GENERALIZED-CONVERGENCE OF FILTERS ON GENERALIZED TOPOLOGICAL SPACES

WON KEUN MIN

(Received August 31, 2006)

Abstract

We introduce the concepts of generalized-convergence of filters, g^* -sets and g^* -continuity. And we investigate characterizations of g^* -sets and g^* -continuity by using the concept of generalized-convergence of filters.

1. Introduction

Let X be a nonempty set. A subclass $\tau \subset P(X)$ is called a *generalized* topology on X [1] if $\emptyset \in \tau$ and τ is closed under arbitrary union. (X, τ) is called a *generalized topological space*. The members of τ are called generalized open sets. The complement of generalized open sets are called generalized closed sets. Let (X, τ) be a generalized topological space and $S \subset X$. The generalized-closure of S, denoted by $c_g(S)$, is the intersection of generalized closed sets including S. And the generalized-interior of S, denoted by $i_g(S)$, the union of generalized open sets included in S. Let (X, τ) and (Y, μ) be generalized topological spaces. A function $f: X \to Y$ is called (τ, μ) -continuous if the inverse image of each generalized open set of Y is a generalized open set in X. Let X be a topological. Let S be a

 $^{2000\} Mathematics\ Subject\ Classification:\ 54C08,\ 54A10,\ 54A20.$

Keywords and phrases: g^* -sets, g^* -continuous, generalized-neighborhood filters, generalized-convergence of filters.

subset of X. Then the closure (resp. interior) of S will be denoted by cl(S) (resp. int(S)). A subset S of X is said to be preopen [2] if $S \subset int(cl(S))$. The complement of a preopen set is said to be preclosed.

A subset P(x) of X is called a pre-neighborhood of a point $x \in X$ [4] if there exists a preopen set S such that $x \in S \subset P(x)$. In [3], the author introduced the concept of pre-convergence of filters. Now we recall the concept of pre-convergence of filters. Let $PO(x) = \{A \in PO(X) : x \in A\}$ and let $P_x = \{A \subset X :$ there exists $\mu \subset PO(x)$ such that μ is finite and $\cap \mu \subset A\}$. Then P_x is called the pre-neighborhood filter at x. For any filter \mathcal{F} on X, we say that \mathcal{F} pre-converges to x if \mathcal{F} is finer than the pre-neighborhood filter P_x at x. Here x is a filter generated by the singleton set x.

In this paper, we introduce the concept of generalized open neighborhood filter and generalized-convergence of filters on a generalized topological space. Also we introduce g^* -sets which are defined by the generalized open neighborhood filter. By using the concept of generalized-convergence of filters, we investigate some properties of g^* -sets and g^* -continuity.

2. Generalized-convergence of Filters

Definition 2.1. Let (X, τ) be a generalized topological space and let $G(x) = \{A \in \tau : x \in A\}$ for each $x \in X$. Then we call $\mathcal{G}_x = \{A \subset X :$ there exists $\mu \subset G(x)$ such that μ is finite and $\cap \mu \subset A\}$ the generalized-neighborhood filter at x.

Definition 2.2. Let (X, τ) be a generalized topological space and let \mathcal{F} be a filter on X. We say that \mathcal{F} generalized-converges to x if \mathcal{F} is finer than the generalized-neighborhood filter \mathcal{G}_x .

Definition 2.3. Let (X, τ) be a generalized topological space and let \mathcal{F} be a filter on X. We say that \mathcal{F} has a generalized-cluster point x if every $F \in \mathcal{F}$ meets each $U \in G(x)$.

Remark. It is evident from the definition that a filter \mathcal{F} has a generalized-cluster point x if and only if $x \in \cap c_g(F)$ for every $F \in \mathcal{F}$.

Definition 2.4. Let (X, τ) be a generalized topological space and let \mathcal{F} be a filter on X. We say that \mathcal{F} has a *strong generalized-cluster point* x if every $F \in \mathcal{F}$ meets each $U \in \mathcal{G}_x$.

Every strong generalized-cluster point of a generalized topological space is a generalized-cluster point. But the converse is not always true.

