REGULAR FACTORS IN 2-CONNECTED $K_{1, n}$-FREE GRAPHS

KEIKO KOTANI

Department of Mathematics
Tokyo University of Science
Shinjuku-ku, Tokyo, 162-8601, Japan

Abstract

Let $n(\geq 3)$ and r be integers with $r \geq n-1$. We show that if G is a 2-connected $K_{1, n}$-free graph with $r|V(G)|$ even, and the minimum degree of G is at least $$
\begin{aligned} \max \{ & \frac{(n r-(n-1))^{2}}{4(n-1) r}+(n-1)-\frac{(n-1)((n-4) r+(n-1))}{2 r}+\frac{(n-1)^{3}}{4 r} \\ & \left.\frac{(n r-(n-1))^{2}}{4(n-1) r}+(n-1)\right\} \end{aligned}
$$ then G has an r-factor.

1. Introduction

In this paper, we consider only finite undirected graphs without loops and multiple edges. Let G be a graph. Then we let $V(G)$ and $E(G)$ denote the set of vertices and the set of edges of G, respectively. For disjoint subsets X and Y of $V(G)$, we let $E(X, Y)$ denote the set of edges of G joining X and Y. A vertex x is often identified with $\{x\}$, for example, when 2000 Mathematics Subject Classification: 05C70.

Keywords and phrases: regular factor, $K_{1,} n^{\text {-free graph, minimum degree. }}$
$x \notin B$, we write $E(x, B)$ for $E(\{x\}, B)$. For $x \in V(G)$, we let $\operatorname{deg}_{G}(x)$ denote the degree of x in G, and we let $N(x)=N_{G}(x)$ denote the set of vertices adjacent to x in G; thus $\operatorname{deg}_{G}(x)=\left|N_{G}(x)\right|$. For a subset X of $V(G)$, we let $N(X)$ denote the union of $N(x)$ as x ranges over X. A spanning subgraph F of a graph G with $\operatorname{deg}_{F}(v)=r$ for all $v \in V(G)$ is called an r-factor. A graph G is said to be $K_{1, n}$-free if it contains no $K_{1, n}$ as an induced subgraph.

Ota and Tokuda proved the following theorem:
Theorem A [2]. Let $n(\geq 3)$ and r be positive integers. If r is odd, then we assume that $r \geq n-1$. Let G be a connected $K_{1, n}$-free graph with $r|V(G)|$ even, and suppose that the minimum degree of G is at least

$$
\left(n+\frac{n-1}{r}\right)\left\lceil\frac{n}{2(n-1)} r\right\rceil-\frac{n-1}{r}\left(\left\lceil\frac{n}{2(n-1)} r\right\rceil\right)^{2}+n-3
$$

Then G has an r-factor.
If we let $r=2$ in Theorem A, then we obtain the following theorem:
Theorem B. Let $n(\geq 3)$ be an integer. Let G be a connected $K_{1, n}$-free graph, and suppose that the minimum degree of G is at least $2 n-2$. Then G has a 2-factor.

The lower bounds on the minimum degree in Theorems A and B are sharp. On the other hand, as for Theorem B, Aldred et al. showed that if we confine ourselves to 2 -connected graphs, then we can improve the bound on the minimum degree as follows:

Theorem C [1]. Let $n(\geq 3)$ be an integer. Let G be a 2-connected $K_{1, n}$-free graph, and suppose that the minimum degree of G is at least n. Then G has a 2-factor.

In this paper, we show that for 2 -connected graphs, we can improve the bound on the minimum degree in Theorem A as follows:

Theorem. Let $n(\geq 3)$ and r be integers with $r \geq n-1$. Let G be a

REGULAR FACTORS IN 2-CONNECTED $K_{1, n}$-FREE GRAPHS 113

2-connected $K_{1, n}$-free graph with $r|V(G)|$ even, and suppose that the minimum degree of G is at least

$$
\begin{aligned}
\delta:=\max \{ & \left\{\frac{(n r-(n-1))^{2}}{4(n-1) r}+(n-1)-\frac{(n-1)((n-4) r+(n-1))}{2 r}\right. \\
& \left.+\frac{(n-1)^{3}}{4 r}, \frac{(n r-(n-1))^{2}}{4(n-1) r}+(n-1)\right\} .
\end{aligned}
$$

