EXISTENCE OF SOLUTIONS OF A DIFFERENTIAL INCLUSION WITH NONLINEAR BOUNDARY CONDITIONS BY THE LOWER AND UPPER SOLUTIONS METHOD

K. RÉMY AHOULOU and ASSOHOUN ADJE
UFR Mathématique et Informatique
Université d'Abidjan Cocody
22 BP 582 Abidjan 22, Côte d'Ivoire
e-mail: ahoulouci@yahoo.fr

Abstract

We prove by the lower and upper solutions method, the existence of solutions of the differential inclusion boundary value problem $$
\left\{\begin{array}{l} u^{\prime \prime}(t) \in[\varphi(t, x), \psi(t, x)] \quad \forall t \in I, \\ g_{1}\left(u(a), u^{\prime}(a)\right)=0=g_{2}\left(u(b), u^{\prime}(b)\right), \end{array}\right.
$$ where φ and ψ are two maps such that φ is upper semicontinuous and ψ is lower semicontinuous, g_{1} and g_{2} are continuous maps which verify some monotony conditions.

1. Problem Statement

Given a set A, the set of all subsets of A is denoted by 2^{A}. \varnothing designates the empty set and for a given set $\Omega, C^{k}(\Omega)$ is the set of k times continuously differentiable functions $f: \Omega \rightarrow \mathbb{R}$.

Let $a<b$ be two real numbers,

$$
\begin{aligned}
& I=[a, b]=\{t \in \mathbb{R}: a \leq t \leq b\} \\
& \stackrel{\circ}{I}=] a, b[=\{t \in \mathbb{R}: a<t<b\}
\end{aligned}
$$

and $\varphi, \psi: I \times \mathbb{R} \rightarrow \mathbb{R}$ be two maps such that φ is upper semicontinuous (u.s.c.) and ψ is lower semicontinuous (l.s.c.) satisfying

$$
\varphi(t, x) \leq \psi(t, x) \quad \forall(t, x) \in I \times \mathbb{R}
$$

Consider the set value map $F: I \times \mathbb{R} \rightarrow 2^{\mathbb{R}} \backslash \varnothing$ defined by

$$
F(t, x)=[\varphi(t, x), \psi(t, x)]=\{v \in \mathbb{R}: \varphi(t, x) \leq v \leq \psi(t, x)\} .
$$

Our objective is to extend the domain of application of the lower and upper solutions method to the class of the differential inclusion boundary value problems of the type

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t) \in F(t, u(t)) \quad \forall t \in I \tag{1}\\
g_{1}\left(u(a), u^{\prime}(a)\right)=0=g_{2}\left(u(b), u^{\prime}(b)\right)
\end{array}\right.
$$

where $g_{1}, g_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuous maps that verify:
(H1) : $\forall x \in \mathbb{R}$, the function $y \rightarrow g_{1}(x, y)$ is decreasing;
(H2) : $\forall x \in \mathbb{R}$, the function $y \rightarrow g_{2}(x, y)$ is increasing.
The lower and upper solutions method was initiated by Dragoni [8] in 1931 for a Dirichlet problem. Since then, a large number of contributions have enriched the theory, notably its extension to the Nagumo's conditions [12] in 1937 and to the Carathéodory's conditions [9] in 1938. More recent results have been found by Mawhin and Schmitt [11], Adjé [1, 2, 3], Coster and Habets [5, 6] and Frigon [10].

Our contribution in this paper consists in defining notions of lower and upper solutions for the differential inclusion boundary value problem (1) and to establish a result concerned with the existence of solutions.

2. Lower and Upper Solutions

Here we give a definition of the notion of lower and upper solutions of
the problem (1) that permits to establish that the existence of a lower solution α and a upper solution β such that $\alpha(\beta t) \leq \alpha(t) \forall t \in I$, guarantees the existence of a solution $u \in C^{2}(I)$ of the problem (1) such that $\alpha(t) \leq u(t) \leq \beta(t) \forall t \in I$.

