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Abstract

Let ( )3≥n  and r be integers with .1−≥ nr  We show that if G is a

2-connected nK ,1 -free graph with ( )GVr  even, and the minimum

degree of G is at least
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then G has an r-factor.

1. Introduction

In this paper, we consider only finite undirected graphs without loops

and multiple edges. Let G be a graph. Then we let ( )GV  and ( )GE  denote

the set of vertices and the set of edges of G, respectively. For disjoint

subsets X and Y of ( ),GV  we let ( )YXE ,  denote the set of edges of G

joining X and Y. A vertex x is often identified with { },x  for example, when
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,Bx ∉  we write ( )BxE ,  for { }( )., BxE  For ( ),GVx ∈  we let ( )xGdeg

denote the degree of x in G, and we let ( ) ( )xNxN G=  denote the set of

vertices adjacent to x in G; thus ( ) ( ) .deg xNx GG =  For a subset X of

( ),GV  we let ( )XN  denote the union of ( )xN  as x ranges over X. A

spanning subgraph F of a graph G with ( ) rvF =deg  for all ( )GVv ∈  is

called an r-factor. A graph G is said to be nK ,1 -free if it contains no nK ,1

as an induced subgraph.

Ota and Tokuda proved the following theorem:

Theorem A [2]. Let ( )3≥n  and r be positive integers. If r is odd, then

we assume that .1−≥ nr  Let G be a connected nK ,1 -free graph with

( )GVr  even, and suppose that the minimum degree of G is at least
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Then G has an r-factor.

If we let 2=r  in Theorem A, then we obtain the following theorem:

Theorem B. Let ( )3≥n  be an integer. Let G be a connected nK ,1 -free

graph, and suppose that the minimum degree of G is at least .22 −n  Then

G has a 2-factor.

The lower bounds on the minimum degree in Theorems A and B are

sharp. On the other hand, as for Theorem B, Aldred et al. showed that if

we confine ourselves to 2-connected graphs, then we can improve the

bound on the minimum degree as follows:

Theorem C [1]. Let ( )3≥n  be an integer. Let G be a 2-connected

nK ,1 -free graph, and suppose that the minimum degree of G is at least n.

Then G has a 2-factor.

In this paper, we show that for 2-connected graphs, we can improve

the bound on the minimum degree in Theorem A as follows:

Theorem. Let ( )3≥n  and r be integers with .1−≥ nr  Let G be a
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2-connected nK ,1 -free graph with ( )GVr  even, and suppose that the

minimum degree of G is at least
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Then G has an r-factor.

Let n, r, δ be as in Theorem, and assume that .5≥n  Then =δ

( )( ) ( ) ( ).1141 2 −+−−− nrnnnr  The bound δ is sharp in the following

sense. Assume that r is a multiple of ,1−n  and n and ( )1−nr  are

odd. Set ( )( ) ( ).121 −−−= nnnrd  Then d is an integer, and =δ

( ) ( ).11 2 −+− nrdn  Set   .1−δ=δ′  Let p be a positive integer. We

define a graph G of order ( ) ( ) ( )( )112 +−+−δ′ dndp  as follows. Let

( )piLi 21 ≤≤  be 2p disjoint copies of the complete graph of order .d−δ′

Let ( )11,21, −≤≤≤≤ njpiM ji  be ( )12 −np  disjoint copies of the

complete graph of order 1+d  which are disjoint from ∪ pi iL
21

.
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Then G is 2-connected and nK ,1 -free, and has minimum degree ,δ′  but

we easily see that G does not have an r-factor (for example, if we apply

Theorem D, which we state in Section 2, with ( )∪ pi iLVS
21 ≤≤

=  and

( )∪ 11,21 , ,
−≤≤≤≤

=
njpi jiMVT  then we obtain ( ) ( ) ).02, <δ′−δ−=θ prTS

2. Proof of Theorem

The following criterion for the existence of an r-factor is essential for

our proof:

Theorem D [3]. Let r be a positive integer, and let G be a graph. Then

G has an r-factor if and only if

( ) ( )( ) ( )∑ ∈ − ≥−−+=θ
Tx SG TShrxSrTS 0,deg:,

for all disjoint subsets S and T of ( ),GV  where ( )TSh ,  denotes the number

of components C of TSG −−  such that ( ) ( )( )CVTECVr ,+  is odd

(such components are referred to as odd components).