Then G has an r-factor.
Let n, r, δ be as in Theorem, and assume that $n \geq 5$. Then $\delta=$ $(n r-(n-1))^{2} / 4(n-1) r+(n-1)$. The bound δ is sharp in the following sense. Assume that r is a multiple of $n-1$, and n and $r /(n-1)$ are odd. Set $d=(n r-(n-1)) / 2(n-1)$. Then d is an integer, and $\delta=$ $(n-1) d^{2} / r+(n-1)$. Set $\delta^{\prime}=\lceil\delta\rceil-1$. Let p be a positive integer. We define a graph G of order $2 p\left(\left(\delta^{\prime}-d\right)+(n-1)(d+1)\right)$ as follows. Let $L_{i}(1 \leq i \leq 2 p)$ be $2 p$ disjoint copies of the complete graph of order $\delta^{\prime}-d$. Let $M_{i, j}(1 \leq i \leq 2 p, 1 \leq j \leq n-1)$ be $2 p(n-1)$ disjoint copies of the complete graph of order $d+1$ which are disjoint from $\bigcup_{1 \leq i \leq 2 p} L_{i}$. Write $V\left(L_{i}\right)=\left\{v_{i, 1}, \ldots, v_{i, \delta^{\prime}-d}\right\}$. Now define G by

$$
\begin{aligned}
V(G) & =\left(\bigcup_{1 \leq i \leq 2 p} V\left(L_{i}\right)\right) \cup\left(\bigcup_{1 \leq i \leq 2 p, 1 \leq j \leq n-1} V\left(M_{i, j}\right)\right) \\
E(G) & =\left(\bigcup_{1 \leq i \leq 2 p} E\left(L_{i}\right)\right) \cup\left(\bigcup_{1 \leq i \leq 2 p, 1 \leq j \leq n-1} E\left(M_{i, j}\right)\right) \\
& \cup\left(\bigcup_{1 \leq i \leq 2 p}\left\{v_{i, k} x \mid 1 \leq k \leq \delta^{\prime}-d-1, x \in \bigcup_{1 \leq j \leq n-1} V\left(M_{i, j}\right)\right\}\right) \\
& \cup\left(\bigcup_{1 \leq i \leq 2 p}\left\{v_{i, \delta^{\prime}-d} x \mid x \in \bigcup_{1 \leq j \leq n-2} V\left(M_{i, j}\right)\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cup\left(\bigcup_{1 \leq i \leq 2 p-1}\left\{v_{i, \delta^{\prime}-d} x \mid x \in V\left(M_{i+1, n-1}\right)\right\}\right) \\
& \cup\left\{v_{2 p, \delta^{\prime}-d^{\prime}} x \mid x \in V\left(M_{1, n-1}\right)\right\} .
\end{aligned}
$$

Then G is 2 -connected and $K_{1, n}$-free, and has minimum degree δ^{\prime}, but we easily see that G does not have an r-factor (for example, if we apply Theorem D, which we state in Section 2, with $S=\bigcup_{1 \leq i \leq 2 p} V\left(L_{i}\right)$ and $T=\bigcup_{1 \leq i \leq 2 p, 1 \leq j \leq n-1} V\left(M_{i, j}\right)$, then we obtain $\left.\theta(S, T)=-2 p r\left(\delta-\delta^{\prime}\right)<0\right)$.

2. Proof of Theorem

The following criterion for the existence of an r-factor is essential for our proof:

Theorem D [3]. Let r be a positive integer, and let G be a graph. Then G has an r-factor if and only if

$$
\theta(S, T):=r|S|+\sum_{x \in T}\left(\operatorname{deg}_{G-S}(x)-r\right)-h(S, T) \geq 0
$$

for all disjoint subsets S and T of $V(G)$, where $h(S, T)$ denotes the number of components C of $G-S-T$ such that $r|V(C)|+|E(T, V(C))|$ is odd (such components are referred to as odd components).

Let n, r, δ, G be as in Theorem. Suppose that G does not have an r-factor. Then by Theorem D, there exist disjoint subsets S and T of $V(G)$ such that $\theta(S, T)<0$. We choose S and T so that $|S \cup T|$ is as large as possible. Let $\mathcal{H}(S, T)=\{C \mid C$ is an odd component of $G-S-T\}$. Note that $h(S, T)=|\mathcal{H}(S, T)|$.

