G_n,g_n^{n+1},\mathbb{N})$ be an inverse tower of (possibly non-abelian) groups G_n and homomorphisms $g_n^{n+1}:G_{n+1}\to G_n$ indexed by the set of all nonnegative integers \mathbb{N} . We consider a left action of $\prod G_n$ on $\prod G_n$ by the formula

$$(..., s_n, s_{n+1}, ...) \circ (..., t_n, t_{n+1}, ...) = (..., s_n t_n g_n^{n+1} (s_{n+1}^{-1}), ...).$$

We define the first derived limit, $\lim^1 \{G_n\}$, of an inverse tower as the set of orbits of $\prod G_n$ under this action in the sense of Bousfield-Kan [1, p. 251]. We can also define the inverse limit, $\lim \{G_n\}$, of the inverse tower $\{G_n\}$ by using this action:

$$\lim\{G_n\} = \left\{g \in \prod G_n \mid g \circ * = *\right\}.$$

2000 Mathematics Subject Classification: 18G15, 55P55.

Keywords and phrases: derived limit, level system map.

This paper was supported (in part) by research funds of Chonbuk National University.

© 2007 Pushpa Publishing House

Moreover, the set $\lim^1\{G_n\}=\prod G_n/\sim$ can be viewed as the quotient set of the direct product $\prod G_n$ by an equivalence relation \sim defined as follows: For $x=(...,\,x_n,\,...),\ y=(...,\,y_n,\,...)\in\prod G_n$, one has $x\sim y$ if and only if there exists an element $s=(...,\,s_n,\,...)\in\prod G_n$ such that $y=s\circ x$.

Let Γ^n , $n \geq 0$ be the set of all increasing sequences $\overline{\gamma} = (\gamma_0, \gamma_1, ..., \gamma_n)$, $\gamma_0 \leq \gamma_1 \leq \cdots \leq \gamma_n$, $\gamma_i \in \Gamma$ and let $\overline{\gamma}_j \in \Gamma^{n-1}$, $0 \leq j \leq n$ be obtained from $\overline{\gamma} \in \Gamma^n$ by deleting the jth factor γ_j , i.e., $\overline{\gamma}_j = (\gamma_0, ..., \gamma_{j-1}, \gamma_{j+1}, ..., \gamma_n)$. And for each $\overline{\gamma} \in \Gamma^n$, we associate an abelian group $A_{\overline{\gamma}}$ by the abelian group A_{γ_0} of the first index γ_0 in the category of abelian groups, i.e., $A_{\overline{\gamma}} = A_{\gamma_0}$.

Let $\{A_\gamma\}=(A_\gamma,\,a_{\gamma\gamma'},\,\Gamma)$ be an inverse system of abelian groups A_γ and group homomorphisms $a_{\gamma\gamma'}:A_{\gamma'}\to A_\gamma,\,\,\gamma\leq\gamma'$ over the directed set Γ . We define an n-cochain group $C^n(\{A_\gamma\}),\,\,n\geq 0$ of $\mathfrak A$ by

$$C^{n}(\{A_{\gamma}\}) = \prod_{\overline{\gamma} \in \Gamma^{n}} A_{\overline{\gamma}}, n \geq 0,$$

where $A_{\overline{\gamma}} = A_{\gamma_0}$ as just mentioned above.

Let $pr_{\overline{\gamma}}: C^n(\{A_{\gamma}\}) \to A_{\overline{\gamma}}$ be a projection. If y is an element of $C^n(\{A_{\gamma}\})$, then we denote the element $y_{\overline{\gamma}}$ of $A_{\overline{\gamma}}$ by $y_{\overline{\gamma}} = pr_{\overline{\gamma}}(y)$. The coboundary operator $\delta^n: C^{n-1}(\{A_{\gamma}\}) \to C^n(\{A_{\gamma}\})$, $n \geq 1$ is defined by

$$(\delta^n y)_{\overline{\gamma}} = a_{\gamma_0 \gamma_1} (y_{\overline{\gamma}_0}) + \sum_{j=1}^n (-1)^j y_{\overline{\gamma}_j},$$

where $y \in C^{n-1}(\{A_{\gamma}\})$. For n = 0, if we put $\delta^0 = 0 : 0 \to C^0(\{A_{\gamma}\})$, then we have a cochain complex

$$(C^*(\{A_{\gamma}\}), \delta): 0 \to C^0(\{A_{\gamma}\}) \xrightarrow{\delta^1} C^1(\{A_{\gamma}\}) \to \cdots$$
$$\to C^{n-1}(\{A_{\gamma}\}) \xrightarrow{\delta^n} C^n(\{A_{\gamma}\}) \to \cdots.$$