Example 2.5. Consider a set $S = \{(a, b] : a, b \in R\} \cup \{[c, d) : c, d \in R\}$ on the real number set R; then $\tau(S) = \{\bigcup S^* : S^* \text{ is any subclass of } S\}$ is a generalized topology. Let $x \in X$ be an arbitrary point. Then the filter $\mathcal{F} = \{R - \{x\}, R\}$ generalized-clusters at x. But x is not a strong generalized-cluster point of \mathcal{F} , since $\{x\} \in \mathcal{G}_x$.

Theorem 2.6. Let (X, τ) be a generalized topological space and let \mathcal{F} be a filter on X. Then \mathcal{F} has x as a strong generalized-cluster point if and only if there is a finer filter \mathcal{H} than \mathcal{F} such that \mathcal{H} generalized-converges to x.

Proof. If \mathcal{F} has a point x as a strong generalized-cluster point, then the collection $\mathcal{H}=\{G\cap F:G\in\mathcal{G}_x,\,F\in\mathcal{F}\}$ is a filter base for a filter which is finer than both \mathcal{F} and \mathcal{G}_x . Thus \mathcal{H} generalized-converges to x.

Conversely, if $\mathcal{F} \subset \mathcal{H}$ and \mathcal{H} generalized-converges to x, then \mathcal{F} strongly generalized-clusters at x.

We recall that if \mathcal{F} is a filter on X and $f: X \to Y$ is a function, then $f(\mathcal{F})$ is the filter on Y having for a filter base the collection of f(F) for every $F \in \mathcal{F}$.

Theorem 2.7. Let (X, τ) and (Y, μ) be generalized topological spaces. If a function $f: X \to Y$ is (τ, μ) -continuous at $x \in X$, then whenever a filter \mathcal{F} on X generalized-converges to x in X, $f(\mathcal{F})$ generalized-converges to f(x) in Y. **Proof.** Suppose f is (τ, μ) -continuous at x and a filter \mathcal{F} generalized-converges to x. If V is an element of the generalized-neighborhood filter $\mathcal{G}_{f(x)}$, there are generalized open sets V_1, \ldots, V_n such that $f(x) \in V_1 \cap \cdots \cap V_n \subset V$. And since f is (τ, μ) -continuous, there are generalized open sets U_1, \ldots, U_n in X such that $x \in U_1 \cap \cdots \cap U_n$ and $f(U_1) \subset V_1, \ldots, f(U_n) \subset V_n$. Thus we get $f(U_1 \cap \cdots \cap U_n) \subset V$, and since $U_1 \cap \cdots \cap U_n$ is an element of the generalized-neighborhood filter \mathcal{G}_x and \mathcal{F} is a finer filter than \mathcal{G}_x , we can say the set V contained in $\mathcal{G}_{f(x)}$ is also an element of $f(\mathcal{F})$.

3.
$$g^*$$
-sets

Definition 3.1. Let (X, τ) be a generalized topological space. A subset U of X is called a g^* -set in X if either U is empty or $U \in \mathcal{G}_x$ for all $x \in U$.

The class of all g^* -sets induced by the generalized topology τ will be denoted by $g_{\tau}^*(X)$ (simply $g^*(X)$).

Remark. From the concept of generalized-neighborhood filters and g^* -sets, we can easily show every generalized open set is a g^* -set, but the converse is not always true.

Example 3.2. From Example 2.5, we can say any subset $\{x\}$ in X is a g^* -set but not a generalized open set.

Definition 3.3. Let (X, τ) be a generalized topological space. The g^* -interior of a set A in X, denoted by $g^*I(A)$, is the union of all g^* -sets contained in A.

Theorem 3.4. Let (X, τ) be a generalized topological space and $A \subset X$. Then

- (a) $g^*I(A) = \{x \in A : A \in \mathcal{G}_x\}.$
- (b) A is g^* -set if and only if $A = g^*I(A)$.

Proof. (a) For each $x \in g^*I(A)$, there exists a g^* -set U such that $x \in U$ and $U \subset A$. From the concept of g^* -sets, the subset U is in the generalized-neighborhood filter \mathcal{G}_x . And since \mathcal{G}_x is a filter, $A \in \mathcal{G}_x$.

Conversely, let $A \in \mathcal{G}_x$, then there exist $U_1, \ldots, U_n \in G(x)$ such that $U = U_1 \cap \cdots \cap U_n \subset A$. Thus U is a g^* -set containing x. Therefore we get $x \in g^*I(A)$.

