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Abstract
Green function for a 2M-order linear ordinary differential equation
with free boundary condition is found by means of the so-called

symmetric orthogonalization method. Its properties are also studied in
detail.

1. Introduction

Let f(x) be a given function satisfying the following solvability

condition:
1
j f(x)o;(x)dx =0 (0<i<M-1). (1.1)
-1
We consider the following boundary value problem:

MUl - fx) (-1 <x <),

WDE1) =0 (M <i<2M-1), (1.2)

Ill u(x)o;(x)dx =0 (0<i<M-1),

where @;(x) are normalized Legendre polynomials defined as follows:

0ifx) = i + SR (x) = i+%%(%jl(l—x2)i. (1.3)

The above set of functions {;(x)} (i =0, 1, ..., M — 1) are eigenfunctions

corresponding to the eigenvalue A =0 of the following eigenvalue

problems:

{(_ DM@ _ oy (c1<x < 1), (1.4)

uD(x1)=0 (M <i<2M-1).

The solution to (1.2) is given as follows:

1
u(w) = [ GG )7y,
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where G(x, y) is a Green function constructed in the following

procedures. We start with the following proto Green function:

M
GO(x’ y) = (_ 12)

Ko(|x - y]),

where K((x) is a monomial defined by

xZM—l

KO (x) = m .
We also introduce its successive derivatives K ;(x) defined by

2M -1
K(x)—(d)Ko(x) (2M—1J)‘ (1<j<2M-1)

The proto Green function G(x, y) can also be viewed as a fundamental

solution of the differential operator (- 1) (d/dx)*. We can construct

G(x, ¥) by symmetric orthogonalization method [3] as

Gz, 3) = Gof, y)—z%(x )| w160 iz

M-

- > [ 0iGolx, mnei()

i=0°!

M-1M-1
+ @l(x)_[ _[ 0;(€)Go(& n)o;(m)dedno;(y).

i

Il
o
.
I
o

The main purpose of this paper is to find an explicit formula of G(x, y)

and investigate its properties as a reproducing kernel.

In order to find G(x, y) explicitly, it is enough to find

vi@) = [ Gole menian %)
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= J._ll J-_ll 0;(€)Go(& n)o;(n)dédn

= fll 0; (&)w;(§)dE = Ill v;()e;(n)dn. (1.6)

By using y;(x) and g;;, Green function G(x, y) is rewritten as follows:

M-1M-1

G(x, y) = Go(x, y) - Z(wxx)cpl(yn 0 (@i () + Y Zgucpxx)cp,(y)

i=0 j=0

The main results obtained in this paper are as follows.

Theorem 1.1. The functions y;(x) (i = 0,1, ..., M —1) are given as

follows:

(- 1M Hl

Vi) = e 2

(( 1) (x+1)2M2F1(—1 i+1; 2M +1; 1+xj
(- x)2M2F1(— ii+12M +1; “ij)

where o Fy (o, B; v; x) is the Gauss hypergeometric function defined by

T (o +n)T B+ n) e
oFi(a, B; v; x) = (o )}11([3) Z I(y + n)n!

Theorem 1.2. The coefficients g;; (i, j = 0,1, ..., M —1) are given as

follows:
0 (i—J:odd),
gl] — ( M+]22M+1 ] +
’ - 1)k(2M+k)'(z+k)‘ o
Lo @M+ k@M + ks j)RG R ¢ even)

1.7
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Remark 1. It is very interesting to note that the above summation in

the expression of g;; is rewritten in the following closed form:

0 (i—J:odd)
1M E)i i %n/
o 1.8
8ij {ZZM (2M—i—j+1j (2M+i—j+2) "
r r X
9 2
1“(2M - 12+ Jj+ 2)F(2M + l2+ J+ 3)} (i —J: even)

which is confirmed by computer software Mathematica 5.2.

This paper is organized as follows. In Section 2, we prove the above
two theorems. In Section 3, we investigate some important properties of

the Green function G(x, ).
2. Proof of the Main Theorems

This section is devoted to the proof of the main theorems.