We now define the nth $derived\ limit$ (see [4]) denoted by $H^n(\{A_\gamma\})$ of the inverse system $\{A_\gamma\} = (A_\gamma, a_{\gamma\gamma'}, \Gamma)$ of abelian groups by the cohomology group of the above cochain complex $(C^*(\{A_\gamma\}), \delta)$. That is to say

$$H^n(\lbrace A_{\gamma}\rbrace) = \ker(\delta^{n+1})/\operatorname{im}(\delta^n).$$

Let $\{D_{\lambda}\}=(D_{\lambda},\,d_{\lambda\lambda'},\,\Lambda)$ and $\{F_{\gamma}\}=(E_{\gamma},\,e_{\gamma\gamma'},\,\Gamma)$ be inverse systems in any category $\mathfrak C.$ We say that $s=\{\varphi,\,s_{\gamma}:\gamma\in\Gamma\}:\{D_{\lambda}\}\to\{F_{\gamma}\}$ is a rigid system map from $\{D_{\lambda}\}$ to $\{F_{\gamma}\}$ if $\varphi:\Gamma\to\Lambda$ is an increasing function, $s_{\gamma}:D_{\varphi(\gamma)}\to E_{\gamma},\,\,\gamma\in\Gamma$ is a morphism in the category $\mathfrak C,\,$ and for any $\gamma\leq\gamma'$ in Γ the following diagram

$$egin{array}{cccc} D_{\phi(\gamma)} & \stackrel{d_{\phi(\gamma)\phi(\gamma')}}{\leftarrow} & D_{\phi(\gamma')} \\ s_{\gamma} \downarrow & & s_{\gamma'} \downarrow \\ E_{\gamma} & \stackrel{e_{\gamma\gamma'}}{\leftarrow} & E_{\gamma'} \end{array}$$

is commutative. Moreover, we can make a category inv- $\mathfrak C$ of inverse systems in $\mathfrak C$ and rigid system maps. The rigid system map is called a *level system map* provided $\Gamma = \Lambda$ and φ is an identity map id_{Λ} on Λ . In this note, we are interested in the case of level system maps indexed by the set of all nonnegative integers $\mathbb N$.

Let X be a connected CW-space and let [X,Y] denote the set of homotopy classes of maps from X to Y. We denote $Y^{(n)}$ the nth Postnikov approximation of Y. By putting $G_n = [X, \Omega Y^{(n)}]$, we obtain an inverse tower $\{G_n\} = (G_n, g_n^{n+1}, \mathbb{N})$ of groups. Let us write $G_k^{(n)} = \operatorname{im}(g_k^n : G_n \to G_k)$, where $g_k^n = g_k^{k+1} \circ g_{k+1}^{k+2} \circ \cdots \circ g_{n-1}^n$. Then we have an epimorphism

 $g_k^n:G_n\to G_k^{(n)}$ and a surjective level system map $\{g_k^n\}:\{G_n\}\to\{G_k^{(n)}\}$ between inverse towers of groups.

Let \mathbb{Q} be the set of all rational numbers. Then we have

Theorem. If X has a homotopy type of a suspension or if Y has a homotopy type of a loop space with $\pi_{k+1}(Y) \otimes \mathbb{Q} = 0$, then $H^1(\{G_{k+1}^{(n)}\}) \cong H^1(\{G_k^{(n)}\})$.

