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Abstract

In this work, the potential theory method is used to obtain the

eigenvalue and eigenfunction of Volterra-Fredholm integral equation of

the first kind. The Volterra integral term is measured with respect to

time, while Fredholm term is measured with respect to position. The

kernel of Fredholm integral term is considered in the logarithmic

function form.

1. Introduction

The mechanics mixed problems of continuous media have been

studied by many authors (see [5, 6, 10]). Prostenko and Prostenko [11]

used the potential theory method for solving the problem about the

contact of a thin plate in the form of an infinite strip lying on an elastic

frictionless half-space in a three dimensional formulation. In [4], Abdou

and Hassan obtained the spectral relationships for the Fredholm integral

equation of the first kind with logarithmic kernel. Also in [1] the

eigenvalue and the eigenfunction are obtained for the Fredholm integral

equation of the first kind with Carleman kernel. The importance of

Carleman kernel came from the work of Arytiunian [7] who has shown



www.p
phm

j.c
om

ALAA EL DIN KAMAL KHAMIS204

that, the contact problem of approximation reduce to a Fredholm integral

equation of the first kind with Carleman kernel. Abdou in [2, 3], using

potential theory method, obtained the spectral relationships for the

Fredholm integral equation of the first kind with generalized potential

kernel and Macdonald kernel, respectively.

In this work, our aim is solving the boundary value problem of

Volterra-Fredholm integral equation of the first kind in the space

( ) [ ] ,,,02 ∞<×Ω TTCL  Ω is the domain of integration with respect to

position. The Volterra integral term is measured with respect to time,

while the Fredholm integral term is measured with respect to position.

Using a numerical method the Volterra-Fredholm integral equation

transformed to a linear system of Fredholm integral equation. Using

potential theory method, the Fredholm integral system can be solved as a

system of partial differential equation.

2. Volterra-Fredholm Integral Equation

Consider the following integral equation

( ) ( ) ( ) ( ) ( )[ ] ( )∫ ∫− ∗ π=−γπ=ττφτ
t

txfxftdydyyxktF
0

1

1
,,,, (2.1)

under the condition

( ) ( )∫− =φ
1

1
., tPdxtx (2.2)

Here, the given function ( ),, τtF  which represents the kernel of Volterra

integral term, is positive and continuous in the class [ ],,0 TC  for all

values of the time [ ] .,,0, ∞<∈τ TTt  The function ( ),, yxk  which

behaved badly in the domain [ ],1,1−  is called the kernel of Fredholm

integral term. The given function ( )txf ,  is continuous with its partial

derivatives with respect to position and time, and belongs to the space

[ ] [ ].,01,12 TCL ×−  The unknown function ( )tx,φ  is called the potential

function of the integral equation, and its result will be discussed in the

space [ ] [ ].,01,12 TCL ×−
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In order to guarantee the existence of unique solution of (2.1) under

the condition (2.2), we assume the following:

  (i) The kernel of position ( ) [ ] [ ]( )1,11,1, −×−∈ Cyxk  and satisfies

the following ( ) ,, 2
1

1

1

1

1
2 Adydxyxk =



∫ ∫− −

 A is a constant.

 (ii) For all values of [ ] ,,,0, ∞<∈τ TTt  the function ( )τ,tF  is a

positive continuous and satisfies ( ) ,, BtF <τ  B is a constant.

(iii) The continuous function ( ) [ ] [ ]TCLtxf ,01,1, 2 ×−∈  and its norm

( ) ( ( ) )∫ ττ=
t

t
ddxxftxf

0
212 .,max,

 (iv) The unknown function ( )tx,φ  satisfies Hölder condition with

respect to time

( ) ( ) ( ) 10,, 2121 <υ<−≤φ−φ υttxEtxtx

and Lipschitz condition with respect to position

( ) ( ) ( ) ,,, 2121 xxtHtxtx −≤φ−φ

where ( )xE  and ( )tH  are continuous functions in x and t, respectively.

