REGULAR FACTORS IN 2-CONNECTED $K_{1,n}$ -FREE GRAPHS

KEIKO KOTANI

Department of Mathematics Tokyo University of Science Shinjuku-ku, Tokyo, 162-8601, Japan

Abstract

Let $n \geq 3$ and r be integers with $r \geq n-1$. We show that if G is a 2-connected $K_{1,n}$ -free graph with r|V(G)| even, and the minimum degree of G is at least

$$\max \left\{ \frac{(nr - (n-1))^2}{4(n-1)r} + (n-1) - \frac{(n-1)((n-4)r + (n-1))}{2r} + \frac{(n-1)^3}{4r}, \frac{(nr - (n-1))^2}{4(n-1)r} + (n-1) \right\},$$

then G has an r-factor.

1. Introduction

In this paper, we consider only finite undirected graphs without loops and multiple edges. Let G be a graph. Then we let V(G) and E(G) denote the set of vertices and the set of edges of G, respectively. For disjoint subsets X and Y of V(G), we let E(X, Y) denote the set of edges of G joining X and Y. A vertex x is often identified with $\{x\}$, for example, when

2000 Mathematics Subject Classification: 05C70.

Keywords and phrases: regular factor, $K_{1,n}$ -free graph, minimum degree.

Received October 15, 2006

© 2007 Pushpa Publishing House

 $x \notin B$, we write E(x, B) for $E(\{x\}, B)$. For $x \in V(G)$, we let $\deg_G(x)$ denote the degree of x in G, and we let $N(x) = N_G(x)$ denote the set of vertices adjacent to x in G; thus $\deg_G(x) = |N_G(x)|$. For a subset X of V(G), we let N(X) denote the union of N(x) as x ranges over X. A spanning subgraph F of a graph G with $\deg_F(v) = r$ for all $v \in V(G)$ is called an r-factor. A graph G is said to be $K_{1,n}$ -free if it contains no $K_{1,n}$ as an induced subgraph.

Ota and Tokuda proved the following theorem:

Theorem A [2]. Let $n \ge 3$ and r be positive integers. If r is odd, then we assume that $r \ge n-1$. Let G be a connected $K_{1,n}$ -free graph with r|V(G)| even, and suppose that the minimum degree of G is at least

$$\left(n+\frac{n-1}{r}\right)\left\lceil\frac{n}{2(n-1)}r\right\rceil-\frac{n-1}{r}\left(\left\lceil\frac{n}{2(n-1)}r\right\rceil\right)^2+n-3.$$

Then G has an r-factor.

If we let r = 2 in Theorem A, then we obtain the following theorem:

Theorem B. Let $n \geq 3$ be an integer. Let G be a connected $K_{1,n}$ -free graph, and suppose that the minimum degree of G is at least 2n-2. Then G has a 2-factor.

The lower bounds on the minimum degree in Theorems A and B are sharp. On the other hand, as for Theorem B, Aldred et al. showed that if we confine ourselves to 2-connected graphs, then we can improve the bound on the minimum degree as follows:

Theorem C [1]. Let $n \geq 3$ be an integer. Let G be a 2-connected $K_{1,n}$ -free graph, and suppose that the minimum degree of G is at least n. Then G has a 2-factor.

In this paper, we show that for 2-connected graphs, we can improve the bound on the minimum degree in Theorem A as follows:

Theorem. Let $n \geq 3$ and r be integers with $r \geq n-1$. Let G be a

2-connected $K_{1,n}$ -free graph with r|V(G)| even, and suppose that the minimum degree of G is at least

$$\delta := \max \left\{ \frac{(nr - (n-1))^2}{4(n-1)r} + (n-1) - \frac{(n-1)((n-4)r + (n-1))}{2r} + \frac{(n-1)^3}{4r}, \frac{(nr - (n-1))^2}{4(n-1)r} + (n-1) \right\}.$$

Then G has an r-factor.