(b) Obvious.

Theorem 3.5. Let (X, τ) be a generalized topological space. Then the class $g^*(X)$ of all g^* -sets in X is a topology on X.

Proof. Since \varnothing is a generalized open set, it is also a g^* -set in X. X is a g^* -set because for every x in X, \mathcal{G}_x contains X.

Let A and B be non-disjoint g^* -sets. For $x \in A \cap B$, since \mathcal{G}_x is a filter, the intersection of A and B is also an element of \mathcal{G}_x . Thus $A \cap B$ is a g^* -set.

For each $\alpha \in I$, let $A_{\alpha} \in g^*(X)$ and $U = \bigcup A_{\alpha}$. For each $x \in U$, there exists a subset A_{α} of U such that $x \in A_{\alpha}$ and $A_{\alpha} \in \mathcal{G}_x$, and since \mathcal{G}_x is a filter, U is an element of the filter \mathcal{G}_x . Thus $U = \bigcup A_{\alpha}$ is a g^* -set.

Let (X, τ) be a generalized topological space. For a subset B of X, we call B a g^* -closed set if the complement of B is a g^* -set. From Theorem 3.5, the intersection of any family of g^* -closed sets is a g^* -closed set and the union of finitely many g^* -closed sets is a g^* -closed set.

Definition 3.6. Let (X, τ) be a generalized topological space and $A \subset X$. Then $g^*cl(A) = \{x \in X : A \cap U \neq \emptyset \text{ for all } U \in \mathcal{G}_x\}$. We call $g^*cl(A)$ the g^* -closure of A.

Now we can get the following.

Remark. It is evident from Definition 2.4 that a filter \mathcal{F} has a strong generalized-cluster point x if and only if $x \in \bigcap g^* cl(F)$ for every $F \in \mathcal{F}$.

Theorem 3.7. Let (X, τ) be a generalized topological space. For $A \subset X$,

- (1) $A \subset g^*cl(A)$.
- (2) A is g^* -closed if and only if $A = g^*clA$.
- (3) $g^*I(A) = X g^*cl(X A)$.
- (4) $g^*cl(A) = X g^*I(X A)$.

Theorem 3.8. Let (X, τ) be a generalized topological space. Then $x \in g^*cl(A)$ if and only if there exists a filter \mathcal{F} on X such that $A \in \mathcal{F}$ and \mathcal{F} generalized-converges to x.

Proof. Let $x \in g^*cl(A)$. Then the collection $\mathcal{B} = \{U \cap A : U \in \mathcal{G}_x\}$ is a filter base. The filter \mathcal{F} generated by filter base \mathcal{B} generalized-converges to x and $A \in \mathcal{F}$. Suppose that there is a filter \mathcal{F} generalized-converging to x such that $A \in \mathcal{F}$. Since \mathcal{F} contains \mathcal{G}_x and \mathcal{F} is a filter, for all $U \in \mathcal{G}_x$, $U \cap A \neq \emptyset$. Thus $x \in g^*cl(A)$.

Theorem 3.9. Let (X, τ) be a generalized topological space. A set G is g^* -closed if and only if whenever \mathcal{F} generalized-converges to x and $G \in \mathcal{F}$, $x \in G$.

4. g-continuity and g^* -continuity

Definition 4.1. Let (X, τ) and (Y, μ) be generalized topological spaces. A function $f: X \to Y$ is called *g-continuous* if the inverse image of each generalized open set of Y is a g^* -set in X.

Theorem 4.2. Let (X, τ) and (Y, μ) be generalized topological spaces and let $f: X \to Y$ be a function. Then the following statements are

equivalent:

- (1) f is g-continuous.
- (2) The inverse image of each generalized closed set in Y is g^* -closed.
- (3) $g^*cl(f^{-1}(B)) \subset f^{-1}(c_g(B))$ for every $B \subset Y$.
- (4) $f(g^*cl(A)) \subset c_{\sigma}(f(A))$ for every $A \subset X$.
- (5) $f^{-1}(i_{\mathfrak{g}}(B)) \subset g^*I(f^{-1}(B))$ for every $B \subset Y$.

Definition 4.3. Let (X, τ) and (Y, μ) be generalized topological spaces. A function $f: X \to Y$ is called g^* -continuous if the inverse image of each g^* -set of Y is an g^* -set in X.