The integral equation (2.1) is investigated from the contact problem

of a rigid surface ( )υ,G  having an elastic material, where G is the

displacement magnitude, υ is Poisson’s coefficient. If a stamp of length 2

units, whose surface is described by the function ( ),xf∗  is impressed

into an elastic layer surface of a stamp by a variable force ( ),tP

,0 ∞<≤≤ Tt  with eccentricity of application ( )te , then its rigid

displacement is ( ).tγ  The function ( )τ,tF  represents the resistance force

of material in the domain contact through the time [ ].,0 Tt ∈

3. System of Fredholm Integral Equation

To obtain the solution of (2.1) under the condition (2.2), we divide the

interval [ ] ,0,,0 ∞<≤≤ TtT  as ,0 210 Ttttt N =<<<<=  where
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,...,,2,1,0, Nltt l ==  and get

( ) ( ) ( ) ( ).,,,,
0

1

1∫ ∫− =ττφτ
lt

ll txfdydyyxktF (3.1)

Hence, we have

( ) ( ) ( ) ( ) ( )∑ ∫
= −

+ =+φ
l

j
l

p
ljjlj txfOdytyyxkttFu

0

1

1

1 ,,,,,

( ),0,01 >→+ pp
k (3.2)

where .,max 1 jjjjjl tthh −== +

The values of ju  and p are depending on the number of derivatives of

( )τ,tF  with respect to time. For example if ( ) [ ],,0, 4 TCtF ∈τ  then we

have ,4=p  ,4≈l  also .3,2,1,,
2
1,

2
1

4400 ==== ihuhuhu ii  More

information for characteristic points and the quadrature coefficients are
found in [8, 9].

Using the following notations

( ) ( ) ( ) ( ) ( ) ,...,,1,0,,,,,, , NlttFFtxfxftxx jljllljj ===φ=φ (3.3)

the formula (3.2) can be adapted in the form

( ) ( ) ( )∑ ∫
= −

=φ
l

j
ljjlj xfdyyyxkFu

0

1

1
, ., (3.4)

Also, the boundary condition (2.2) becomes

( )∫− =φ
1

1
.ll Pdxx (3.5)

4. Contact Problem with Logarithmic Kernel

Consider the system of integral equations

( ) ( ) ( ),,0,
0

1

1
,∑ ∫

= −
∞∈λπ=φ







λ
−

l

j
ljjlj xfdyyyxkFu (4.1)
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( ) ∫
∞

∞−
−== 1,tanh

2
1 idue

u
uzk iuz (4.2)

under the static condition

( )∫− ∞<=φ
1

1
.jj Pdxx (4.3)

The boundary value problem (4.1)-(4.3) represents the contact

problem of a strip occupying the region ,0 hy ≤≤  made of material

satisfies Hook’s law (see [6]). The strip, in the absence of mass force, lies
without fraction on a rigid support, a system of rectangular stamps is

impressed into the boundary of a strip .hy =  Assume the frictional

forces in the contact area between the stamps and the strip are small, so
it can be neglected. Also, assume the resistance force of the material is a
function of time, and the width of the area of contact is independent of
the magnitude of the force applied.

As in [1, p. 32], we can write the kernel in the form

( ) ( ) .,0,,
4

tanhlntanh
2
1 ∫

∞

∞−





 ∞∈λ

λ
−=π−== yxzzdue

u
uzk iuz

(4.4)

If ∞→λ  and ( )yx −  is very small, so that it satisfies the condition

,tanh υ=υ  then we have

.4ln,ln
4

tanhln 






π
λ=−=π ddzz (4.5)

Here, the kernel (4.2) takes the form

( ) [ ].ln dyxzk +−−=

Hence, equation (4.1) becomes

( ) ( )∑ ∫
= −

π=φ



 +

−

l

j
ljjlj xfdyyd

yx
Fu

0

1

1
,

1ln (4.6)

under the condition (4.2).

For solving equation (4.6), using potential theory method, we
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introduce the logarithmic potential function

( )
( )

( ) .1ln,
0

1

1 22,∑ ∫
= −

φ











+

υ+−
=υ

l

j
jjljl dyyd

yx
FuxU (4.7)

Equations (4.7) and (4.3) reduce to the Dirichlet boundary value problem

( ) ( ) ( )( ),1,1,,0,
2

2

2

2
−∉ν

ν∂

∂+
∂

∂=∆=ν∆ x
x

xUl

( ) ( ) ( )( ),1,1,, 0 −∈π=|ν =ν xxfxU ll

( ) ,,1ln, 22
, ν+=





 +≈ xrd

r
PFuyxU lljjl

→




 + d

r
Pl

1ln  finite term   ( ).as ∞→r (4.8)