Let n, r, δ be as in Theorem, and assume that $n \geq 5$. Then $\delta = (nr - (n-1))^2/4(n-1)r + (n-1)$. The bound δ is sharp in the following sense. Assume that r is a multiple of n-1, and n and r/(n-1) are odd. Set d = (nr - (n-1))/2(n-1). Then d is an integer, and $\delta = (n-1)d^2/r + (n-1)$. Set $\delta' = \lceil \delta \rceil - 1$. Let p be a positive integer. We define a graph G of order $2p((\delta'-d)+(n-1)(d+1))$ as follows. Let L_i $(1 \leq i \leq 2p)$ be 2p disjoint copies of the complete graph of order $\delta' - d$. Let $M_{i,j}$ $(1 \leq i \leq 2p, 1 \leq j \leq n-1)$ be 2p(n-1) disjoint copies of the complete graph of order d+1 which are disjoint from $\bigcup_{1 \leq i \leq 2p} L_i$. Write $V(L_i) = \{v_{i,1}, ..., v_{i,\delta'-d}\}$. Now define G by

$$\begin{split} V(G) &= \left(\bigcup_{1 \leq i \leq 2p} V(L_i)\right) \cup \left(\bigcup_{1 \leq i \leq 2p, \, 1 \leq j \leq n-1} V(M_{i,\,j})\right) \\ E(G) &= \left(\bigcup_{1 \leq i \leq 2p} E(L_i)\right) \cup \left(\bigcup_{1 \leq i \leq 2p, \, 1 \leq j \leq n-1} E(M_{i,\,j})\right) \\ &\cup \left(\bigcup_{1 \leq i \leq 2p} \left\{v_{i,\,k} x \,\middle|\, 1 \leq k \leq \delta' - d - 1, \, x \in \bigcup_{1 \leq j \leq n-1} V(M_{i,\,j})\right\}\right) \\ &\cup \left(\bigcup_{1 \leq i \leq 2p} \left\{v_{i,\,\delta' - d} x \,\middle|\, x \in \bigcup_{1 \leq j \leq n-2} V(M_{i,\,j})\right\}\right) \end{split}$$

$$\cup \left(\bigcup_{1 \leq i \leq 2\, p-1} \{ v_{i,\,\delta'-d} x \, | \, x \, \in \, V(M_{i+1,\,n-1}) \} \right)$$

$$\bigcup \{v_{2p,\,\delta'-d}x \,|\, x \in V(M_{1,\,n-1})\}.$$

Then G is 2-connected and $K_{1,n}$ -free, and has minimum degree δ' , but we easily see that G does not have an r-factor (for example, if we apply Theorem D, which we state in Section 2, with $S = \bigcup_{1 \leq i \leq 2p} V(L_i)$ and $T = \bigcup_{1 \leq i \leq 2p, 1 \leq j \leq n-1} V(M_{i,j})$, then we obtain $\theta(S,T) = -2pr(\delta - \delta') < 0$).

2. Proof of Theorem

The following criterion for the existence of an *r*-factor is essential for our proof:

Theorem D [3]. Let r be a positive integer, and let G be a graph. Then G has an r-factor if and only if

$$\theta(S, T) := r |S| + \sum_{x \in T} (\deg_{G-S}(x) - r) - h(S, T) \ge 0$$

for all disjoint subsets S and T of V(G), where h(S, T) denotes the number of components C of G - S - T such that r|V(C)| + |E(T, V(C))| is odd (such components are referred to as odd components).

Let n, r, δ , G be as in Theorem. Suppose that G does not have an r-factor. Then by Theorem D, there exist disjoint subsets S and T of V(G) such that $\theta(S, T) < 0$. We choose S and T so that $|S \cup T|$ is as large as possible. Let $\mathcal{H}(S, T) = \{C \mid C \text{ is an odd component of } G - S - T\}$. Note that $h(S, T) = |\mathcal{H}(S, T)|$.