Claim 1. $|V(C)| \geq 2$ for each $C \in \mathcal{H}(S, T)$.
Proof. Suppose that there exists $C \in \mathcal{H}(S, T)$ such that $|V(C)|=1$, and write $V(C)=\{w\}$. If $|E(T, w)|=r$, then $r|V(C)|+|E(T, V(C))|=2 r$, which means that C is not an odd component, a contradiction. Thus

REGULAR FACTORS IN 2-CONNECTED $K_{1, n}$-FREE GRAPHS 115
$|E(T, w)| \neq r$. If $|E(T, w)| \leq r-1$, then since $\mathcal{H}(S, T \cup\{w\})=\mathcal{H}(S, T)$ $-\{C\}$, we get

$$
\begin{aligned}
\theta(S, T \cup\{w\})= & \theta(S, T)+\left(\operatorname{deg}_{G-S}(w)-r\right) \\
& -(h(S, T \cup\{w\})-h(S, T)) \\
= & \theta(S, T)+(|E(T, w)|-r)+1 \\
\leq & \theta(S, T)<0,
\end{aligned}
$$

which contradicts the maximality of $|S \cup T|$. Thus $|E(T, w)| \geq r+1$. This implies

$$
\begin{aligned}
\sum_{x \in T} \operatorname{deg}_{G-(S \cup\{w\})}(x) & =\sum_{x \in T} \operatorname{deg}_{G-S}(x)-|E(T, w)| \\
& \leq \sum_{x \in T} \operatorname{deg}_{G-S}(x)-(r+1)
\end{aligned}
$$

We also have $\mathcal{H}(S \cup\{w\}, T)=\mathcal{H}(S, T)-\{C\}$. Consequently,

$$
\begin{aligned}
& \theta(S \cup\{w\}, T) \\
= & \theta(S, T)+r+\left(\sum_{x \in T} \operatorname{deg}_{G-(S \cup\{w\})}(x)-\sum_{x \in T} \operatorname{deg}_{G-S}(x)\right) \\
& -(h(S \cup\{w\}, T)-h(S, T)) \\
\leq & \theta(S, T)+r-(r+1)+1=\theta(S, T)<0,
\end{aligned}
$$

which again contradicts the maximality of $|S \cup T|$.

$$
\begin{aligned}
& \text { Set } \\
& \qquad \begin{aligned}
\mathcal{H}_{1} & =\{C \in \mathcal{H}(S, T)| | N(V(C)) \cap T \mid \geq 2\}, \\
\mathcal{H}_{2} & =\{C \in \mathcal{H}(S, T)| | N(V(C)) \cap T|=1,|E(T, V(C))| \geq 2\}, \\
\mathcal{H}_{3} & =\{C \in \mathcal{H}(S, T)| | E(T, V(C)) \mid \leq 1\}, \\
a & =\left|\mathcal{H}_{1}\right|, \quad b=\left|\mathcal{H}_{2}\right|, \text { and } c=\left|\mathcal{H}_{3}\right| .
\end{aligned}
\end{aligned}
$$

Thus

$$
\begin{equation*}
a+b+c=h(S, T) . \tag{2.1}
\end{equation*}
$$

For each $x \in T$, let

$$
\begin{aligned}
& \alpha(x)=\left|\left\{C \in \mathcal{H}_{1} \mid E(x, V(C)) \neq \varnothing\right\}\right|, \\
& \beta(x)=\left|\left\{C \in \mathcal{H}_{2} \mid E(x, V(C)) \neq \varnothing\right\}\right| .
\end{aligned}
$$

Then

$$
\begin{equation*}
a \leq \sum_{x \in T} \alpha(x) / 2 \text { and } b=\sum_{x \in T} \beta(x) . \tag{2.2}
\end{equation*}
$$

We define $x_{1}, x_{2}, \ldots, x_{m}$ and $N_{1}, N_{2}, \ldots, N_{m}$ inductively as follows: Assume for the moment that $T \neq \varnothing$. We let $x_{1} \in T$ be the vertex such that $\operatorname{deg}_{G-S}\left(x_{1}\right)-\alpha\left(x_{1}\right) / 2-\beta\left(x_{1}\right)$ is minimum, and set $N_{1}=\left(N\left(x_{1}\right) \cup\right.$ $\left.\left\{x_{1}\right\}\right) \cap T$. Let now $i \geq 2$, and assume that x_{1}, \ldots, x_{i-1} and N_{1}, \ldots, N_{i-1} have been defined. If $T-\bigcup_{j<i} N_{j} \neq \varnothing$, then we let $x_{i} \in T-\bigcup_{j<i} N_{j}$ be the vertex such that $\operatorname{deg}_{G-S}\left(x_{i}\right)-\alpha\left(x_{i}\right) / 2-\beta\left(x_{i}\right)$ is minimum, and set $N_{i}=\left(N\left(x_{i}\right) \cup\left\{x_{i}\right\}\right) \cap\left(T-\bigcup_{j<i} N_{j}\right)$; if $T-\bigcup_{j<i} N_{j}=\varnothing$, then we let $m=i-1$ and terminate this procedure. When $T=\varnothing$, we simply define $m=0$. By the definition of x_{i} and $N_{i}(1 \leq i \leq m),\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ is an independent set of vertices in G, and T is the disjoint union of N_{1}, N_{2}, \ldots, N_{m}. We here prove the following claim:

Claim 2. $(n-1)|S| \geq \sum_{i=1}^{m}\left|E\left(x_{i}, S\right)\right|+c$.
Proof. In the case where $S=\varnothing$, since G is 2 -connected, we have $c=0$, which implies the desired inequality. Thus we may assume that $S \neq \varnothing$. Write $\mathcal{H}_{3}=\left\{C_{1}, C_{2}, \ldots, C_{c}\right\}$. Since G is 2-connected, it follows from Claim 1 that for each $i(1 \leq i \leq c)$, there exists $v_{i} w_{i} \in E(G)$ such that $v_{i} \in S, w_{i} \in V\left(C_{i}\right)$ and $E\left(w_{i}, T\right)=\varnothing$. Let $A=\left\{x_{1}, x_{2}, \ldots, x_{m}\right.$, $\left.w_{1}, w_{2}, \ldots, w_{c}\right\}$. Then A is independent in G. Since G is $K_{1, n}$-free, this

REGULAR FACTORS IN 2 -CONNECTED $K_{1, n}$-FREE GRAPHS

implies that every vertex $v \in S$ is adjacent to at most $n-1$ vertices in A. Therefore

$$
\begin{aligned}
(n-1)|S| & \geq|E(A, S)|=\sum_{i=1}^{m}\left|E\left(x_{i}, S\right)\right|+\sum_{i=1}^{c}\left|E\left(w_{i}, S\right)\right| \\
& \geq \sum_{i=1}^{m}\left|E\left(x_{i}, S\right)\right|+c
\end{aligned}
$$

as desired.
By the definition of x_{i} and $N_{i}(1 \leq i \leq m), \operatorname{deg}_{G-S}(x)-\alpha(x) / 2-\beta(x)$ $\geq \operatorname{deg}_{G-S}\left(x_{i}\right)-\alpha\left(x_{i}\right) / 2-\beta\left(x_{i}\right)$ for every vertex $x \in N_{i}$, and hence

$$
\begin{equation*}
\sum_{x \in N_{i}}\left(\operatorname{deg}_{G-S}(x)-\frac{\alpha(x)}{2}-\beta(x)\right) \geq\left|N_{i}\right|\left(\operatorname{deg}_{G-S}\left(x_{i}\right)-\frac{\alpha\left(x_{i}\right)}{2}-\beta\left(x_{i}\right)\right) . \tag{2.3}
\end{equation*}
$$

Since $r \geq n-1$, it follows from Claim 2, (2.1), (2.2) and (2.3) that

$$
\begin{aligned}
\theta(S, T) \geq & \frac{r}{n-1}\left(\sum_{i=1}^{m}\left|E\left(x_{i}, S\right)\right|+c\right) \\
& +\sum_{i=1}^{m}\left(\sum_{x \in N_{i}}\left(\operatorname{deg}_{G-S}(x)-r\right)\right)-(a+b+c) \\
\geq & \frac{r}{n-1} \sum_{i=1}^{m}\left|E\left(x_{i}, S\right)\right|+\sum_{i=1}^{m}\left(\sum_{x \in N_{i}}\left(\operatorname{deg}_{G-S}(x)-r\right)\right)-(a+b) \\
\geq & \frac{r}{n-1} \sum_{i=1}^{m}\left|E\left(x_{i}, S\right)\right|+\sum_{i=1}^{m}\left(\sum_{x \in N_{i}}\left(\operatorname{deg}_{G-S}(x)-\frac{\alpha(x)}{2}-\beta(x)-r\right)\right) \\
= & \sum_{i=1}^{m}\left(\frac{r}{n-1}\left|E\left(x_{i}, S\right)\right|+\sum_{x \in N_{i}}\left(\operatorname{deg}_{G-S}(x)-\frac{\alpha(x)}{2}-\beta(x)-r\right)\right) \\
\geq & \sum_{i=1}^{m}\left(\frac{r}{n-1}\left|E\left(x_{i}, S\right)\right|+\left|N_{i}\right|\left(\operatorname{deg}_{G-S}\left(x_{i}\right)-\frac{\alpha\left(x_{i}\right)}{2}-\beta\left(x_{i}\right)-r\right)\right) .
\end{aligned}
$$

