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Abstract

We introduce some notations for finite relations. Using these, we define
an “odd composition” and “even composition” which refine the ordinary
composition of finite relations. We then present some consequences
including a ring with binary operations of the symmetric difference and
odd composition.

1. Preliminaries and Conventions

In this note, we use the typical ideas and notation of set theory
described in the literature [2, 4, 5].

A binary relation is a set of ordered pairs. A function f is the binary
relation f such that if (x, y) € f and (x, z) € f, this implies y = z. If fis
a function, the unique y such that (x, y) € f is the value of f at x. The

Cartesian product of two sets X and Y is the set of all ordered pairs such
that X xY ={(x,y)Jx e Xand y e Y}. f X =D or Y = &, then X xY

1s the empty set .
We adopt the following conventions. A binary relation is called simply

a relation. Let R be a relation (including functions). Then the notation

xRy is equivalent to (x, y) € R. If f is a function, then the notation

(x)f = y is used for the value y of f at x. Let R and S be relations. Then
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the composition (or ordinary composition) of R and S, denoted by R o S,
is the relation such that (x, y) belongs to RoS if xRz, zSy, and
z € (ran(R)(N dom(S)). Let f and g be functions such that ran(f) <
dom(g). Then the composition (or ordinary composition) of f and g,

denoted by fo g, is the function with dom(f o g) = dom(f) such that
(x)(f o g)=((x)f)g for every x e dom(f).

Let A and B be sets. Then we adopt the following conventions. A
relation R from A to B is a subset of A x B. The empty relation & is
denoted by the symbol O. A function f from A to B is the relation f from A
to B such that dom(f) = A and if (x, y) € f and (x, z) € f, this implies

y = z. A relation on A is a relation from A to A. A function on A is a

function from A to A.

Let A and B be sets. Then the symmetric difference of A and B,
denoted by A + B, is the set suchthat A+ B =(A-B)U(B- A). IfRis

a relation from A to B, then the inverse of R, denoted by Rfl, is the
relation from B to A such that R = {(y, x)|(x, y) € R}. Let R, S < A x
B. Then (R°Y) =R, (RUS)'=RTUS™; RNS)'=RINSE
(R-8Sy'=R1'-S and (R+S) ! =R'+87.

To reduce the parentheses in expressions with a sequence of symbols,
we adopt the usual conventions. In this case the symbols “e, ¢, =, #, <
are dominant. However, the two symbols “—, <»” are more dominant

symbols.
2. Introducing Some Notation for Finite Relations

We introduce the following notation for finite relations.

Definition 2.1. Let A and B be non-empty finite sets, with R <
AxB, ae A and b € B.

e The symbol aR is the set such that “y € aR if (a, y) € R for some
ye B”or“aR =@ if (a, y) ¢ R forevery y € B”.
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e The symbol Rb is the set such that “x € Rb if (x, b) € R for some
xeA”or“Rb = if (x,b) ¢ R forevery x € A”.
Let A and B be non-empty finite sets and let f be a function from A to

B. Then by the properties of a function and Definition 2.1, af is the
singleton {(a)f} for every a € A. If b € B and b ¢ ran(f), then fb is an

empty set &.

We next present some properties of finite relations relating to
Definition 2.1.

Proposition 2.2. Let A and B be non-empty finite sets, with R c
AxB, ae A and b € B. Then:

1. y € aR if and only if aRy, and x € Rb if and only if xRb.

2. aR = R'a and Rb = bR™".

Proof. (1) Let y € aR. From Definition 2.1, it follows that y € B
and (a, y) € R. Then y € aR — aRy. Conversely, let aRy. This implies
that (a, y)e R and y e B. By Definition 2.1, y e aR. Then
aRy — y € aR. Thus, we have y € aR <> aRy. In a similar fashion, we

can also prove x € Rb <> xRb.

(2) Let y € aR. From (1), it follows that y € aR < aRy < nyla
< y € R7'a. This implies that aR = R 'a. Similarly, let x € Rb. From
(1), it follows that x € Rb <> xRb <> bR™x <> x € bR, This implies
that Rb = bR ™. 0

Let p and ¢ be two statements. Then, by “exclusive p or q”, we mean
that only one of the two statements is true, but not both.

Proposition 2.3. Let A and B be non-empty finite sets. Let R, S
Ax B, with a e A and b € B. Then R =S if and only if “aR = aS for
every a € A” or “Rb = Sb for every be B”.