Claim 1.
$$|V(C)| \ge 2$$
 for each $C \in \mathcal{H}(S, T)$.

Proof. Suppose that there exists $C \in \mathcal{H}(S, T)$ such that |V(C)| = 1, and write $V(C) = \{w\}$. If |E(T, w)| = r, then r|V(C)| + |E(T, V(C))| = 2r, which means that C is not an odd component, a contradiction. Thus

 $|E(T, w)| \neq r$. If $|E(T, w)| \leq r - 1$, then since $\mathcal{H}(S, T \cup \{w\}) = \mathcal{H}(S, T) - \{C\}$, we get

$$\begin{split} \theta(S, \, T \cup \{w\}) &= \theta(S, \, T) + (\deg_{G-S}(w) - r) \\ &- (h(S, \, T \cup \{w\}) - h(S, \, T)) \\ &= \theta(S, \, T) + (\mid E(T, \, w) \mid -r) + 1 \\ &\leq \theta(S, \, T) < 0, \end{split}$$

which contradicts the maximality of $\mid S \cup T \mid$. Thus $\mid E(T, w) \mid \geq r + 1$. This implies

$$\sum_{x \in T} \deg_{G - (S \cup \{w\})}(x) = \sum_{x \in T} \deg_{G - S}(x) - |E(T, w)|$$

$$\leq \sum_{x \in T} \deg_{G - S}(x) - (r + 1).$$

We also have $\mathcal{H}(S \cup \{w\}, T) = \mathcal{H}(S, T) - \{C\}$. Consequently,

$$\theta(S \cup \{w\}, T)$$

$$= \theta(S, T) + r + \left(\sum_{x \in T} \deg_{G - (S \cup \{w\})}(x) - \sum_{x \in T} \deg_{G - S}(x)\right)$$
$$- (h(S \cup \{w\}, T) - h(S, T))$$
$$\leq \theta(S, T) + r - (r + 1) + 1 = \theta(S, T) < 0,$$

which again contradicts the maximality of $|S \cup T|$.

Set

$$\begin{split} \mathcal{H}_1 &= \{C \in \mathcal{H}(S,\,T) | \big| \, N(V(C)) \cap T \big| \geq 2 \}, \\ \\ \mathcal{H}_2 &= \{C \in \mathcal{H}(S,\,T) | \big| \, N(V(C)) \cap T \big| = 1, \, \big| \, E(T,\,V(C)) \big| \geq 2 \}, \\ \\ \mathcal{H}_3 &= \{C \in \mathcal{H}(S,\,T) | \big| \, E(T,\,V(C)) \big| \leq 1 \}, \\ \\ a &= \big| \, \mathcal{H}_1 \big|, \quad b = \big| \, \mathcal{H}_2 \big|, \text{ and } c = \big| \, \mathcal{H}_3 \big|. \end{split}$$

Thus

$$a + b + c = h(S, T).$$
 (2.1)

For each $x \in T$, let

$$\alpha(x) = |\{C \in \mathcal{H}_1 \mid E(x, V(C)) \neq \emptyset\}|,$$

$$\beta(x) = |\{C \in \mathcal{H}_2 \mid E(x, V(C)) \neq \emptyset\}|.$$

Then

$$a \le \sum_{x \in T} \alpha(x)/2$$
 and $b = \sum_{x \in T} \beta(x)$. (2.2)

