ON A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY A NEW MULTIPLIER INTEGRAL OPERATOR

F. M. AL-OBOUDI and Z. M. AL-QAHTANI

(Received October 17, 2006)

Abstract

In this paper, we introduce a class of analytic functions $M^n_{\lambda}[A,B]$ defined by a new integral operator $I^n_{\lambda}f$, where $I^0_{\lambda}f(z)=f(z)$, $I^1_{\lambda}f(z)=f(z)$

$$\frac{1}{\lambda z^{\frac{1}{\lambda}-1}}\int_0^z t^{\frac{1}{\lambda}-2}f(t)dt=I_{\lambda}f(z),\quad \lambda>0,\quad I_{\lambda}^2f(z)=I_{\lambda}(I_{\lambda}^1f(z)),\,...,\,I_{\lambda}^nf(z)=I_{\lambda}(I_{\lambda}^1f(z))$$

 $I_{\lambda}(I_{\lambda}^{n-1}f(z)), n \in \mathbb{N}$. Using differential subordinations, certain results concerning inclusion relation, integral operator defined on this class and other results are given.

1. Introduction

Let $\mathcal{H}(U)$ be the set of all analytic functions in the open unit disc $U=\{z\in\mathbb{C}:|z|<1\}$ and let \mathcal{A} be the class of analytic functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad (z \in U).$$
 (1.1)

 $2000\ Mathematics\ Subject\ Classification:\ 30C45.$

Keywords and phrases: univalent functions, integral operator, differential subordination.

© 2007 Pushpa Publishing House

The Hadamard product or Convolution of two power series f(z) = z +

$$\sum_{k=2}^{\infty} a_k z^k$$
 and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$ is defined [2] as the power series

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k.$$

An analytic function f(z) on U is said to be *subordinate* to an analytic function g(z) on U (written $f(z) \prec g(z)$) if g(z) is univalent, f(0) = g(0)and $f(U) \subset g(U)$, but if g(z) is not univalent we say that f(z) is subordinate to g(z) [4], if $f(z) = g(\phi(z))$, $z \in U$, for some analytic function $\phi(z)$ with $\phi(0) = 0$ and $|\phi(z)| < 1$, $z \in U$. For an analytic function f(z) given by (1.1), Sălăgean [6] defined the integral operator $I^n f$, $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, by

$$I^0 f(z) = f(z)$$

$$I^{1}f(z) = \int_{0}^{z} \frac{f(t)}{t} dt = If(z)$$

$$\vdots$$

$$I^n f(z) = I(I^{n-1} f(z)), \ z \in U.$$

Thus

$$I^n f(z) = z + \sum_{k=2}^{\infty} k^{-n} \alpha_k z^k.$$

Further, the integral operator I^n can be written

$$I^n f(z) = (\underbrace{h * h * \cdots * h}_{n \text{ times}} * f)(z),$$

where $h(z) = -\log(1-z)$.

For an analytic function f(z) given by (1.1), Al-Oboudi differential operator D_{λ}^{n} , $n \in \mathbb{N}_{0}$, $\lambda \geq 0$ is defined [1] by

$$D_{\lambda}^{0}f(z) = f(z)$$

$$D_{\lambda}^{1}f(z) = (1 - \lambda)f(z) + \lambda z f'(z) = D_{\lambda}f(z)$$

$$\vdots$$

$$D_{\lambda}^{n}f(z) = D_{\lambda}(D_{\lambda}^{n-1}f(z)), \quad n \in \mathbb{N}.$$

Thus

$$D_{\lambda}^n f(z) = z + \sum_{k=2}^{\infty} (1 + \lambda(k-1))^n a_k z^k, \quad n \in \mathbb{N}_0.$$

Now we shall define an integral operator, which generalize Sălăgean integral operator.