Definition 1. (1) A function $\alpha \in C^{2}(\stackrel{\circ}{I}) \cap C^{1}(I)$ is a lower solution of (1) if
(i) $\forall t \in \stackrel{\circ}{I}, \alpha^{\prime \prime}(t) \geq \psi(t, \alpha(t))$;
(ii) $g_{1}\left(\alpha(a), \alpha^{\prime}(a)\right) \leq 0, g_{2}\left(\alpha(b), \alpha^{\prime}(b)\right) \leq 0$.
(2) A function $\beta \in C^{2}(\stackrel{\circ}{I}) \cap C^{1}(I)$ is a upper solution of (1) if
(i) $\forall t \in \stackrel{\circ}{I}, \beta^{\prime \prime}(t) \leq \varphi(t, \beta(t))$;
(ii) $g_{1}\left(\beta(a), \beta^{\prime}(a)\right) \geq 0, g_{2}\left(\beta(b), \beta^{\prime}(b)\right) \geq 0$.

Theorem 1. Assume that there exist a lower solution α and a upper solution β of the problem (1) such that $\alpha(t) \leq \beta(t) \forall t \in I$.

Then the problem (1) has at least one solution $u \in C^{2}(I)$ satisfying

$$
\alpha(t) \leq u(t) \leq \beta(t) \quad \forall t \in I
$$

3. Proof of Theorem 1

The proof will be done in four steps. First, we show that the set value map F admits a continuous selection f, then we justify that the solution of the selection problem is the solution of the original problem. To solve the selection problem, we introduce a modified problem whose solutions are set between α and β and therefore are solutions of the selection problem. Finally we show that the modified problem has a solution.

Step 1. Existence of a continuous selection

We are going to prove that F admits at least one continuous selection. We know that $\forall(t, x) \in I \times \mathbb{R}, F(t, x)=[\varphi(t, x), \psi(t, x)]$ is convex and close. We need to show again that F is l.s.c. in accordance with the
selection theorem of Michael. Let U be an open subset of $\mathbb{R},\left(t_{n}, x_{n}\right)_{n \in \mathbb{N}^{*}}$ a sequence of elements from $I \times \mathbb{R}$ converging towards $\left(t_{o}, x_{o}\right) \in I \times \mathbb{R}$ and such that $F\left(t_{o}, x_{o}\right) \cap U \neq \varnothing$. Then

$$
\varlimsup_{n \rightarrow \infty} \varphi\left(t_{n}, x_{n}\right) \leq \varphi\left(t_{o}, x_{o}\right) \leq \psi\left(t_{o}, x_{o}\right) \leq \varliminf_{n \rightarrow \infty} \psi\left(t_{n}, x_{n}\right),
$$

we deduce that there exists $N_{o} \in \mathbb{N}$ such that for $n \geq N_{o}$,

$$
F\left(t_{n}, x_{n}\right) \cap U \neq \varnothing .
$$

So $F^{-1}(U)$ is an open subset of $I \times \mathbb{R}$. Thus F is l.s.c. by the selection theorem of Michael (see [7, p. 303]), there exists a continuous function $f: I \times \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\forall(t, x) \in I \times \mathbb{R}, \quad f(t, x) \in F(t, x)=[\varphi(t, x), \psi(t, x)] .
$$

Step 2. Substitution of the initial differential inclusion by an ordinary differential equation: the selection problem
f being a continuous selection of F, every solution of the following problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=f(t, u(t)) \quad \forall t \in I, \tag{2}\\
g_{1}\left(u(a), u^{\prime}(a)\right)=0=g_{2}\left(u(b), u^{\prime}(b)\right),
\end{array}\right.
$$