We define $x_1, x_2, ..., x_m$ and $N_1, N_2, ..., N_m$ inductively as follows: Assume for the moment that $T \neq \emptyset$. We let $x_1 \in T$ be the vertex such that $\deg_{G-S}(x_1) - \alpha(x_1)/2 - \beta(x_1)$ is minimum, and set $N_1 = (N(x_1) \cup \{x_1\}) \cap T$. Let now $i \geq 2$, and assume that $x_1, ..., x_{i-1}$ and $N_1, ..., N_{i-1}$ have been defined. If $T - \bigcup_{j < i} N_j \neq \emptyset$, then we let $x_i \in T - \bigcup_{j < i} N_j$ be the vertex such that $\deg_{G-S}(x_i) - \alpha(x_i)/2 - \beta(x_i)$ is minimum, and set $N_i = (N(x_i) \cup \{x_i\}) \cap \left(T - \bigcup_{j < i} N_j\right)$; if $T - \bigcup_{j < i} N_j = \emptyset$, then we let m = i - 1 and terminate this procedure. When $T = \emptyset$, we simply define m = 0. By the definition of x_i and N_i $(1 \leq i \leq m)$, $\{x_1, x_2, ..., x_m\}$ is an independent set of vertices in G, and T is the disjoint union of N_1 , $N_2, ..., N_m$. We here prove the following claim:

Claim 2.
$$(n-1)|S| \ge \sum_{i=1}^{m} |E(x_i, S)| + c$$
.

Proof. In the case where $S=\varnothing$, since G is 2-connected, we have c=0, which implies the desired inequality. Thus we may assume that $S\neq\varnothing$. Write $\mathcal{H}_3=\{C_1,\,C_2,\,...,\,C_c\}$. Since G is 2-connected, it follows from Claim 1 that for each $i\ (1\leq i\leq c)$, there exists $v_iw_i\in E(G)$ such that $v_i\in S,\ w_i\in V(C_i)$ and $E(w_i,\,T)=\varnothing$. Let $A=\{x_1,\,x_2,\,...,\,x_m,\,w_1,\,w_2,\,...,\,w_c\}$. Then A is independent in G. Since G is $K_{1,\,n}$ -free, this

implies that every vertex $v \in S$ is adjacent to at most n-1 vertices in A. Therefore

$$(n-1)|S| \ge |E(A, S)| = \sum_{i=1}^{m} |E(x_i, S)| + \sum_{i=1}^{c} |E(w_i, S)|$$

$$\ge \sum_{i=1}^{m} |E(x_i, S)| + c,$$

as desired.

By the definition of x_i and N_i $(1 \le i \le m)$, $\deg_{G-S}(x) - \alpha(x)/2 - \beta(x)$ $\ge \deg_{G-S}(x_i) - \alpha(x_i)/2 - \beta(x_i)$ for every vertex $x \in N_i$, and hence

$$\sum_{x \in N_i} \left(\deg_{G-S}(x) - \frac{\alpha(x)}{2} - \beta(x) \right) \ge |N_i| \left(\deg_{G-S}(x_i) - \frac{\alpha(x_i)}{2} - \beta(x_i) \right). \tag{2.3}$$

Since $r \ge n - 1$, it follows from Claim 2, (2.1), (2.2) and (2.3) that

$$\begin{split} \theta(S,\,T) &\geq \frac{r}{n-1} \Biggl(\sum_{i=1}^m \big| \, E(x_i,\,S) \, \big| + c \Biggr) \\ &+ \sum_{i=1}^m \Biggl(\sum_{x \in N_i} (\deg_{G-S}(x) - r) \Biggr) - (a+b+c) \\ &\geq \frac{r}{n-1} \sum_{i=1}^m \big| \, E(x_i,\,S) \, \big| + \sum_{i=1}^m \Biggl(\sum_{x \in N_i} (\deg_{G-S}(x) - r) \Biggr) - (a+b) \\ &\geq \frac{r}{n-1} \sum_{i=1}^m \big| \, E(x_i,\,S) \, \big| + \sum_{i=1}^m \Biggl(\sum_{x \in N_i} \Biggl(\deg_{G-S}(x) - \frac{\alpha(x)}{2} - \beta(x) - r \Biggr) \Biggr) \\ &= \sum_{i=1}^m \Biggl(\frac{r}{n-1} \big| \, E(x_i,\,S) \, \big| + \sum_{x \in N_i} \Biggl(\deg_{G-S}(x) - \frac{\alpha(x)}{2} - \beta(x) - r \Biggr) \Biggr) \\ &\geq \sum_{i=1}^m \Biggl(\frac{r}{n-1} \big| \, E(x_i,\,S) \, \big| + \big| \, N_i \, \big| \Biggl(\deg_{G-S}(x_i) - \frac{\alpha(x_i)}{2} - \beta(x_i) - r \Biggr) \Biggr). \end{split}$$