2. Definitions

Definition 2.1. Let $f(z) \in \mathcal{A}$. We define the integral operator $I_{\lambda}^n f$, $n \in \mathbb{N}_0$, $\lambda > 0$, by

$$I_{\lambda}^{0}f(z) = f(z),$$

$$I_{\lambda}^{1}f(z) = \frac{1}{\lambda z^{\frac{1}{\lambda}-1}} \int_{0}^{z} t^{\frac{1}{\lambda}-2} f(t) dt = I_{\lambda}f(z)$$

$$I_{\lambda}^{2}f(z) = \frac{1}{\lambda z^{\frac{1}{\lambda}-1}} \int_{0}^{z} t^{\frac{1}{\lambda}-2} I_{\lambda}^{1}f(t) dt$$

$$\vdots$$

$$I_{\lambda}^{n}f(z) = \frac{1}{\lambda z^{\frac{1}{\lambda}-1}} \int_{0}^{z} t^{\frac{1}{\lambda}-2} I_{\lambda}^{n-1}f(t) dt, \quad n \in \mathbb{N}.$$

$$(2.1)$$

Remark 2.1. If $f(z) \in \mathcal{A}$, then $I_{\lambda}^n f(z) = z + \sum_{k=2}^{\infty} \frac{a_k}{\left(1 + \lambda(k-1)\right)^n} z^k$.

Remark 2.2. If $\lambda = 1$, then we get the Sălăgean integral operator.

Remark 2.3. If $f(z) \in \mathcal{A}$, then $I_{\lambda}^{n}(D_{\lambda}^{n}f(z)) = D_{\lambda}^{n}(I_{\lambda}^{n}f(z)) = f(z)$.

Remark 2.4. If $f(z) \in \mathcal{A}$, then $I_{\lambda}^{n}(I_{\lambda}^{m}f(z)) = I_{\lambda}^{n+m}f(z)$, $n, m \in \mathbb{N}_{0}$.

Remark 2.5. If $f(z) \in \mathcal{A}$ and $g(z) = z_2 F_1\left(1, \frac{1}{\lambda}; \frac{1}{\lambda} + 1; z\right)$, then

$$I_{\lambda}^{n} f(z) = \underbrace{(g * g * \dots * g}_{n \text{ times}} * f)(z), \tag{2.2}$$

where the function ${}_2F_1(a,\,b;\,c;\,z)=1+\frac{a\cdot b}{1\cdot c}\,z+\frac{a(a+1)\cdot b(b+1)}{2!\cdot c(c+1)}\,z^2+\cdots,$ for any real or complex numbers $a,\,b$ and $c,\,(c\neq 0,\,-1,\,-2,\,\ldots)$ is called the hypergeometric series which represents an analytic function in U. If $\lambda=1$, then $z\,{}_2F_1\!\left(1,\,\frac{1}{\lambda}\,;\,\frac{1}{\lambda}+1;\,z\right)=-Log(1-z).$

Remark 2.6. If $f(z) \in \mathcal{A}$ and the integral operator $I_{\lambda}^{n} f(z)$ is given by (2.1), then

$$I_{\lambda}^{n} f(z) = (1 - \lambda) I_{\lambda}^{n+1} f(z) + \lambda z (I_{\lambda}^{n+1} f(z))'.$$
 (2.3)

Using the operator I_n^{λ} , we now introduce a subclass of $\mathcal A$ as follows:

Definition 2.2. A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{M}_{\lambda}^{n}[A, B]$ $(-1 \le B < A \le 1)$ if and only if

$$\frac{I_{\lambda}^{n}f(z)}{I_{\lambda}^{n+1}f(z)} \prec \frac{1+Az}{1+Bz},\tag{2.4}$$

for $z \in U$, where the symbol ' \prec ' stand for subordination. Let

$$\mathcal{M}_{\lambda}^{n}[1-2\alpha,-1] = \mathcal{M}_{\lambda}^{n}(\alpha),$$

where $\mathcal{M}_{\lambda}^{n}(\alpha)$ denotes the class of functions $f(z) \in \mathcal{A}$, which satisfies the condition

$$\operatorname{Re}\left(\frac{I_{\lambda}^{n}f(z)}{I_{\lambda}^{n+1}f(z)}\right) > \alpha, \quad (0 \le \alpha < 1, \ \lambda > 0, \ z \in U).$$

3. Preliminary Lemmas

Lemma 3.1 [3]. Let $\beta, \gamma \in \mathbb{C}$, let $h(z) \in \mathcal{H}(U)$ be convex univalent in U, with h(0) = 1 and $\text{Re}(\beta h(z) + \gamma) > 0$, $z \in U$ and let $p(z) \in \mathcal{H}(U)$, $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$. Then

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z) \Rightarrow p(z) \prec h(z). \tag{3.1}$$

If the differential equation

$$q(z) + \frac{zq'(z)}{\beta q(z) + \gamma} = h(z), \quad q(0) = 1$$

has a univalent solution q(z), then

$$p(z) \prec q(z) \prec h(z)$$

and q(z) is the best dominant (i.e., $p(z) \prec q(z)$ for all p(z) satisfying (3.1) and if $p(z) \prec s(z)$, then $q(z) \prec s(z)$).