is a solution of the problem (1). We will just to show that the problem (2) possesses at least one solution. This proof is based on the study of the modified problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=f(t, \gamma(t, u(t)))+u(t)-\gamma(t, u(t)) \quad \forall t \in I, \tag{3}\\
u(a)=\gamma\left(a, u(a)+g_{1}\left(\gamma(a, u(a)), u^{\prime}(a)\right)\right), \\
u(b)=\gamma\left(b, u(b)+g_{2}\left(\gamma(b, u(b)), u^{\prime}(b)\right)\right),
\end{array}\right.
$$

where γ is the continuous function from $I \times \mathbb{R}$ into \mathbb{R} defined by

$$
\gamma(t, x)=\max [\alpha(t), \min (x, \beta(t))]=\left\{\begin{array}{lll}
\alpha(t) & \text { if } & x<\alpha(t), \\
x & \text { if } & \alpha(t) \leq x \leq \beta(t), \\
\beta(t) & \text { if } & x>\beta(t) .
\end{array}\right.
$$

The continuation of the proof will be done in two steps. First we are going to show that a solution u of the problem (3) satisfies the inequality

$$
\alpha(t) \leq u(t) \leq \beta(t) \quad \forall t \in I
$$

and is therefore a solution of problem (2). Then we are going to show that (3) admits at least one solution.

Step 3. All solutions of problem (3) are wedged between α and β

Let u be a solution of (3). We will show that

$$
\alpha(t) \leq u(t) \quad \forall t \in I
$$

Suppose that there exists $t_{o} \in I$ such that $\min _{t \in I}(u(t)-\alpha(t))=u\left(t_{o}\right)-\alpha\left(t_{o}\right)$
<0. Then $\gamma\left(t_{o}, u\left(t_{o}\right)\right)=\alpha\left(t_{o}\right)$.

- If $t_{o} \in \stackrel{\circ}{I}$, then $u^{\prime}\left(t_{o}\right)-\alpha^{\prime}\left(t_{o}\right)=0$ and $u^{\prime \prime}\left(t_{o}\right)-\alpha^{\prime \prime}\left(t_{o}\right) \geq 0$.

From

$$
u^{\prime \prime}\left(t_{o}\right)=f\left(t_{o}, \alpha\left(t_{o}\right)\right)+u\left(t_{o}\right)-\alpha\left(t_{o}\right) \leq \alpha^{\prime \prime}\left(t_{o}\right)+u\left(t_{o}\right)-\alpha\left(t_{o}\right)
$$

we have the contradiction $0 \leq u^{\prime \prime}\left(t_{o}\right)-\alpha^{\prime \prime}\left(t_{o}\right) \leq u\left(t_{o}\right)-\alpha\left(t_{o}\right)<0$.

- If $t_{o}=a$, that is to say $\min _{t \in I}(u(t)-\alpha(t))=u(a)-\alpha(a)<0$, then we have

$$
u^{\prime}(a)-\alpha^{\prime}(a) \geq 0
$$

From

$$
u(a)=\gamma\left(a, u(a)+g_{1}\left(\alpha(a), u^{\prime}(a)\right)\right)
$$

and from (H1)

$$
g_{1}\left(\alpha(a), u^{\prime}(a)\right) \leq g_{1}\left(\alpha(a), \alpha^{\prime}(a)\right) \leq 0
$$

we get that

$$
u(a)+g_{1}\left(\alpha(a), u^{\prime}(a)\right) \leq u(a)<\alpha(a)
$$

which leads to the contradiction

$$
\alpha(a)>u(a)=\gamma\left(a, u(a)+g_{1}\left(\alpha(a), u^{\prime}(a)\right)\right)=\alpha(a)
$$

- If $t_{o}=b$, that is, to say $\min _{t \in I}(u(t)-\alpha(t))=u(b)-\alpha(b)<0$, then we have

$$
u^{\prime}(b)-\alpha^{\prime}(b) \leq 0
$$

Using (H2) and the fact that $u(b)=\gamma\left(b, u(b)+g_{2}\left(\alpha(b), u^{\prime}(b)\right)\right)$, we obtain the contradiction

$$
\alpha(b)>u(b)=\gamma\left(b, u(b)+g_{2}\left(\alpha(b), u^{\prime}(b)\right)\right)=\alpha(b)
$$

Then $\forall t \in I, \alpha(t) \leq u(t)$.
In the same way, we prove that $u(t) \leq \beta(t) \forall t \in I$.