Proof of Theorem 1.1. Substituting (1.3) into (1.5), we have

1
vi) = [ Gl moimdn

.1
1+ = . . .
L2 Kox - D - nan

2l+1 l'

.1
Lt E (_ 1)i+M
2L+1l'

) Ul Kox =)D =Y+ | Kofn—x) D01 - nZ)"dn].
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Performing integration by parts i times, we have

M i+ L o .
i) = L2 [(— D[ K- ma - an

] K- 000 -y

M i+ g |
" 9ileM -1 _3), 1 (-1 I (x) + Iz (x)), 2.1)

where

5@ = [ == ),

1 . .
L) = [ (-xP" @ an
X
We first calculate
@) = [ =™ e - nyan

n+1

Through the variable transformation ¢ = 1 and from

(x+1Ddt =dn, n=at+t-1,
x—n:(x+1)(1—t), 1+n=(x+1)t, 1—n=2—(x+1)t,

we have

I (x) = fol(x +1)2M A ) 2M 1 l)itiQi(l X ; 1 tji (x +1)dt

. 1. . i
= 20(x + 1)2Mf (1 - t)ZM_l_L(l X ; 1 t) dt
0

om T(i + )TEM — i)

=2 +1) @M +1)

zFl(— ii+L2M+ 1 xTH)
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where we have used the following formula:

j:tﬁ_l(l )P - 2ty de = Wgﬂ(a, B; v; 2).

Next we calculate
1 2M-1-i i i
L) = [ - -
X

which is rewritten through 1_—” =t and from
-x

dn=-(0-x)dt, n=1-1t+xt,
n-x=01-x)1-¢), 1-n=0-x2)t, 1+n=2-01-x)t

as follows:

Iy(x) = jola _xPMl-iq _p2M-lsig x)itizi(1 _1 - tji(l _x)dt

el . N
=(1- x)2M2LI (1 —t)ZM_l_l(l 1 2x t] dt
0

_q eMoi TG+ 1)TE2M - i) (_ A . l—x)
=1-x)"2 T@M + 1) oF| -1, 1+1; 2M+1,—2 .
From (2.1), we obtain
.1
CoMifivs
. - 2 ((_ 1y oM s, 1+
vile) = —55 (( 1 (@ +1) zFl( i1 2M 1 j

(- x)2M2F1(— i i+l 2M +1; 1‘7’5))

which completes the proof.

Before going to the proof Theorem 1.2, we note that the function
v;(x), although it is expressed by means of Gauss hypergeometric

function, is in fact a polynomial
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M |l. 1
-1) L+2

Wi(x) = 2(2M)!

; S ()it it D)) (L exY
[("1) (“1)2sz; (2M+1)---€2M+j)j! . ( ; )

S (i) (i) (i D)) (1x )
+(1"x)2MjZO (2M+1)---(2M+j)j! : ( 2 ) ]

.1 . .
:(—I)M l+§[(_1)ii CRVICES) Y

=@M+ )G - )2

S VRN eme
+J-Z:(:)(2M+j)!j!(i—j)!2j 0 -=) J

CoMfivs
= ——5 2 (V[0 +x)+ fil-x), 2.2)

where f;(x) is defined as follows:

fi(x) = Zl: (- 1) + ) L2M+j

=@M+ )G - )2’

Proof of Theorem 1.2. Substituting (1.3) and (2.2) into (1.6), we

have

gi = [ 0w

SRRVE0 S P U FEN
=(1) i+ 5yt g

2]+1J'

x {(— 1)"[11 (DI(1 = x2Y)fi(1 +x) + jll (DI (- 22Y)f( - x)dx}.
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Putting x = —¢ and using the fact that D'(l —xz)i is even or odd

function according as i is even or odd, we have

1 . . el . .
[ W=V -wde = 1| (DI f e

_ 1)J’jl1 (DI(1 = x2Y)fi(1 + x)dx.

Hence the following relation holds:

(i —j:odd),
- M,/z —\/ 5
g i e 21 (D00 ) - s even)
27 j1
2.3)

We consider the case i - j is even. Integral on the right hand side of

(2.3) 1s calculated as follows:

1"+ &) Mk
J @a-=ty )2 £ @M + k)R (i — k)12F (L

; ~1)*( + k)! 1 . )
: ’; (2M(+ k;! ;v(t —)k)!zk [ 0ia-=Y)a et e

—(—1y (- D*(i + k)!
= )Z(2M+k)‘k'(z k)12F

@M + kY@M + k1) @M + k —j+1)J.11(1 C 2V (1 4 x)2MRT gy

= (- )*G + k) 1 _ -
( 1)]k ‘ (2M +k— ])y A (l k)‘Zk J‘ (1 - x)](l + .’XJ)Z dax

kG4 R ,
0(2M+k—])'k’(z k)!2
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ey DGR o @M+ )
et @M + k- )R~ F)! @M +k+j+1)

i k .
_ (-2 3 (= })' (2M+k)!(.z+k)‘! I
k=O(2M+k—]).(2M+k+]+1).k.(l—k).

Substituting the above result into (2.3), we have proved the theorem.