Remark. From Definition 4.1, we can say that every g^* -continuous function is g-continuous.

Theorem 4.4. Let (X, g) and (Y, h) be generalized topological spaces. If $f: X \to Y$ is g-continuous, then it is also g^* -continuous.

Proof. Let U be a g^* -set in Y. For each $x \in f^{-1}(U)$, there exist $U_1, ..., U_n \in G(f(x))$ such that $f(x) \in U_1 \cap \cdots \cap U_n \subset U$. Since f is g-continuous, $f^{-1}(U_1), ..., f^{-1}(U_n)$ are g^* -sets and $x \in f^{-1}(U_1) \cap \cdots \cap f^{-1}(U_n) \subset f^{-1}(U)$. From Definition 3.3, we get $x \in g^*I(f^{-1}(U))$. Thus $f^{-1}(U)$ is a g^* -set from Theorem 3.4 (b).

Since the class of all g^* -sets in a given generalized topological space is also a topology, we get the following equivalent statements.

Theorem 4.5. Let (X, τ) and (Y, μ) be generalized topological spaces. Then the following are equivalent:

- (1) f is g^* -continuous.
- (2) The inverse image of each g^* -closed set in Y is an g^* -closed set.
- (3) $g^*cl(f^{-1}(V)) \subset f^{-1}(g^*cl(V))$, for every $V \subset Y$.

- (4) $f(g^*cl(U)) \subset g^*cl(f(U))$, for every $U \subset X$.
- (5) $f^{-1}(g^*I(B)) \subset g^*I(f^{-1}(B))$, for every $B \subset Y$.

Theorem 4.6. Let $f:(X,\tau) \to (Y,\mu)$ be a function between generalized topological spaces. Then the following are equivalent:

- (1) f is g^* -continuous.
- (2) For $x \in X$ and for each $V \in \mathcal{G}_{f(x)}$, there exists an element U in the generalized-neighborhood filter \mathcal{G}_x such that $f(U) \subset V$.
- (3) For each $x \in X$, if a filter \mathcal{F} generalized-converges to x, then $f(\mathcal{F})$ generalized-converges to f(x) in Y.

Proof. (1) \Rightarrow (2) It is obvious.

- $(2)\Rightarrow (3)$ Let V be an element of the generalized-neighborhood filter $\mathcal{G}_{f(x)}$ and let \mathcal{F} be a filter on X generalized-converging to x. Then $f(\mathcal{G}_x)\subset f(\mathcal{F})$, and since there exists an element U in \mathcal{G}_x such that $f(U)\subset V$ and $f(\mathcal{F})$ is a filter, we can say $V\in f(\mathcal{F})$. Consequently $f(\mathcal{F})$ generalized-converges to f(x).
- $(3)\Rightarrow (1)$ Let V be any g^* -set in Y and suppose $f^{-1}(V)$ is not empty. For each $x\in f^{-1}(V)$, since the generalized-neighborhood filter \mathcal{G}_x generalized-converges to x, $f(\mathcal{G}_x)$ generalized-converges to x. Since V is a g^* -set containing f(x) and $\mathcal{G}_{f(x)}\subset f(\mathcal{G}_x)$, V is an element of $f(\mathcal{G}_x)$. Thus now we can take some g^* -set U in \mathcal{G}_x such that $f(U)\subset V$. Thus $U\subset f^{-1}(V)$ and $f^{-1}(V)$ is an element of \mathcal{G}_x . Therefore $f^{-1}(V)$ is a g^* -set in X by Theorem 3.4 (b).

Remark. Let $f:(X, \tau) \to (Y, \mu)$ be a function between generalized topological spaces. Then we can get the following diagrams:

 (τ, μ) -continuity \Rightarrow g-continuity \Leftrightarrow g^* -continuity.

References

- [1] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96(4) (2002), 351-357.
- [2] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [3] W. K. Min, Pre-convergence of filters and $p\gamma$ -continuity, Sci. Math. Jpn. 60(1) (2004), 149-156.
- [4] G. B. Navalagi, Pre-neighborhoods, Math. Ed. 32(4) (1998), 201-206.

Department of Mathematics Kangwon National University Chuncheon, 200-701, South Korea e-mail: wkmin@cc.kangwon.ac.kr

