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Abstract

We prove by the lower and upper solutions method, the existence of

solutions of the differential inclusion boundary value problem
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where ϕ and ψ are two maps such that ϕ is upper semicontinuous and ψ

is lower semicontinuous, 1g  and 2g  are continuous maps which verify

some monotony conditions.

1. Problem Statement

Given a set A, the set of all subsets of A is denoted by .2A  ∅

designates the empty set and for a given set Ω, ( )ΩkC  is the set of k

times continuously differentiable functions .: R→Ωf
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Let ba <  be two real numbers,

[ ] { },:, btatbaI ≤≤∈== R

] [ { },:, btatbaI <<∈== R

and RR →×ψϕ I:,  be two maps such that ϕ is upper semicontinuous

(u.s.c.) and ψ is lower semicontinuous (l.s.c.) satisfying

( ) ( ) ( ) .,,, R×∈∀ψ≤ϕ Ixtxtxt

Consider the set value map ∅→× \2: RRIF  defined by

( ) ( ) ( )[ ] ( ) ( ){ }.,,:,,,, xtvxtvxtxtxtF ψ≤≤ϕ∈=ψϕ= R

Our objective is to extend the domain of application of the lower and
upper solutions method to the class of the differential inclusion boundary
value problems of the type

( ) ( )( )

( ) ( )( ) ( ) ( )( )
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where RR →2
21 :, gg  are continuous maps that verify:

( ) ,:1H R∈∀x  the function ( )yxgy ,1→  is decreasing;

( ) ,:H2 R∈∀x  the function ( )yxgy ,2→  is increasing.

The lower and upper solutions method was initiated by Dragoni [8] in
1931 for a Dirichlet problem. Since then, a large number of contributions
have enriched the theory, notably its extension to the Nagumo’s
conditions [12] in 1937 and to the Carathéodory’s conditions [9] in 1938.
More recent results have been found by Mawhin and Schmitt [11], Adjé
[1, 2, 3], Coster and Habets [5, 6] and Frigon [10].

Our contribution in this paper consists in defining notions of lower
and upper solutions for the differential inclusion boundary value problem
(1) and to establish a result concerned with the existence of solutions.

2. Lower and Upper Solutions

Here we give a definition of the notion of lower and upper solutions of
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the problem (1) that permits to establish that the existence of a lower

solution α and a upper solution β such that ( ) ( ) ,Ittt ∈∀α≤βα

guarantees the existence of a solution ( )ICu 2∈  of the problem (1) such

that ( ) ( ) ( ) .Itttut ∈∀β≤≤α

Definition 1. (1) A function ( ) ( )ICIC 12 ∩∈α  is a lower solution of
(1) if

 (i) ( ) ( )( );,, tttIt αψ≥α ′′∈∀

(ii) ( ) ( )( ) ( ) ( )( ) .0,,0, 21 ≤α′α≤α′α bbgaag

(2) A function ( ) ( )ICIC 12 ∩∈β  is a upper solution of (1) if

 (i) ( ) ( )( );,, tttIt βϕ≤β ′′∈∀

(ii) ( ) ( )( ) ( ) ( )( ) .0,,0, 21 ≥β′β≥β′β bbgaag

Theorem 1. Assume that there exist a lower solution α and a upper

solution β of the problem (1) such that ( ) ( ) .Ittt ∈∀β≤α

Then the problem (1) has at least one solution ( )ICu 2∈  satisfying

( ) ( ) ( ) .Itttut ∈∀β≤≤α

3. Proof of Theorem 1

The proof will be done in four steps. First, we show that the set value

map F admits a continuous selection f, then we justify that the solution of

the selection problem is the solution of the original problem. To solve the

selection problem, we introduce a modified problem whose solutions are

set between α and β and therefore are solutions of the selection problem.

Finally we show that the modified problem has a solution.

Step 1. Existence of a continuous selection

We are going to prove that F admits at least one continuous selection.