Let $\theta_{i}=\frac{r}{n-1}\left|E\left(x_{i}, S\right)\right|+\left|N_{i}\right|\left(\operatorname{deg}_{G-S}\left(x_{i}\right)-\frac{\alpha\left(x_{i}\right)}{2}-\beta\left(x_{i}\right)-r\right)$. In order to derive a contradiction to the assumption that $\theta(S, T)<0$, it suffices to show that $\theta_{i} \geq 0$ for each $i(1 \leq i \leq m)$. Thus we fix $i(1 \leq i \leq m)$, and set $d=\operatorname{deg}_{G-S}\left(x_{i}\right), \alpha=\alpha\left(x_{i}\right)$ and $\beta=\beta\left(x_{i}\right)$. Then

$$
\begin{equation*}
\left|E\left(x_{i}, S\right)\right|=\operatorname{deg}_{G}\left(x_{i}\right)-d \geq \delta-d, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{align*}
\left|N_{i}\right| & \leq\left|E\left(x_{i}, T-\left\{x_{i}\right\}\right)\right|+1 \\
& \leq \operatorname{deg}_{G-S}\left(x_{i}\right)-\alpha\left(x_{i}\right)-2 \beta\left(x_{i}\right)+1 \\
& =d-\alpha-2 \beta+1 . \tag{2.5}
\end{align*}
$$

If $d-\alpha / 2-\beta-r \geq 0$, then clearly $\theta_{i} \geq 0$. Thus we may assume that

$$
\begin{equation*}
d-\frac{\alpha}{2}-\beta-r<0 \tag{2.6}
\end{equation*}
$$

Set $X=\alpha / 2+\beta$. Since G is $K_{1, n}$-free, we have $\alpha+\beta \leq n-1$, which implies

$$
\begin{equation*}
0 \leq X \leq n-1 . \tag{2.7}
\end{equation*}
$$

It follows from (2.4), (2.5) and (2.6) that

$$
\begin{aligned}
\theta_{i} \geq & \frac{r}{n-1}(\delta-d)+(d-2 X+1)(d-X-r) \\
= & \frac{r}{n-1} \delta+\left(d-\frac{1}{2}\left(3 X+\frac{n r}{n-1}-1\right)\right)^{2} \\
& -\frac{1}{4}\left(3 X+\frac{n r}{n-1}-1\right)^{2}+(2 X-1)(X+r) \\
\geq & \frac{r}{n-1} \delta-\frac{1}{4}\left(3 X+\frac{n r}{n-1}-1\right)^{2}+(2 X-1)(X+r) \\
= & \frac{r}{n-1} \delta-\frac{X^{2}}{4}+\frac{(n-4) r+(n-1)}{2(n-1)} X-\frac{(n r-(n-1))^{2}}{4(n-1)^{2}}-r .
\end{aligned}
$$

Further by (2.7) and the definition of δ,

$$
\begin{aligned}
& \quad \frac{X^{2}}{4}-\frac{(n-4) r+(n-1)}{2(n-1)} X+\frac{(n r-(n-1))^{2}}{4(n-1)^{2}}+r \\
& \leq \\
& \max \left\{\frac{(n-1)^{2}}{4}-\frac{(n-4) r+(n-1)}{2}\right. \\
& \left.\quad+\frac{(n r-(n-1))^{2}}{4(n-1)^{2}}+r, \frac{\left(n r-(n-1)^{2}\right.}{4(n-1)^{2}}+r\right\} \\
& = \\
& \frac{r}{n-1} \delta .
\end{aligned}
$$

Consequently, $\theta_{i} \geq 0$ for each $i(1 \leq i \leq m)$. As is mentioned earlier, this contradicts the assumption that $\theta(S, T)<0$, and completes the proof of Theorem.

References

[1] R. E. L. Aldred, Yoshimi Egawa, Jun Fujisawa, Katsuhiro Ota and Akira Saito, The existence of a 2 -factor in $K_{1, n}$-free graphs with large connectivity and large edgeconnectivity, preprint.
[2] K. Ota and T. Tokuda, A degree condition for the existence of regular factors in $K_{1, n}$-free graphs, J. Graph Theory 22 (1996), 59-64.
[3] W. T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952), 314-328.