Let $\theta_i = \frac{r}{n-1} |E(x_i,S)| + |N_i| \Big(\deg_{G-S}(x_i) - \frac{\alpha(x_i)}{2} - \beta(x_i) - r \Big)$. In order to derive a contradiction to the assumption that $\theta(S,T) < 0$, it suffices to show that $\theta_i \geq 0$ for each $i \ (1 \leq i \leq m)$. Thus we fix $i \ (1 \leq i \leq m)$, and set $d = \deg_{G-S}(x_i)$, $\alpha = \alpha(x_i)$ and $\beta = \beta(x_i)$. Then

$$|E(x_i, S)| = \deg_G(x_i) - d \ge \delta - d, \tag{2.4}$$

and

$$|N_i| \le |E(x_i, T - \{x_i\})| + 1$$

$$\le \deg_{G-S}(x_i) - \alpha(x_i) - 2\beta(x_i) + 1$$

$$= d - \alpha - 2\beta + 1. \tag{2.5}$$

If $d-\alpha/2-\beta-r\geq 0$, then clearly $\theta_i\geq 0$. Thus we may assume that

$$d - \frac{\alpha}{2} - \beta - r < 0. \tag{2.6}$$

Set $X = \alpha/2 + \beta$. Since G is $K_{1,n}$ -free, we have $\alpha + \beta \le n - 1$, which implies

$$0 \le X \le n - 1. \tag{2.7}$$

It follows from (2.4), (2.5) and (2.6) that

$$\begin{split} \theta_i & \geq \frac{r}{n-1} \left(\delta - d \right) + \left(d - 2X + 1 \right) \left(d - X - r \right) \\ & = \frac{r}{n-1} \, \delta + \left(d - \frac{1}{2} \left(3X + \frac{nr}{n-1} - 1 \right) \right)^2 \\ & - \frac{1}{4} \left(3X + \frac{nr}{n-1} - 1 \right)^2 + \left(2X - 1 \right) \left(X + r \right) \\ & \geq \frac{r}{n-1} \, \delta - \frac{1}{4} \left(3X + \frac{nr}{n-1} - 1 \right)^2 + \left(2X - 1 \right) \left(X + r \right) \\ & = \frac{r}{n-1} \, \delta - \frac{X^2}{4} + \frac{(n-4)r + (n-1)}{2(n-1)} \, X - \frac{(nr - (n-1))^2}{4(n-1)^2} - r. \end{split}$$

Further by (2.7) and the definition of δ ,

$$\frac{X^2}{4} - \frac{(n-4)r + (n-1)}{2(n-1)}X + \frac{(nr - (n-1))^2}{4(n-1)^2} + r$$

$$\leq \max \left\{ \frac{(n-1)^2}{4} - \frac{(n-4)r + (n-1)}{2} + r + \frac{(nr - (n-1))^2}{4(n-1)^2} + r \right\}$$

$$= \frac{r}{n-1}\delta.$$

Consequently, $\theta_i \geq 0$ for each $i (1 \leq i \leq m)$. As is mentioned earlier, this contradicts the assumption that $\theta(S, T) < 0$, and completes the proof of Theorem.

References

- [1] R. E. L. Aldred, Yoshimi Egawa, Jun Fujisawa, Katsuhiro Ota and Akira Saito, The existence of a 2-factor in $K_{1,n}$ -free graphs with large connectivity and large edge-connectivity, preprint.
- [2] K. Ota and T. Tokuda, A degree condition for the existence of regular factors in $K_{1,n}$ -free graphs, J. Graph Theory 22 (1996), 59-64.
- [3] W. T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952), 314-328.