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Abstract

Let n(>3) and r be integers with r > n —1. We show that if G is a
2-connected Kj , -free graph with 1 V(G)| even, and the minimum

degree of G is at least

(nr = (n — 1)) (n-1D)((n-4r+(n-1) (-1
max{w + (n - 1) — 9 + + ir y

2
et

then G has an r-factor.
1. Introduction

In this paper, we consider only finite undirected graphs without loops
and multiple edges. Let G be a graph. Then we let V(G) and E(G) denote

the set of vertices and the set of edges of G, respectively. For disjoint
subsets X and Y of V(G), we let E(X,Y) denote the set of edges of G

joining X and Y. A vertex x is often identified with {x}, for example, when
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x ¢ B, we write E(x, B) for E({x}, B). For x € V(G), we let degg(x)
denote the degree of x in G, and we let N(x) = Ng(x) denote the set of
vertices adjacent to x in G; thus degg(x) = | Ng(x)|. For a subset X of
V(G), we let N(X) denote the union of N(x) as x ranges over X. A
spanning subgraph F of a graph G with degr(v) = r for all v € V(G) is
called an r-factor. A graph G is said to be K , -free if it contains no K ,
as an induced subgraph.

Ota and Tokuda proved the following theorem:

Theorem A [2]. Let n(>3) and r be positive integers. If r is odd, then
we assume that r > n—1. Let G be a connected K, ,-free graph with

r| V(G)| even, and suppose that the minimum degree of G is at least

(” " 1J(z<n”_ 1) ] -t szn— 1) D2 rnos,

Then G has an r-factor.

If welet r = 2 in Theorem A, then we obtain the following theorem:

Theorem B. Let n (> 3) be an integer. Let G be a connected K , -free

graph, and suppose that the minimum degree of G is at least 2n — 2. Then
G has a 2-factor.

The lower bounds on the minimum degree in Theorems A and B are
sharp. On the other hand, as for Theorem B, Aldred et al. showed that if
we confine ourselves to 2-connected graphs, then we can improve the
bound on the minimum degree as follows:

Theorem C [1]. Let n(> 3) be an integer. Let G be a 2-connected

K ,, -free graph, and suppose that the minimum degree of G is at least n.
Then G has a 2-factor.

In this paper, we show that for 2-connected graphs, we can improve
the bound on the minimum degree in Theorem A as follows:

Theorem. Let n(> 3) and r be integers with r > n—1. Let G be a
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2-connected K , -free graph with r|V(G)| even, and suppose that the

minimum degree of G is at least

2
5 max {("r4(_n(’f Iﬁ» c(no1)- =D —;)r +(n-1))

(n-1° (wr-(n-1)>
LT 4(n -1)r

+(n - 1)}

Then G has an r-factor.

Let n, r, 5 be as in Theorem, and assume that n > 5. Then & =
(nr = (n =1))?/4(n —=1)r + (n —1). The bound & is sharp in the following
sense. Assume that r is a multiple of n -1, and n and r/(n —1) are
odd. Set d = (nr-(n-1))/2(n-1). Then d is an integer, and & =
(n-1)d?/r+(n—-1). Set & =[8]-1. Let p be a positive integer. We
define a graph G of order 2p((8' —d)+(n—-1)(d +1)) as follows. Let
L; (1 <i < 2p) be 2p disjoint copies of the complete graph of order &' — d.
Let M; ;(1<i<2p,1<j<n-1) be 2p(n—1) disjoint copies of the

complete graph of order d +1 which are disjoint from U L;. Write

1<i<2p
V(L;) = {1, --» Vi 5-q}- Now define G by

ve) =| | m»}u[ U v j)J

1<i<2p 1<i<2p,1<j<n-1

EG)=| E(L»}u[ U E(Mi,,->}

1<i<2p 1<i<2p,1<j<n-1

lékSS’—d—l,xe U V(Ml,])}]

1<j<n-1

U U {vi,kx

1<i<2p

re (J v, j)}]

1<j<n-2

U U {Ui, §—d¥x

1<i<2p
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U U Wi g_qxlx € V(M1 1)}

1<i<2p-1
U {UZp,S'—dx |x € V(Ml,n—l )}

Then G is 2-connected and Kj ,-free, and has minimum degree &', but

we easily see that G does not have an r-factor (for example, if we apply

Theorem D, which we state in Section 2, with S = U1<i<2p V(L;) and

T = UlﬁiSQp,lstnfl V(M; ;), then we obtain 6(S, T') = —2pr(8 - &') < 0).