Proof. First we show that R = S if and only if aR = aS for every
a € A. Let R = S. Suppose that a'R # a'S for some a’' € A. Then there
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1s some element b € B such that exclusive b € 'R or b € a'S. Then, by
Proposition 2.2(1), exclusive (a',b)e R or (a’,b)e S. This is a
contradiction because of the hypothesis R = S. Hence, we can say that if
R = S, then aR = aS for every a € A.

To prove the converse, let aR = aS for every a € A. Suppose that
R # S. Then there are some elements x € A and y € B such that
exclusive (x, y) € R or (x, y) € S. Then, by Proposition 2.2(1), exclusive
y € xR or y € xS. This is a contradiction because, by the hypothesis,
xR = xS. Hence, we can say that if aR = aS for every a € A, then
R =S.

Thus, R=S if and only if aR =aS for every ae A. In a
similar fashion, we can also prove R = S if and only if Rb = Sb for

every b € B. 0

Proposition 2.4. Let A and B be non-empty finite sets. Let R, S
A x B with a € A and b € B. Then:

1. a(RUS)=aRUaS and (RUS)b = Rb U Sb.
2. (RN S) = aR N a8 and (RN S)b = Rb N Sb.
3. a(R-S)=aR-aS and (R - S)b = Rb — Sb.
4. a(R+S)=aR +aS and (R+ S)b = Rb + Sb.
Proof. (1) First we show that a(R U S) = aR U aS.

To prove a(RUS)<c aRUaS, let y e a(RUS). By Proposition
2.2(1), (a, y) € RU S and thus (a, y) € R or (a, y) € S. By Proposition
2.2(1), yeaR or y € aS and thus y € aRUaS. Hence, a(RUS) c
aR U aS.

To prove aRUaS c a(RUS), let y e aRUaS. Then y € aR or
y € aS. By Proposition 2.2(1), (a, y) € R or (a, y) € S and thus (a, y) €
RUS. Then, by Proposition 2.2(1), y € a(RUS) and hence aR U aS
c a(RUS).
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Thus, we have a(RU S) = aR U aS.

On the other hand, from Proposition 2.2(2) and the result above, it
follows that (RUS)b =bRUS) ™ =b(R1US1)=bR1UbS™ = Rb
U Sb. Thus, we have (RU S)b = Rb U Sb.

In a similar fashion, we can also prove (2) and (3).

(4) By definition of the symmetric difference, R+ S =(R-S)U
(S = R). Then, from (1), (3), and the definition of +, it follows that
a(R+8S)=a((R-S)U(S-R))=a(R-S)Ua(S-R)
=(aR - aS)U (aS - aR) = aR + aS.
Thus, we have a(R + S) = aR + aS.

On the other hand, from Proposition 2.2(2) and the result above, it
follows that

(R+8)b=bR+S8)* =bR'+8T
=bR! +bS7! = Rb + Sb.
Thus, we have (R + S)b = Rb + Sb. 0

3. 0dd and Even Composition of Finite Relations

Let @ be a finite set. Then | @| is the number of elements of Q. We
define the following notation: |@| = odd means that |@| is an odd

number. | @ | = even meansthat @ # & and | @ | is an even number.

We define the odd composition and even composition of finite
relations. We also redefine the ordinary composition of finite relations as
a normal composition within the context of this paper.

Definition 3.1. Let A, B, and C be non-empty finite sets. Let R
AxB and S € BxC, with a € A and ¢ € C. Let @ = aR () Sec.

¢ The normal composition of R and S, denoted by R o S, is defined as
follows. For each a € A and ¢ € C, the ordered pair (a, ¢) belongs to

R-SifQ = @.
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e The odd composition of R and S, denoted by R - S, is defined as
follows. For each a € A and ¢ € C, the ordered pair (a, ¢) belongs to

R-S if |Q| = odd.

e The even composition of R and S, denoted by R © S, is defined as
follows. For each a € A and ¢ € C, the ordered pair (a, ¢) belongs to

R o S if |Q| = even.

It should be noted that the normal composition is equivalent to the
ordinary composition of finite relations. For this reason, the symbol “o” is

also used for the normal composition.

From a graphical point of view, each composition of finite relations
means the following. If a(R - S)c, then there is at least one path between
the two points @ € A and ¢ € C through B; if a(R - S)c, then there is an
odd number of paths between the two points a € A and ¢ € C through

B; and if a(R © S)c, then there is an even number of paths between the

two points @ € A and ¢ € C through B.

We next present some properties of finite relations relating to
Definition 3.1.

Proposition 3.2. Let A, B, and C be non-empty finite sets. Let
Rc AxB and S < BxC, with ae€ A and c¢c e C. Then (R-S)U
(RoS)=RoS and (R-S)N(R o S) = 0.