Let n, r, δ, G be as in Theorem. Suppose that G does not have an

r-factor. Then by Theorem D, there exist disjoint subsets S and T of ( )GV

such that ( ) .0, <θ TS  We choose S and T so that TS ∪  is as large as

possible. Let ( ) { CCTS |=,H is an odd component of }.TSG −−  Note

that ( ) ( ) .,, TSTSh H=

Claim 1. ( ) 2≥CV  for each ( )., TSC H∈

Proof. Suppose that there exists ( )TSC ,H∈  such that ( ) ,1=CV

and write ( ) { }.wCV =  If ( ) ,, rwTE =  then ( ) ( )( ) ,2, rCVTECVr =+

which means that C is not an odd component, a contradiction. Thus
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( ) ., rwTE ≠  If ( ) ,1, −≤ rwTE  then since { }( ) ( )TSwTS ,, HH =∪

{ },C−  we get

{ }( ) ( ) ( )( )rwTSwTS SG −+θ=θ −deg,, ∪

{ }( ) ( )( )TShwTSh ,, −− ∪

( ) ( )( ) 1,, +−+θ= rwTETS

( ) ,0, <θ≤ TS

which contradicts the maximality of .TS ∪  Thus ( ) .1, +≥ rwTE

This implies
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We also have { }( ) ( ) { }.,, CTSTwS −= HH ∪  Consequently,

{ }( )TwS ,∪θ
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 { }( ) ( )( )TShTwSh ,, −− ∪

( ) ( ) ( ) ,0,11, <θ=++−+θ≤ TSrrTS

which again contradicts the maximality of .TS ∪ �

Set

( ) ( )( ){ },2,1 ≥|∈= TCVNTSC ∩HH

( ) ( )( ) ( )( ){ },2,,1,2 ≥=|∈= CVTETCVNTSC ∩HH

( ) ( )( ){ },1,,3 ≤|∈= CVTETSC HH

,, 21 HH == ba   and  .3H=c
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Thus

( )., TShcba =++ (2.1)

For each ,Tx ∈  let

( ) ( )( ){ } ,,1 ∅≠|∈=α CVxECx H

( ) ( )( ){ } .,2 ∅≠|∈=β CVxECx H

Then

( )∑
∈

α≤
Tx

xa 2   and  ( )∑
∈

β=
Tx

xb . (2.2)

We define mxxx ...,,, 21  and mNNN ...,,, 21  inductively as follows:

Assume for the moment that .∅≠T  We let Tx ∈1  be the vertex such

that ( ) ( ) ( )111 2deg xxxSG β−α−−  is minimum, and set ( ( ) ∪11 xNN =

{ }) .1 Tx ∩  Let now ,2≥i  and assume that 11 ...,, −ixx  and 11 ...,, −iNN

have been defined. If ∪ ij jNT
<

∅≠− ,  then we let ∪ ij ji NTx
<

−∈  be

the vertex such that ( ) ( ) ( )iiiSG xxx β−α−− 2deg  is minimum, and set

( ) { }( ) ;





 −=

<∪∩∪
ij jiii NTxxNN  if ∪ ij jNT

<
∅=− ,  then we let

1−= im  and terminate this procedure. When ,∅=T  we simply define

.0=m  By the definition of ix  and ( ),1 miNi ≤≤  { }mxxx ...,,, 21  is an

independent set of vertices in G, and T is the disjoint union of ,1N

....,,2 mNN  We here prove the following claim:

Claim 2. ( ) ( )∑ =
+≥− m

i i cSxESn
1

.,1

Proof. In the case where ,∅=S  since G is 2-connected, we have

,0=c  which implies the desired inequality. Thus we may assume that

.∅≠S  Write { }....,,, 213 cCCC=H  Since G is 2-connected, it follows

from Claim 1 that for each ( ),1 cii ≤≤  there exists ( )GEwv ii ∈  such

that ,Svi ∈  ( )ii CVw ∈  and ( ) ., ∅=TwE i  Let { ,...,,, 21 mxxxA =

}....,,, 21 cwww  Then A is independent in G. Since G is nK ,1 -free, this
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implies that every vertex Sv ∈  is adjacent to at most 1−n  vertices in A.

Therefore
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as desired. �

By the definition of ix  and ( ),1 miNi ≤≤  ( ) ( ) ( )xxxSG β−α−− 2deg

( ) ( ) ( )iiiSG xxx β−α−≥ − 2deg  for every vertex ,iNx ∈  and hence
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Let ( ) ( ) ( ) ( ) .
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to derive a contradiction to the assumption that ( ) ,0, <θ TS  it suffices to

show that 0≥θi  for each ( ).1 mii ≤≤  Thus we fix ( ),1 mii ≤≤  and set

( ) ( )iiSG xxd α=α= − ,deg  and ( ).ixβ=β  Then

( ) ( ) ,deg, ddxSxE iGi −δ≥−= (2.4)

and

{ }( ) 1, +−≤ iii xTxEN

( ) ( ) ( ) 12deg +β−α−≤ − iiiSG xxx

.12 +β−α−= d (2.5)

If ,02 ≥−β−α− rd  then clearly .0≥θi  Thus we may assume that
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2

<−β−α− rd (2.6)

Set .2 β+α=X  Since G is nK ,1 -free, we have ,1−≤β+α n  which

implies

.10 −≤≤ nX (2.7)
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Further by (2.7) and the definition of δ,
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Consequently, 0≥θi  for each ( ).1 mii ≤≤  As is mentioned earlier, this

contradicts the assumption that ( ) ,0, <θ TS  and completes the proof of

Theorem.
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