Lemma 3.2 [5]. If $-1 \le B < A \le 1$, B > 0 and the complex number γ satisfy that $\text{Re}(\gamma) \ge -\beta \frac{1-A}{1-B}$, then the differential equation

$$q(z) + \frac{zq'(z)}{\beta q(z) + \gamma} = \frac{1 + Az}{1 + Bz}$$

has a univalent solution in U given by

$$q(z) = \begin{cases} \frac{z^{\beta+\gamma}(1+Bz)^{\beta}\left(\frac{A-B}{B}\right)}{\beta \int_{0}^{z} t^{\beta+\gamma-1}(1+Bt)^{\beta}\left(\frac{A-B}{B}\right) dt} - \frac{\gamma}{\beta}, & B \neq 0\\ \frac{z^{\beta+\gamma}e^{\beta Az}}{\beta \int_{0}^{z} t^{\beta+\gamma-1}e^{\beta At} dt} - \frac{\gamma}{\beta}, & B = 0. \end{cases}$$
(3.2)

If p(z) is analytic in U and satisfies

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec \frac{1 + Az}{1 + Bz}, \quad (z \in U)$$

then

$$p(z) \prec q(z) \prec \frac{1 + Az}{1 + Bz}$$

and q(z) is the best dominant.

Lemma 3.3 [8]. Let μ be a positive measure on the unit interval [0, 1]. Let g(t, z) be an analytic function in U, for each $t \in [0, 1]$, and integrable in t for each $z \in U$ and for almost all $t \in [0, 1]$, and suppose that $\operatorname{Re} g(t, z) > 0$ on U, g(t, -r) is real and $\operatorname{Re} \frac{1}{g(t, z)} \ge \frac{1}{g(t, -r)}$, for $|z| \le r$ and $t \in [0, 1]$. If $g(z) = \int_0^1 g(t, z) d\mu(t)$, then $\operatorname{Re} \frac{1}{g(z)} \ge \frac{1}{g(-r)}$, $|z| \le r$.

Lemma 3.4 [7]. For real or complex numbers a, b and c $(c \neq 0, -1, -2, ...)$, Re(c) > Re(b) > 0, we have

$$\int_{0}^{1} t^{b-1} (1-t)^{c-b-1} (1-tz)^{-a} dt = \frac{\Gamma(b)\Gamma(c-b)}{\Gamma(c)} {}_{2}F_{1}(a, b; c; z), \quad (3.3)$$

$$_{2}F_{1}(a, b; c; z) = {}_{2}F_{1}(b, a; c; z),$$
 (3.4)

$$_{2}F_{1}(a, b; c; z) = (1 - z)^{-a} {}_{2}F_{1}(a, c - b; c; \frac{z}{z - 1}),$$
 (3.5)

$$(b+1)_2F_1(1, b; b+1; z) = (b+1) + bz_2F_1(1, b+1; b+2; z).$$
 (3.6)

Lemma 3.5. Let h(z) be convex univalent in U, with h(0) = 1 and Re(h(z)) > 0, and let $f(z) \in A$. Then

$$\frac{I_{\lambda}^{n}f(z)}{I_{\lambda}^{n+1}f(z)} \prec h(z) \Rightarrow \frac{I_{\lambda}^{n+1}f(z)}{I_{\lambda}^{n+2}f(z)} \prec h(z), \quad z \in U.$$
 (3.7)

Proof. Let

$$p(z) = \frac{I_{\lambda}^{n+1} f(z)}{I_{\lambda}^{n+2} f(z)}.$$
 (3.8)

Then p(z) is analytic in U and $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$. Logarithmic differentiation of both sides of (3.8) gives

$$\frac{\lambda z p'(z)}{p(z)} = \frac{\lambda z (I_{\lambda}^{n+1} f(z))'}{I_{\lambda}^{n+1} f(z)} - \frac{\lambda z (I_{\lambda}^{n+2} f(z))'}{I_{\lambda}^{n+2} f(z)}.$$