The solution of the integral equation (4.6) is equivalent to the solution

of the Dirichlet problem (4.8). After the function ( )ν,xUl  in (4.8) has

been constructed, the density of the potential ( )xjφ  will be determined

from the formula

( )
( )

( )( ).1,1,
,

sgnlim1
0

−∈
ν∂

ν∂
⋅ν

π
−=φ

→ν
x

xU
x j

l (4.9)

Assume the density source function

( ) ( ) ,1ln,, , 




 +−ν=ν d

r
PFuxUxW lljjll (4.10)

so, equation (4.8) can be written as

( ) ( ) ( )( ),1,1,,0, −∉ν=ν∆ xxWl

( ) ( ) ( ) ( )( ),1,1,ln, ,0 −∈−−π=|ν =ν xdxPFuxfxW lljjll

( ) ( ).as,0, ∞→→ν rxWl (4.11)

Consequently equation (4.9) is transferred to

( ) ( ) ( ) ,
,

sgnlim1
,0 



 δπ−

ν∂
ν∂

⋅ν
π

−=φ
→ν

xPFu
xW

x lljj
l

l (4.12)

where ( )xδ  is the Dirac-delta function.
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We construct the solution of the boundary value problem (4.11) by
the method of conformal mapping (see [12]), that transforms a given
complicated region into a simpler one.

To this end, we note that the mapping function

( ) ( ) ( ),1,,,
2
1

2
1 1 −=+=ρ=ξξ+ξ=ξ= θ− ciyxzewz i (4.13)

maps the region in ( )yx,  plane into the region outside the unite circle γ,

such that ( )ξ′w  does not vanish or becomes infinite outside the unite circle

γ. The mapping function (4.13) maps the upper and the lower half-plane

( ) ( )( )1,1, −∈yx  into the lower and the upper of the semi-circle ,1=ρ

respectively.

Moreover, the point ∞=z  will be mapped onto the point .0=ξ

Using the parametric equation of (4.13) and under the condition (4.2),
we can rewrite the density source of the logarithmic potential of equation
(4.10) in the form

( ) ( ) ( ),2,, ,0
dPFuUW lljjll +ρ−θρ=θρ

( ) .sin1
2
1,cos1

2
1,

0 




 θ







ρ
−ρθ







ρ
+ρ=θρ llll UU (4.14)

In view of equation (4.14) the boundary value problem of (4.11) is
transformed to

( ),,1011
2

2

22

2
π<θ<π−≤ρ=

θ∂

∂

ρ
+

ρ∂
∂

ρ
+

ρ∂

∂ lll WWW

( ) ,0, =θθ llW

( ) ( ) ( ),2ln,1 ,0
dPFufW lljjllll +−θ=θ

( ) ( ).cos
0 llll ff θ=θ (4.15)

Consequently after using the chain rule, equation (4.12) is transformed to

( ) ( ) .sincos
1

,
1

=ρ

−






ρ∂
∂

+θπ=θφ l
lljjlll

W
PFu (4.16)
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To solve the Dirichlet problem of (4.15), we use the Fourier series method
(see [5])

( ) ,,cos,
0
∑
∞

=

π<θ<π−θρα=θρ
n

ll
n

lnllW

( ) ( ) .
2
1,cos1

00 0∫ ∫
π

π−

π

π−
θθ

π
=αθθθ

π
=α dfdnf lllln (4.17)

Substituting (4.17) in (4.15), then using the differentiating result in
(4.16) (see [5]), we obtain

( )
( )

( )





=θπ

=θπθπ
=θφ

−

−

0sin

...,2,1sincos
cos

1

1

nP

n

ll

ll
ll (4.18)

and

( )( ) ( ) .2ln2
0

1∫
π

π−

− θθ+π= dfdP ll (4.19)

Finally, substituting (4.18) in (4.1), we have the following relationship:

( ) ( )

( )∑ ∫
= − 





≥π

=+π
=ν

ν−

ν






 +

−

l

j nljj

ljj
n

ljj
nxTFu

n

ndFu
d

T
d

yx
Fu

1

1

1 ,

,

2,
,1

,02ln

1

1ln

where ( )xTn  is the Chebyshev polynomial of the first kind.
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