Proof. By Definition 3.1, clearly, R-S c RoS and R®© S c R-S.

Then (R-S)U(R® S)c R- S.

To prove RoS c (R-S)U(R © S), let (a,c¢) € RoS. Then, by the
normal composition, aR () Sc # &. This implies that | aR N Sc| = odd or
|aR N Sc| = even. By the odd composition and even composition,

(a,c)e R-Sor(a,c)e R® S. Hence, R-S < (R-S)U(R © S).

Thus, we have (R-S)U(R ® S)= Ro S.
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To prove (R-S)N(R ® S)=0, suppose that (a,c)e (R-S)N
(R® S) for some ae A and ¢ € C. Then (a,c)e R-S and (qa, c) e
R © S. By the odd composition and even composition, |aR N Sc| = odd
and |aR N Sc| = even. This is a contradiction and hence, (a,c)¢
(R-S)N(R® S) for every a € A and ¢ € C. Thus, we have (R-S)N
(Ro S)=0. 0

Proposition 3.3. Let A, B, and C be non-empty finite sets. Let
Rc AxBand S <« BxC, with a € A and ¢ € C. Then:

1.Let R=0 or S=0.Then R-S=R o S =0.

2. Let f be a function from Ato B. Then f-S = f o S.

3. Let g be an injective function from Bto C. Then R-g = Ro g.

Proof. (1) It is well known that RS =0 if R=0 or S = 0.
Then, by Proposition 3.2, (R-S)U (R © S) = O. This implies that R - S
=Ro S=0.

(2) First to show f ® S = O, suppose that (a,c) e f © S for some
a € A and ¢ € C. By the even composition, | af (| Sc| = even. This is a
contradiction because af is a singleton. Thus, f © S = O. Then, by
Proposition 3.2, we have f-S = f o S.

(3) By Proposition 3.2, clearly, R- g < Ro g. Toprove Rog c R g,
let (a, ¢) € R o g. By the normal composition and injectivity of g, we have
aR N gc = gc and | gc| =1. By the odd composition, this implies that
(a,c)e R-g. Then Rog c R-g. Thus,wehave R- g = Ro g. O

Proposition 3.4. Let A, B, and C be non-empty finite sets. Let
Rc AxB and S < BxC, with ac A and ¢ e C. Then (R-8)" =
ST.R'and Ro 8)'=5"1oRrR

Proof. Let (¢, a)e (R-S)™". Then, by the odd composition and

Proposition 2.2(2), we have
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(ca)e (R-S) & a(R-S)c & |aRN Sc| = odd
o |RaNeS™ = odd
o |eSTTNRa| = odd

o (c,a)e STH-R7L

This implies that (R-S)! = 871 . R7L.
In a similar fashion, we can also prove (R @ S) ! = St o R\ 0

4. Distributivity and Associativity of the Odd Composition

“
o

The ordinary composition (normal composition) is distributive

over the set union “J”. Similarly, we present the distributivity of the odd

[1%

composition “” over the symmetric difference “+”.

Lemma 4.1. Let A and B be finite sets. Then “| A + B| = odd” if and
only if “exclusive | A| = odd or | B| = odd”.
Proof. Let | A+ B|=t, |A|=m, | B|=n, and | A B| = k, where

t, m, n, and k are non-negative integers. Then ¢t = m + n — 2 x k, where +,

—, and x are the usual addition, subtraction, and multiplication on
numbers, respectively. By considering the equation above, the statement

1s proved. 0
Proposition 4.2. Let A, B, and C be non-empty finite sets. Then:
1.Let Rc AxBandS,T < BxC. Then
R-(S+T)=(R-S)+(R-T).

2. Let R,Sc AxBandT < BxC. Then
(R+8S)-T=(R-T)+(S-T).

Proof. (1) The following equality is well known: XN (Y + Z) =

(XNY)+(XNZ), where X, Y, and Z are sets.

Let (a,c)e R-(S+T), where a € A and c¢ € C. Then by the odd

composition and Proposition 2.4(4), we have
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(@,c)e R-(S+T)« |[aRN(S+T)c| = odd
< |aR N (Sc + Tc)| = odd.

By the equality above,
|aR N (Sc + Tc)| = odd <> | (@R N Sc)+ (aR N Tc)| = odd.
By Lemma 4.1,
|(@R N Sc)+ (aRNTc)| = odd <> exclusive |aR | Sc| = odd

or |aR N Tc| = odd. By the odd composition, exclusive | aR ) Sc|= odd
or [aRNTc| = odd <> exclusive (a,c)e R-S or (a,c)e R-T < (a, c)
€ (R-S)+(R-T). This implies that

R (S+T)=(R-S)+(R-T).