From (2.3) we obtain

$$p(z) + \frac{zp'(z)}{\frac{1}{\lambda}p(z)} = \frac{I_{\lambda}^n f(z)}{I_{\lambda}^{n+1} f(z)}.$$

Using Lemma 3.1, for $\beta = \frac{1}{\lambda}$, $\gamma = 0$ we obtain

$$\frac{I_{\lambda}^{n+1}f(z)}{I_{\lambda}^{n+2}f(z)} \prec h(z).$$

4. Main Results

Theorem 4.1.

$$\mathcal{M}^n_{\lambda}[A, B] \subseteq \mathcal{M}^{n+1}_{\lambda}[A, B].$$

Proof. Let $f(z) \in \mathcal{M}_{\lambda}^{n}[A, B]$. Then from (2.4) and Lemma 3.5, by choosing $h(z) = \frac{1 + Az}{1 + Bz}$, we have

$$\frac{I_{\lambda}^{n}f(z)}{I_{\lambda}^{n+1}f(z)} < \frac{1+Az}{1+Bz} \Rightarrow \frac{I_{\lambda}^{n+1}f(z)}{I_{\lambda}^{n+2}f(z)} < \frac{1+Az}{1+Bz},$$

hence $f(z) \in \mathcal{M}_{\lambda}^{n+1}[A, B]$, which is the required result.

We also have a better result than Theorem 4.1.

Theorem 4.2. Let $(-1 \le B < A \le 1)$, $\lambda > 0$ and $n \in \mathbb{N}_0$. If $f(z) \in \mathcal{M}^n_{\lambda}[A, B]$, then

$$\frac{I_{\lambda}^{n+1}f(z)}{I_{\lambda}^{n+2}f(z)} \prec \frac{1}{Q(z)} = \widetilde{q}(z),\tag{4.1}$$

where

$$Q(z) = \begin{cases} \frac{1}{\lambda} \int_{0}^{1} t^{\frac{1}{\lambda} - 1} \left(\frac{1 + Bzt}{1 + Bz} \right)^{\frac{1}{\lambda} \left(\frac{A - B}{B} \right)} dt, & B \neq 0 \\ \frac{1}{\lambda} \int_{0}^{1} t^{\frac{1}{\lambda} - 1} e^{\frac{1}{\lambda} A(t - 1)z} dt, & B = 0 \end{cases}$$
(4.2)

and $\tilde{q}(z)$ is the best dominant of (4.1). Furthermore, if $1 + \frac{A}{\lambda B} > 0$ with B < 0, then

$$\mathcal{M}_{\lambda}^{n}[A, B] \subset \mathcal{M}_{\lambda}^{n+1}(\rho_{1}(A, B, \lambda)),$$
 (4.3)

where

$$\rho_1(A,\ B,\ \lambda) = \left(\,{}_2F_1\!\!\left(1,\,\frac{1}{\lambda}\!\left(\frac{B-A}{B}\right)\!;\,\frac{1}{\lambda}+1;\,\frac{B}{B-1}\right)\right)^{\!-1}\!.$$

The result is best possible.

Proof. Let $f \in \mathcal{M}_{\lambda}^{n}[A, B]$, and let

$$B$$
], and let
$$p(z) = \frac{I_{\lambda}^{n+1} f(z)}{I_{\lambda}^{n+2} f(z)}. \tag{4.4}$$

Then p is analytic in U and p(0) = 1. Making use of the logarithmic differentiation on both sides of (4.4) and simplifying the resulting equation, we deduce that

$$p(z) + \frac{zp'(z)}{\frac{1}{\lambda}p(z)} = \frac{I_{\lambda}^{n}f(z)}{I_{\lambda}^{n+1}f(z)} \prec \frac{1 + Az}{1 + Bz}.$$
 (4.5)

By Lemma 3.2, we obtain

$$p(z) \prec q(z) \prec \frac{1+Az}{1+Bz}$$
,

where q(z) is the best dominant of (4.5) and is given by (3.2) for $\beta = \frac{1}{\lambda}$ and $\gamma = 0$. Now, rewriting q(z) by changing the variables, we get

$$p(z) \prec Q^{-1}(z) = \widetilde{q}(z).$$

Next we show that

$$\inf_{|z|<1} \operatorname{Re}\{\widetilde{q}(z)\} = \widetilde{q}(-1). \tag{4.6}$$