We know that ( ) ,, R×∈∀ Ixt  ( ) ( ) ( )[ ]xtxtxtF ,,,, ψϕ=  is convex and

close. We need to show again that F is l.s.c. in accordance with the
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selection theorem of Michael. Let U be an open subset of ( ) ∗∈NR nnn xt ,,

a sequence of elements from R×I  converging towards ( ) R×∈ Ixt oo ,

and such that ( ) ., ∅≠UxtF oo ∩  Then

( ) ( ) ( ) ( ),,lim,,,lim nn
n

oooonnn
xtxtxtxt ψ≤ψ≤ϕ≤ϕ

∞→∞→

we deduce that there exists N∈oN  such that for ,oNn ≥

( ) ., ∅≠UxtF nn ∩

So ( )UF 1−  is an open subset of .R×I  Thus F is l.s.c. by the selection

theorem of Michael (see [7, p. 303]), there exists a continuous function

RR →×If :  such that

( ) ( ) ( ) ( ) ( )[ ].,,,,,,, xtxtxtFxtfIxt ψϕ=∈×∈∀ R

Step 2. Substitution of the initial differential inclusion by an

ordinary differential equation: the selection problem

f being a continuous selection of F, every solution of the following

problem

( ) ( )( )

( ) ( )( ) ( ) ( )( )
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is a solution of the problem (1). We will just to show that the problem (2)

possesses at least one solution. This proof is based on the study of the

modified problem

( ) ( )( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( )( )

( ) ( ) ( )( ) ( )( )( )
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where γ is the continuous function from R×I  into R  defined by

( ) ( ) ( )( )[ ]
( ) ( )

( ) ( )
( ) ( )
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The continuation of the proof will be done in two steps. First we are going

to show that a solution u of the problem (3) satisfies the inequality

( ) ( ) ( ) ,Itttut ∈∀β≤≤α

and is therefore a solution of problem (2). Then we are going to show that
(3) admits at least one solution.

Step 3. All solutions of problem (3) are wedged between α and β

Let u be a solution of (3). We will show that

( ) ( ) .Ittut ∈∀≤α

Suppose that there exists Ito ∈  such that ( ) ( )( ) ( ) ( )ooIt
ttuttu α−=α−

∈
min

.0<  Then ( )( ) ( )., ooo ttut α=γ

- If ,Ito ∈  then ( ) ( ) 0=α′−′ oo ttu  and ( ) ( ) .0≥α ′′−′′ oo ttu

From

( ) ( )( ) ( ) ( ) ( ) ( ) ( ),, oooooooo ttutttuttftu α−+α ′′≤α−+α=′′

we have the contradiction ( ) ( ) ( ) ( ) .00 <α−≤α ′′−′′≤ oooo ttuttu

- If ,ato =  that is to say ( ) ( )( ) ( ) ( ) ,0min <α−=α−
∈

aauttu
It

 then we

have

( ) ( ) .0≥α′−′ aau

From

( ) ( ) ( ) ( )( )( )auagauaau ′α+γ= ,, 1

and from (H1)

( ) ( )( ) ( ) ( )( ) ,0,, 11 ≤α′α≤′α aagauag

we get that

( ) ( ) ( )( ) ( ) ( );,1 aauauagau α<≤′α+

which leads to the contradiction

( ) ( ) ( ) ( ) ( )( )( ) ( ).,, 1 aauagauaaua α=′α+γ=>α
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- If ,bto =  that is, to say ( ) ( )( ) ( ) ( ) ,0min <α−=α−
∈

bbuttu
It

 then we

have

( ) ( ) .0≤α′−′ bbu

Using (H2) and the fact that ( ) ( ) ( ) ( )( )( ),,, 2 bubgbubbu ′α+γ=  we obtain

the contradiction

( ) ( ) ( ) ( ) ( )( )( ) ( ).,, 2 bbubgbubbub α=′α+γ=>α

Then ( ) ( )., tutIt ≤α∈∀

In the same way, we prove that ( ) ( ) .Itttu ∈∀β≤

Step 4. Existence of solution for the problem (3)

We are now going to show, via Schauder’s fixed point theorem [7,

p. 60], that (3) admits at least one solution. Let set down ( ),ICX =

( ) 2R×= ICZ  and consider the operator ( ) ZXICL →⊂2:  defined by

( ) ( )( ).,, buauuuLu −′′=

L is linear and bijective and hence is a Fredholm mapping of index zero

[1, p. 167]. Moreover, 1−L  is compact. The function ZXN →:  defined

by

( ) ( ( )( )( ) ( )( )),,,, tuttuttftNu γ−γ=

 ( ) ( )( ) ( )( )( ),,,, 1 auauagaua ′γ+γ

 ( ) ( )( ) ( )( )( ),,,, 2 bububgbub ′γ+γ

is continuous and bounded on ( ).IC  Indeed, the function f being

continuous on the compact

[ ( ) ( )],max,min ttIK
ItIt
βα×=

∈∈

is bounded there. Then N is L-completely continuous mapping, so that

NL 1−  is compact and by Schauder’s fixed point theorem, XXNL →− :1

has a fixed point which is the solution of (3).
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