In a similar fashion, we can also prove (2). 0

“w _»

The ordinary composition (normal composition) “o” is associative.

[t

Similarly, we present the associativity of the odd composition

Lemma 4.3. Let A, B, C, and D be non-empty finite sets. Let
Rc AxB, M c BxC, and T < Cx D. Let M be a singleton such that
M ={(b, ¢)}, where b € B and ¢ € C. Then:

1. If a(R-M) = O for some a € A, then a(R-M) = {c} and aR
Mc = {b}.

2.If (M -T)d # @ for some d € D, then (M -T)d = {b} and bM N
Td = {c}.

Proof. (1) Let a(R-M)=@Q and @ # . Let ¢ be an arbitrary
element of @. Then a(R- M)q. By the odd composition, aR N Mq # &
and hence Mg # &. By considering the singleton M and the fact that
Mc = {b} # U, we have g = c. This implies @ = {¢} because ¢ is an
arbitrary element of @. Thus, we have a(R - M) = {c}. On the other hand,
a(R- M) = {c} implies a(R- M)c. Then, from the odd composition and
the fact that Mc = {b}, it follows that aR N Mc = {b}.
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2) Let (M-T)d #@. Then, (M-T)d =@ < dM-T) =@ &
AT M) = @. Clearly, M! is the singleton {(c, b)}. Then, by
equation (1), we have d(T™!- M) = {b} and dT7"' N M~1b = {c}. These
are equivalent to (M - T')d = {b} and bM N Td = {c}, respectively. 0

Lemma 4.4. Let A, B, C, and D be non-empty finite sets. Let R <
AxB, M c BxC, and T < Cx D. Let M be a singleton such that M =
{(b, ¢)}, where b e B and c € C. Then (R-M)- T =R-(M-T).

Proof. We show that (R-M)- T c R-(M-T) and R-(M-T) c
(R-M)-T.

Let (a,d)e(R-M)-T, where ae€ A and d e D. By the odd
composition, a(R - M)NTd # & and hence a(R - M) # &. By Lemma 4.3
(1), we have a(R- M) = {c¢} and aR Mc = {b}. This implies that {c}
Td and {b} < aR. By the fact that bM = {c¢}, we have bM N Td = {c}.
Then, by the odd composition, (b, d) e M -T and hence (M -T)d = &.
By Lemma 4.3 (2), we have (M -T)d = {b}. On the other hand, by the
fact that {b} < aR, we have aRN(M-T)d ={b}. By the odd
composition, (a, d) e R-(M -T). Hence, (R-M)- T c R-(M-T).

To prove the converse, let (a,d)e R-(M -T), where a € A and
d € D. By the odd composition, aR (M - T)d # & and hence (M -T)d
# . By Lemma 4.3 (2), we have (M -T)d = {b} and bM NTd = {c}.
This implies that {b} < aR and {c} < Td. By the fact that Mc = {b}, we
have aR N Mc = {b}. Then, by the odd composition, (a, c) e R-M and
hence a(R- M) # &. By Lemma 4.3 (1), we have a(R - M) = {c}. On the
other hand, by the fact that {c¢} < Td, we have a(R- M)NTd = {c}. By
the odd composition, (@, d) e (R-M)-T. Hence R- (M -T)c (R-M)-T.

Thus, we have (R-M)-T =R-(M -T). 0

Proposition 4.5. Let A, B, C, and D be non-empty finite sets. Let
RcAxB, ScBxC,and T cCxD. Then(R-S)-T=R-(S-T).
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Proof. Without loss of generality, we can write the following:
S=8 +8Sy+--+8,, where S; 1 <i<n) is a singleton such that

S; < Bx C and n is a positive integer.
By the distributivity of the odd composition,
R-S=R-(S;+Sg++S,)=R-S;+R-Sy+--+R-S,.
Then, by the distributivity of the odd composition,
(R-S)T=(R-S) T+(R-Sy)-T+--+(R-S,)-T.
By Lemma 4.4,
(R-S)T=R-(S;-T)+R-(Sy-T)+--+R-(S,,-T).
Then, by the distributivity of the odd composition,
(R-S)T=R-(S;-T+Sg-T+--+8,-T)
=R-((Sy+8Sqg+--+8S,)T)

In contrast to the odd composition, in general, the even composition

“®” 1s not associative. It can be checked by the following counterexample.