Step 4. Existence of solution for the problem (3)

We are now going to show, via Schauder's fixed point theorem [7, p. 60], that (3) admits at least one solution. Let set down $X=C(I)$, $Z=C(I) \times \mathbb{R}^{2}$ and consider the operator $L: C^{2}(I) \subset X \rightarrow Z$ defined by

$$
L u=\left(u^{\prime \prime}-u, u(a), u(b)\right)
$$

L is linear and bijective and hence is a Fredholm mapping of index zero [1, p. 167]. Moreover, L^{-1} is compact. The function $N: X \rightarrow Z$ defined by

$$
\begin{aligned}
N u(t)= & (f(t, \gamma(t, u(t)))-\gamma(t, u(t))), \\
& \gamma\left(a, u(a)+g_{1}\left(\gamma(a, u(a)), u^{\prime}(a)\right)\right), \\
& \gamma\left(b, u(b)+g_{2}\left(\gamma(b, u(b)), u^{\prime}(b)\right)\right),
\end{aligned}
$$

is continuous and bounded on $C(I)$. Indeed, the function f being continuous on the compact

$$
K=I \times\left[\min _{t \in I} \alpha(t), \max _{t \in I} \beta(t)\right]
$$

is bounded there. Then N is L-completely continuous mapping, so that $L^{-1} N$ is compact and by Schauder's fixed point theorem, $L^{-1} N: X \rightarrow X$ has a fixed point which is the solution of (3).

References

[1] A. Adjé, Sur et sous-solutions dans les équations différentielles discontinues avec conditions aux limites non linéaires, Dissertation Doctorale, Université Catholique de Louvain, Louvain-La-Neuve, Mars 1987, Belgique.
[2] A. Adjé, Existence et multiplicité des solutions d'équations différentielles ordinaires du premier ordre à nonlinéarité discontinue, Annales de la Société Scientifique de Bruxelles T.101, III (1987), 69-87.
[3] A. Adjé, Sur et sous-solutions généralisées et problèmes aux limites du second ordre, Bull. Soc. Math. Belgique (1990).
[4] J. P. Aubin and A. Celina, Differential Inclusions, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.
[5] C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results, C.I.S.M. Courses and Lectures 371, pp. 1-79, Springer-Verlag, New York, 1996.
[6] C. De Coster and P. Habets, An overview of the method of lower and upper solutions for ODEs, Publication de l'Institut de Mathématique Pure et Appliquée, Louvain-LaNeuve, Belgique, 1998.
[7] Klaus Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.
[8] G. Scorza Dragoni, Il problema dei valori ai limiti studiato in grande per gli integrali di una equazione differenziali del secondo ordine, Math. Ann. 105 (1931), 133-143.
[9] G. Scorza Dragoni, Intorno a un criterio di esistenza per un problema di valori ai limiti, Rend. Semin. R. Accad. Naz. Lincei 28 (1938), 317-325.
[10] M. Frigon, Solutions faibles pour une certaine classe d'équations différentielles ordinaires multivoques du second ordre, Rapport de Recherche du Département de Math. et de Statistique, D.M.S. 85-17, Juin 1985, Univ. de Montréal.
[11] J. Mawhin and K. Schmitt, Upper and lower solutions and semi-linear second order elliptic equation with non-linear boundary conditions, Proc. Royal Soc. Edinburgh 97A (1984), 199-207.
[12] M. Nagumo, Uber die differentialgleichung $y^{\prime \prime}=f\left(t, y, y^{\prime}\right)$, Proc. Physi-Maths. Soc. Japan 19 (1937), 861-866.