If we set $a = \frac{1}{\lambda} \left(\frac{B-A}{B} \right)$, $b = \frac{1}{\lambda}$ and c = b+1, then c > b > 0. From (4.2) by using (3.3) and (3.4) we see that, for $B \neq 0$

$$Q(z) = {}_{2}F_{1}\left(1, \ \alpha; \ 1 + \frac{1}{\lambda}; \frac{Bz}{1 + Bz}\right). \tag{4.7}$$

To prove (4.6), we show that $\operatorname{Re}\left(\frac{1}{Q(z)}\right) \geq \frac{1}{Q(-1)}$, $z \in U$. For $1 + \frac{A}{\lambda B} > 0$ and B < 0 (so that c > a > 0) we can rewrite (4.7) as

$$Q(z) = \int_0^1 g(t, z) d\mu(t),$$

where μ is a positive measure on [0, 1], g(t, z) is an analytic function in U for $t \in [0, 1]$ and integrable in t for each $z \in U$ and for almost all $t \in [0, 1]$.

For B<0, we have $\operatorname{Re}\{g(t,z)\}>0$, g(t,-r) is real for $0\leq r<1$, $t\in[0,1]$ and

$$\operatorname{Re} \frac{1}{g(t,z)} = \operatorname{Re} \frac{1 + (1-t)Bz}{1 + Bz} \ge \frac{1 - (1-t)Br}{1 - Br} = \frac{1}{g(t,-r)},$$

for $|z| \le r < 1$ and $t \in [0, 1]$.

Therefore by using Lemma 3.3 and by letting $r \to 1^-$, we obtain

$$\operatorname{Re} \frac{1}{Q(z)} \ge \frac{1}{Q(-1)}, |z| < 1.$$

This by (4.1) leads to (4.3)

If we put $A=1-2\alpha$ $(0 \le \alpha < 1)$ and B=-1 in Theorem 4.2, then we obtain

Corollary 4.1. Let $0 \le \alpha < 1$, $\lambda > 0$, $2\alpha > 1 - \lambda$ and $n \in \mathbb{N}_0$. Then

$$\mathcal{M}_{\lambda}^{n}(\alpha) \subset \mathcal{M}_{\lambda}^{n+1}(\beta(\alpha, \lambda)),$$

where $\beta(\alpha, \lambda)$ is given by

$$\beta(\alpha, \lambda) = \left\{ {}_{2}F_{1}\left(1, \frac{2}{\lambda}(1-\alpha); \frac{1}{\lambda}+1; \frac{1}{2}\right) \right\}.$$

The result is the best possible.

For a function $f \in \mathcal{A}$, the function $\mathcal{F}_{\mu}(z)$ is defined by

$$\mathcal{F}_{\mu}(z) = \frac{\mu + 1}{z^{\mu}} \int_{0}^{z} t^{\mu - 1} f(t) dt, \tag{4.8}$$

where $\mu + 1 > 0$, $z \in U$ and

$$\mathcal{F}_{\mu}(z) = I_{\frac{1}{\mu+1}}^{1} f(z)$$

$$= \left(z + \sum_{k=2}^{\infty} \frac{\mu+1}{\mu+k} z^{k}\right) * f(z)$$

$$= z + \sum_{k=2}^{\infty} \frac{\mu+1}{\mu+k} a_{k} z^{k}.$$

It is easy to see that

$$z(I_{\lambda}^{n}\mathcal{F}_{\mu}(z))' = (\mu + 1)I_{\lambda}^{n}f(z) - \mu I_{\lambda}^{n}\mathcal{F}_{\mu}(z). \tag{4.9}$$