Example 4.6 (Counterexample). Let A, B, C, and D be non-empty
finite sets. Let R <« Ax B, S €« BxC, and T < C x D. Suppose that:

R = {(a7 bl)’ (a7 bZ)};
S = {(b1> cl)? (b17 CZ)’ (b27 cl)’ (b2? 02)7 (b27 CS)};
T = {(cl7 d)7 (62’ d)’ (C3, d)}’

where a € A, b,by€ B, ¢,c9,c3€ C, and d € D. Then (R® S) o0
T ={a,d}and Ro(SoT)=0a.

Proof. First we compute (R © S) o T.
Ro S:aRNSe = {b, by} N by, by} = {by, by}
aR SCZ = {bl’ bZ} N {bl’ b2} = {bl’ bZ};
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aR N Scg = {by, b} N {bg} = {ba}.
Then, by the even composition, R © S = {(a, ¢;), (a, c5)}. Let K =
R © S. Toobtain (R ® S) © T, we compute K © 7.
KoT:aK ﬂ Td = {Cl, Cg}ﬂ {Cl, Co, C3} = {Cl, C2}.
Then, by the even composition, K ® T = {(a, d)}. Hence (R® S)o T
= {(a, d)}.

Next we compute R © (S o T).

SoT:8SNTd ={cy, ca} Niey, ez, e3) = {e1, cafs
beS NTd = {c1, cg, c3} N {er, ca, 3} = {er, ca, €3
Then, by the even composition, S © T = {(b;, d)}. Let J =S © T. To

obtain R © (S © T'), we compute R © .

RodJd:aRNJd ={b, by} N{b}=1{} Then, by the even
composition, R © J = . Hence Ro (So T) = 2. 0

5. A Ring Related to Finite Relations

The associativity of the odd composition, together with the
distributivity over the symmetric difference, induces a “ring structure” on

finite relations. We present such a ring.

We first briefly review the definition and notation of a ring [1, 3]. Let
A be a set. Let “+” and “” be binary operations on A, which are called
addition and multiplication, respectively. Then the ordered triplet
(A, +, -) is a ring if it satisfies the following conditions.

RI 1. (A, +) is an abelian group.

RI 2. Multiplication “” is associative, and has unity.
RI 3. Foreachx,y, z € A:
Lx-(y+z)=(x-y)+(x-2).

2. (y+2)-x=(y-x)+(z-x).
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Let (A, +, -) be a ring. The elements of A that have a multiplicative
inverse are called the units of (A, +, ) Let U be the set of the units of
(A, +,-). Then (U, -) forms a group, which is called the unit group of
(A, + ).

The following gives a ring with binary operations “+” and “”, where
“+” 1s the symmetric difference and “” is the odd composition of finite

relations.

Proposition 5.1. Let A be a non-empty finite set, and let R4 be the
set of all relations on A. Let S, be the set of all bijections on A. Let i4 be
the identity function on A. Then:

1. The ordered triplet (Ry, +,-) is a ring with multiplicative unity iy .

2. Let (Uy, -) be the unit group of the ring (R4, +, -), and let R be
the multiplicative inverse of ReU,. Then R eU, and (R7! )WL =
(BT

3. (S4a, ) is a subgroup of the unit group (Uy, -).

Proof. (1) We show that the ordered triplet (R4, +, -) satisfies all the
conditions RI 1-RI 3 for a ring.

RI 1. Clearly, (R4, +) is an abelian group with additive unity O.

©»

RI 2. By Proposition 4.5, multiplication 1s associative. By the

properties of an odd composition, iy -R=i4 cR=R and R-iy =
Roiy =R for every R e Ry4. In other words, iy -R=R-iy =R for

[{%i

every R € R,4. This implies that i4 is the unity for the multiplication “”.

RI 3. Proof is immediate from the distributivity of the odd
composition over the symmetric difference.

Thus, (Ry4, +, -) is a ring with multiplicative unity iy.
(2) Let R € Uy. By the definition of Uy, we have R - Rt = RT.

R =1,4. Clearly, (R-R"Y'=(R"-R) =(14)'. Then, by the properties
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of an odd composition, (RT)! - R = R . (RT)! = 14. Then, by the
definition of U4, we have R™" € U, and (R™')T = (RT)™.

(3) By the properties of an odd composition, f-g = f o g for every
f. & € Sy. This implies that (S,, -) is a group that is isomorphic to the

symmetric group (S 4, °).

On the other hand, let f € S4. Then f_l € S, because f is a
bijective function on A. Then, by the properties of an odd composition,
f-ft=f"1.f=i4. By the definition of U,, we have f e U4 and
hence Sy < Uy. This implies that (Sy, ) is a subgroup of the unit
group (Uy, -). 0
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