2. Proof of Theorem

The following criterion for the existence of an r-factor is essential for

our proof:

Theorem D [3]. Let r be a positive integer, and let G be a graph. Then
G has an r-factor if and only if

0(S, T)=r| S|+ erT (degg_g(x)— 1) = (S, T)> 0

for all disjoint subsets S and T of V(G), where h(S, T') denotes the number
of components C of G- S —T such that r|V(C)|+| E(T, V(C))| is odd
(such components are referred to as odd components).

Let n, r, 6, G be as in Theorem. Suppose that G does not have an
r-factor. Then by Theorem D, there exist disjoint subsets S and 7 of V(G)
such that 6(S, T') < 0. We choose S and T so that | SUT | is as large as
possible. Let H(S, T') = {C|C is an odd component of G — S — T'}. Note
that A(S, T') = | H(S, T)]|.

Claim 1. | V(C)| = 2 for each C € H(S, T).

Proof. Suppose that there exists C € H(S, T') such that | V(C)| =1,
and write V(C) = {w}. If | E(T, w)| = r, then r| V(C)| +| E(T, V(C))| = 2r,

which means that C is not an odd component, a contradiction. Thus
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| E(T, w)| # r. If | E(T, w)| < r -1, then since H(S, T U {w}) = H(S, T')
—{C}, we get

0(S, T U {w}) = 0(S, T) + (degg-s(w) - 1)
= (WS, T'U {w}) - (S, T))
=0S,T)+( E(T, w)|-r)+1
<0(S,T) <0,

which contradicts the maximality of |SUT |. Thus | E(T, w)| 2 r +1.
This implies

Z degg_(sutw))(x) = Z degg_g(x) - E(T, w)|
xeT xeT

< z degg_g(x)—(r +1).

xeT

We also have H(S U {w}, T) = H(S, T') — {C}. Consequently,

(S U {w}, T)

=0(S, T)+r+ Zdeg(;—(su{w})(x) - Z degG-s(x)]

xeT xeT
= (A(S U {w}, T) - h(S, T))
<O, T)+r-(r+1)+1=0(S,T) <0,
which again contradicts the maximality of | S U T |. O

Set
Hy = {C < H(S, T)I| NV(C)N T | = 2,
Hy = C e H(S, T)|| N(VC) N T| = 1, | E(T, V(C)| = 2},
Hy = (C e WS, T)|| (T, V(©)| < 1},

a=|Hy|, b=|Hs|, and ¢ =|Hg]|.
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Thus
a+b+c=nS,T). 2.1
Foreach x € T, let
a(x) = [{C e Hy | E(x, V(C)) = T} |,

Bx) = [{C € Hy | E(x, V(C)) = T} |.

Then
a < Za(x)/2 and b = ZB(x) (2.2)
xeT xeT
We define xq, %9, ..., x,, and Nj, Ng, ..., N,, inductively as follows:

Assume for the moment that 7' = &. We let x; € T be the vertex such
that degg_g(x;) — a(xq)/2 — B(x1) is minimum, and set N; = (N(x;)U
{x;)NT. Let now i > 2, and assume that x1, ..., x;_; and Ny, ..., N;

have been defined. If T' - Uj<i N; # &, thenwelet x; € T - Uj<i N; be
the vertex such that degg_g(x;)— a(x;)/2 — B(x;) is minimum, and set
N; = (N(xi)U{xi})ﬂ(T—Uj<i ij; if T—UM N; = @, then we let

m =i —1 and terminate this procedure. When 7 = ¢J, we simply define

m = 0. By the definition of x; and N; (1 <i < m), {x;, x9, ..., X,,,} is an

independent set of vertices in G, and T is the disjoint union of Nj,
Ny, ..., N,,. We here prove the following claim:

Claim 2. (n-1)| S| = >

| E(x, S)[+ e

Proof. In the case where S = &, since G is 2-connected, we have
¢ = 0, which implies the desired inequality. Thus we may assume that
S = &. Write Hg = {Cy, Cy, ..., C,}. Since G is 2-connected, it follows
from Claim 1 that for each i(1 <i < ¢), there exists v;w; € E(G) such
that v; € S, w; € V(C;) and E(w;, T)=3. Let A = {x1, x9, ..., X,

wy, Wy, ..., We}. Then A is independent in G. Since G is K , -free, this
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implies that every vertex v € S is adjacent to at most n —1 vertices in A.

Therefore

(n-1|S| 2| EA, 8)| = > | B, S)|+ Y | Ew, S)|
=1 1=1

m
> 3| E(x;, S)|+c,
i=1

as desired. O

By the definition of x; and N; (1 <i < m), degg_g(x)— a(x)/2 — B(x)
> degg_g(x;) — alx;)/2 — B(x;) for every vertex x € N;, and hence

Z (degG s(x)—ﬁ Blx )) > | N; |(dega sla;) ——5+ (x) B(xi)j- (2.3)

xelN;

Since r > n —1, it follows from Claim 2, (2.1), (2.2) and (2.3) that

m
= 2|E<xi,s>|+cJ
1=

oS, T) = -

+ i Z(degG_S(x)— r)] —(a+b+c)

i=1 \xeN;

2 nili E(x;, S)| + i Z(degG—s(x)—r)J—(aer)

=1 \xeN;

~.
Il

—

~.

= nil ilE(xi, S)|+i Z (degG—S(x)_@—B(x)—r)J

i=1 i=1 \xeN;

xeN;

:i{nillEx“ )|+ (degG s(x)—ﬁ B(x)—rﬂ
75

1 81+ N | degg-s() - 252~ ptay) 7).
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Let 0; = | E(x;. §)| +| N, |(degGS(xi)_ o(x;) _B(xi)_r} I ordor

n 2

to derive a contradiction to the assumption that 6(S, T') < 0, it suffices to
show that 0; > 0 for each i(1 <i < m). Thus we fix i(1 <i < m), and set
d =degg_g(x;), @ = a(x;) and B = B(x;). Then
| E(x;, S)| = degg(x;)—d 28 - d, (2.4)
and
| N; | <[ E(x;, T - {x;}) [ +1
< degg_g(x;) — alx;) — 2B(x;) +1
—d-o-2B+1. (2.5)

If d —a/2-B-r >0, then clearly 6; > 0. Thus we may assume that
d—%—[}—r<0. (2.6)

Set X = a/2+B. Since G is K ,-free, we have a +f < n -1, which
implies

0<X<n-1. 2.7
It follows from (2.4), (2.5) and (2.6) that

r

62 —"—(@-d)+(d-2X+1)(d-X-r)

n
2
r 1 nr
= n—16+(d_§(3X+n—1_1D

(3X+ s —1]2 F@X -1)(X +7)

n —

1
4

r 1 nr 2
> 18—1(8X+n_1—1j £ (@X -1)(X +7)

r _X_2 (n-=4)r+((n-1) _(nr—(n—l))z_
n—l8 N 2(n - 1) * 4(n - 1)

r.
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Further by (2.7) and the definition of 3,

X (-Yre(n-1)y (r-(n-1)
4 2(7’L—1) 4(n_1)2

r

IA

max{(n ~1? (n-4)r+(n-1)
4 2

PRI G S IR ) r}
4(n - 1)? 4(n - 1)?

n-1
Consequently, 0; > 0 for each i (1 <i < m). As is mentioned earlier, this

contradicts the assumption that 6(S, T') < 0, and completes the proof of

Theorem.
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