2. Proof of Theorem

We need to find the basic roles of lim and lim¹ functors from the following lemmas:

Lemma 1. Let $s = \{id_{\mathbb{N}}, s_n : n \in \mathbb{N}\}: \{U_n\} \to \{V_n\}$ and $t = \{id_{\mathbb{N}}, t_n : n \in \mathbb{N}\}$: $\{V_n\} \to \{W_n\}$ be level system maps of inverse towers of groups and let the sequence

$$0 \to U_n \overset{s_n}{\to} V_n \overset{t_n}{\to} W_n \to 0$$

be exact for each $n \in \mathbb{N}$. Then there is a natural exact sequence of pointed sets

$$\begin{split} 0 \to \lim\{U_n\} &\overset{s_*}{\to} \lim\{V_n\} \overset{t_*}{\to} \lim\{W_n\} \\ &\overset{\delta}{\to} \lim^1\{U_n\} \overset{s_*}{\to} \lim^1\{V_n\} \overset{t_*}{\to} \lim^1\{W_n\} \to 0, \end{split}$$

where δ is a connecting function.

Proof. See Proposition 2.3 in [1, p. 252].

Lemma 2. Let $\{G_n\} = (G_n, g_n^{n+1}, \mathbb{N})$ be an inverse tower with each G_n finite. Then $\lim^1 \{G_n\}$ is zero.

Proof. See [2].

We can see the relationship (see [3]) between the derived limits as follows:

Lemma 3. If $\{A_n\} = (A_n, a_n^{n+1}, \mathbb{N})$ is an inverse tower of abelian groups, then $\lim^0 \{A_n\} \cong H^0(\{A_n\})$ and $\lim^1 \{A_n\} \cong H^1(\{A_n\})$.

We now see that the fibration

$$\cdots \to K(\pi_{k+1}(Y), k) \to \Omega Y^{(k+1)} \overset{p_k}{\to} \Omega Y^{(k)}$$

induces an exact sequence of groups

$$\cdots \to [X, K(\pi_{k+1}(Y), k)] \to G_{k+1} = [X, \Omega Y^{(k+1)}] \xrightarrow{p_{k*}} G_k = [X, \Omega Y^{(k)}],$$

where $K(\pi_{k+1}(Y), k)$ is the Eilenberg-MacLane space of type $(\pi_{k+1}(Y), k)$. We thus have the short exact sequence

$$0 \to [X, K(\pi_{k+1}(Y), k)]/\ker(p_{k*}) \rightarrowtail G_{k+1}^{(n)} \twoheadrightarrow G_k^{(n)} \to 0.$$

By putting $F_n = [X, K(\pi_{k+1}(Y), k)]/\ker(p_{k*})$, we obtain the short exact sequence of inverse towers

$$0 \to \{F_n\} \rightarrowtail \{G_{k+1}^{(n)}\} \twoheadrightarrow \{G_k^{(n)}\} \to 0.$$

We note that $[X, K(\pi_{k+1}(Y), k)] \cong H^k(X; \pi_{k+1}(Y))$ and this group is finite by hypothesis. We also note that $\{F_n\}$ has a trivial \lim^1 -term because $\{F_n\}$ is an inverse tower of finite groups. By applying the sixterm \lim^1 exact sequence, we can get the following exact sequence

$$0= \mathrm{lim}^1\{F_n\} \rightarrow \mathrm{lim}^1\{G_{k+1}^{(n)}\} \overset{\cong}{\rightarrow} \mathrm{lim}^1\{G_k^{(n)}\} \rightarrow 0.$$

Since $G_{k+1}^{(n)}$ and $G_k^{(n)}$ are abelian by the suspension hypothesis on X or the loop space hypothesis on Y, by Lemma 3, we obtain

$$H^1(\{G_{k+1}^{(n)}\}) \cong H^1(\{G_k^{(n)}\}).$$

References

[1] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, 1972.

- [2] B. Gray, Spaces of the same n-type, for all n, Topology 5 (1966), 241-243.
- $[3] \quad \text{D. Lee, Phantom maps and the Gray index, Topology Appl. } 138 (1-3) \ (2004), \ 265-275.$
- [4] G. Nöbeling, Über die derivierten des inversen und des derekten limes einer modulefamilie, Topology 1 (1961), 47-61.

Department of Mathematics Institute of Pure and Applied Mathematics Chonbuk National University Jeonju, Jeonbuk 561-756, Republic of Korea e-mail: dwlee@math.chonbuk.ac.kr

WWW.PPhmil.com