3. Properties of Green Functions

This section presents some important properties of the Green

function.

Theorem 3.1. The Green function G(x, y) satisfies the following

properties:
M-1
M MG, 3) = DM ei@)eiy) (= = ),
1=0

@) 0" G(x, ¥)] 4os1 = 0 (0 <i < M -1),

0 (0<i<2M -2),

(3) 0%G(x, ¥)| xoy-0 — 05 G(x, )| yoyro =
o e {<—1)M-1 (i =2M -1),

(4) j_ll G(x, y)o;(x)dx =0 (0<i< M-1).

Proof of Theorem 3.1. We first prove (1). Taking x-derivative of
G(x, y)(x # y) 2M times, we have

M-1
MG, y) = =D WP ()ei(),
1=0

Hence it is enough to find \VEQM)(x). Differentiating (1.5) j times
(0<j<2M -1), we have
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"

v(x) = 3 (dx)JU_ Ko(x = y)o;(y)dy - j:Ko(x - y)@i(y)dyj

_ oY
2

Putting j = 2M -1 and differentiating once again, we obtain

v () = (- 1)M g;(x)

which proves (1). Next we show (2) in the case x =1,

oy MG(x, y) = 0y Golx, ¥) - ZW(M”) )9, ().

First term of (3.2) is calculated as follows:

8315\4+iG0(x7 y) =

-
2

Putting x =1, we have

M
: -1
oM Gy (x, )] o = )

%KMH(}’_X) (x <),

Kyl —y) (v <x).

(J‘_xl K}(x - y)q)i(y)dy - J‘; Kj(x — y)(pi(y)dy} (3.1)

(3.2)

Since the above function is a polynomial in y of degree M —1-1i, it is

expanded as follows:

_ M-1-i
5312/“1(;0(96, y)|x=1 = aj(Pj(y),
j=0
where
[ l)M
aj = I Kpiil=-m)ejm)dn (0<j<M-1-i).

(3.3)

(3.4)
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Next we consider the second term of (3.2),

M-1 .
D v ) ;)
=0

- SomEl” [ Barste =)0y = [ Kareily = 2hay 01

Jj=0

Putting x =1, we have

M
ZWMH)(I)(')] Z(p](y)( 1) J KM+L(1 y)(P]()

M-1-i
<Pj(y

yEDT l)M

J Kyl - y)0;(y)dy,
7=0
where we have wused the fact that orthogonality relation

1
j—l 9;(y)Kp4i(1 - y)dy = 0 holds for j > M —i because Kpr,;(1-y) is

a polynomial of (M -1 -1i)-th degree. Comparing the above expression

with (3.3), (3.4), we can conclude that (2) holds for x =1. The case
x = —1 1s proved by taking the same procedures. (3) and (4) are easy and

so we omit the proof.

The following theorem, which states an important aspect of G(x, y)

as a reproducing kernel, is a direct consequence of Theorem 3.1.

Theorem 3.2. G(x, y) is a reproducing kernel of the following Hilbert
space (HM7 (', ))

Hy - {LAM) e I2(-1, 1)|j11 o;:(x)ux)dx =0 (0<i<M —1)},

(w, v)p = jll u(M)(x)v(M)(x)dx (w, v e Hy).

That is to say

(1) G(x, y), as a function in x, belongs to Hp; for arbitrarily fixed
y e [-1,1]
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(2) The following reproducing relation holds for arbitrary u € Hy;,

u(y) = W), GG, ¥)y = j 11 uM(x)oMG(x, y)dx. (3.5)

Proof of Theorem 3.2. (1) is easy to prove. We prove the
reproducing relation (3.5),

@) Gl 3y = | e @oM G, )

x=1

-1
_ [Z (- 1 M D)o M 1+G(x, y)

i=1 x=-1

L (-1)M1 I 11 W(x)02M1G(x, y)dx.

The first term of the right hand side is equal to 0 owing to the property
(2) of Theorem 3.1. Hence we have

= (- 1)M_1(J-_yl_o + J;J u’(x)@?cM_lG(x, y)dx

= DM Mu@) o G, Y0 + DY M u) oM G, B L

+ (- 1)MJ. 11 u(x)02M G(x, y)dx

= - DM u(y) (2M G (x, )| - M G(x, y)|

x=y-0 x=y+0}
Mt oM
+(-1) j w(x)oPMG(x, y)dx.
-1
By using the properties (1) and (3) of Theorem 3.1, this is rewritten as

M-1 1
= u(y) - Y o) u@)oix)dx = uly)
i=0 N

which completes the proof.
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