Theorem 4.3. Let $-1 \le B < A \le 1$ and

$$\lambda(\mu + 1) - 1 \ge -\frac{1 - A}{1 - B}.\tag{4.10}$$

(i) If $f(z) \in \mathcal{M}^n_{\lambda}[A, B]$, then the function $\mathcal{F}_{\mu}(z)$ defined by (4.8) satisfies

$$\frac{I_{\lambda}^{n}\mathcal{F}_{\mu}(z)}{I_{\lambda}^{n+1}\mathcal{F}_{\mu}(z)} \prec \frac{1}{Q_{1}(z)} - (\lambda(\mu+1)-1) = \widetilde{q}_{1}(z), \tag{4.11}$$

where

$$Q_{1}(z) = \begin{cases} \int_{0}^{1} \frac{t^{\mu}}{\lambda} \left(\frac{1 + Bzt}{1 + Bz}\right)^{\frac{1}{\lambda} \left(\frac{A - B}{B}\right)} dt, & B \neq 0\\ \int_{0}^{1} \frac{t^{\mu}}{\lambda} e^{A(t - 1)z} dt, & B = 0 \end{cases}$$

$$(4.12)$$

and $q_1(z)$ is the best dominant of (4.11).

(ii) If in addition to (4.10), $\frac{A}{B} > 1 - \lambda(\mu + 2)$ with B < 0, then for $f(z) \in \mathcal{M}_{\lambda}^{n}[A, B]$ we have $\mathcal{F}_{\mu}(z) \in \mathcal{M}_{\lambda}^{n}(\rho_{2}(A, B, \lambda, \mu))$, where

$$\rho_2(A, B, \lambda, \mu) = \frac{\lambda(\mu + 1)}{{}_2F_1\left(1, \frac{(B - A)/B}{\lambda}; \mu + 2; \frac{B}{B - 1}\right)} - (\lambda(\mu + 1) - 1).$$

The result is best possible.

Proof. Let
$$f(z) \in \mathcal{M}_{\lambda}^{n}[A, B]$$
 and
$$p(z) = \frac{I_{\lambda}^{n} \mathcal{F}_{\mu}(z)}{I_{\lambda}^{n+1} \mathcal{F}_{\mu}(z)}. \tag{4.13}$$

Then p(z) is analytic in U and p(0) = 1. Using (2.3) and (4.9) in (4.13), we get

$$\frac{\lambda z (I_{\lambda}^{n+2} \mathcal{F}_{\mu}(z))^{'} + (1-\lambda)(I_{\lambda}^{n+2} \mathcal{F}_{\mu}(z))}{\lambda z (I_{\lambda}^{n+1} f(z))^{'} + (1-\lambda)(I_{\lambda}^{n+2} f(z))} = \frac{\lambda(\mu+1)}{p(z) + (\lambda(\mu+1)-1)}. \quad (4.14)$$

Since $f(z) \in \mathcal{M}^n_{\lambda}[A, B]$, we note that $I^{n+1}_{\lambda}f(z) \neq 0$ in U. Logarithmic differentiation of both sides of (4.14) with using (2.3), we have

$$p(z) + \frac{zp'(z)}{\frac{1}{\lambda}p(z) + \frac{1}{\lambda}(\lambda(\mu+1) - 1)} = \frac{I_{\lambda}^{n}f(z)}{I_{\lambda}^{n+1}f(z)} < \frac{1 + Az}{1 + Bz}.$$
 (4.15)

Using Lemma 3.2, we obtain

$$p(z) \prec \widetilde{q}_1(z) = \frac{1}{Q_1(z)} - (\lambda(\mu + 1) - 1) \prec \frac{1 + Az}{1 + Bz},$$

where $Q_1(z)$ is given by (4.12) and $\widetilde{q}_1(z)$ is the best dominant of (4.15).

Proceeding as in Theorem 4.2 the second part follows.

Putting $A = 1 - 2\alpha$ and B = -1 in Theorem 4.3, we have

Corollary 4.2. Let $0 \le \alpha < 1$, $\lambda(\mu + 1) > 2(1 - \alpha)$. If $f(z) \in \mathcal{M}^n_{\lambda}(\alpha)$, then $\mathcal{F}_{\mu}(z) \in \mathcal{M}^n_{\lambda}(\rho_3(\alpha, \mu, \lambda))$, where

$$\rho_3(\alpha, \mu, \lambda) = \frac{\lambda(\mu+1)}{{}_2F_1\left(1, \frac{2}{\lambda}(1-\alpha); \mu+2; \frac{1}{2}\right)} - (\lambda(\mu+1)-1).$$

The result is best possible.

Theorem 4.4. (i) If $f(z) \in \mathcal{M}_{\lambda}^{n}[A, B]$, then the function $\mathcal{F}_{\mu}(z)$ defined by (4.8), satisfies

$$\frac{I_{\lambda}^{n+1}f(z)}{I_{\lambda}^{n+1}\mathcal{F}_{\mu}(z)} \prec \frac{1}{\lambda(\mu+1)Q_{1}(z)} = \widetilde{q}_{2}(z) \prec \frac{1 + \left(\frac{A + (\lambda\mu - (1-\lambda))B}{\lambda(\mu+1)}\right)z}{1 + Bz}, \quad (4.16)$$

where $Q_1(z)$ is given by (4.12) and $\tilde{q}_2(z)$ is the best dominant of (4.16).

(ii) If in addition to (4.10), $\frac{A}{B} > 1 - \lambda(\mu + 2)$, and B < 0, then for $f \in \mathcal{M}_{\lambda}^{n}[A, B]$, we have

$$\operatorname{Re}\left(\frac{I_{\lambda}^{n+1}f(z)}{I_{\lambda}^{n+1}\mathcal{F}_{\mathfrak{u}}(z)}\right) > \left[\,_{2}F_{1}\left(1,\,\frac{-1}{\lambda}\left(\frac{A-B}{B}\right);\,\mu+2;\,\frac{B}{B-1}\right)\right]^{-1}.$$

The result is best possible.

Proof. Let

$$p(z) = \frac{I_{\lambda}^{n+1} f(z)}{I_{\lambda}^{n+1} \mathcal{F}_{\mu}(z)}.$$
 (4.17)

Then p(z) is analytic and p(0) = 1. Making use of the logarithmic differentiation on both sides of (4.17) and using (4.9) and (2.3), we deduce that

$$\frac{I_{\lambda}^{n}f(z)}{I_{\lambda}^{n+1}f(z)} = \frac{\lambda zp'(z)}{p(z)} + ((1-\lambda)-\lambda\mu) + \lambda(\mu+1)p(z).$$

Let

$$P(z) = ((1 - \lambda) - \lambda \mu) + \lambda(\mu + 1) p(z).$$

Then

$$\frac{I_{\lambda}^{n}f(z)}{I_{\lambda}^{n+1}f(z)}=P(z)+\frac{zP'(z)}{\frac{1}{\lambda}P(z)+\frac{1}{\lambda}(\lambda\mu-(1-\lambda))}\prec\frac{1+Az}{1+Bz}.$$

By using Lemma 3.2, we deduce that

$$P(z) \prec q(z) \prec \frac{1 + Az}{1 + Bz},\tag{4.18}$$

where q(z) is the best dominant of (4.18) and is given by (3.2), for $\beta = \frac{1}{\lambda}$,

and
$$\gamma = \frac{1}{\lambda} \big(\lambda \mu - \big(1 - \lambda \big) \big),$$
 we have

$$((1 - \lambda) - \lambda \mu) + \lambda(\mu + 1)p(z) < \frac{1}{Q_1(z)} - (\lambda \mu - (1 - \lambda)) < \frac{1 + Az}{1 + Bz}.$$
 (4.19)

By simplifying (4.19) we get (4.16).

To prove the second part of this theorem we proceed as in Theorem 4.2.

References

- F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci. (2004), no. 25-28, 1429-1436.
- [2] P. L. Duren, Univalent Functions, Springer-Verlag, New-York, 1983.
- [3] P. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-Bouquet differential subordination, General inequalities 3, pp. 339-348, International Series of Numerical Mathematics, 64, Birkhäuser, Basel, 1983.

- [4] A. W. Goodman, Univalent Functions, Vol. I, Mariner Publishing Co., Florida, 1983.
- [5] S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 56(3)(1985), 297-309.
- [6] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., 1013, Springer-Verlag, Heidelberg, 1983, pp. 362-372.
- [7] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge University Press, Cambridge, 1996.
- [8] D. R. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc. (2) 21 (1980), 287-290.

Mathematics Department Science Sections Girls College of Education Riyadh, Saudi Arabia e-mail: fma34@yahoo.com

Mathematics Department
Science Sections
Girls College of Education
Riyadh, Saudi Arabia
e-mail: zhr_math@yahoo.com