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Abstract

In this paper, dual Lorentzian angles and dual split quaternions are
defined. Then using these concepts, rotation motions, translation

motions and screw motions are obtained in 3-dimensional Lorentzian

space R?.

1. Introduction

For the vectors x = (x;, x9, x3) and y = (¥, ¥9, ¥3) the Lorentzian
inner product on R3 is given by
(¥, ¥) = —x101 + XYg + X3Y3.
The vector space on R3 equipped with the Lorentzian inner product is
called 3-dimensional Lorentzian space and denoted by Ri)’ . For a vector

X € Ri’ the sign of (x, x) determines the type of x. If it is positive, then x

is called a space-like vector. If it is zero, then x is called a null vector or
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light-like vector. If it is negative, then x is called a time-like vector.

Moreover, if the first component x; of x is positive, then x is called a

positive vector. If x; is negative, then x is called a negative vector. For

X e R?, the norm of x is defined by | x| = 4/(x, x). The norm | x| is
either positive or zero or positive imaginary. If || x | is positive imaginary,

then the notation || x || used instead of | x |.
For the vectors x = (x;, X9, x3), ¥ = (31, ¥2, ¥3) € R} the cross product
is defined by
x Ay = (x3yg — X2¥3, X3)1 — X1¥3, X1Y2 — Xo¥1)-

The subspace v of R? is time-like space if and only if v has a time-

like vector. v is space-like space if and only if all nonzero vectors of v are

space-like vectors. Otherwise v is light-like space.

In Lorentzian space Rig’ the angle between vectors x, y is defined as

follows:
(1) For the time-like vectors x, y in R%
(@, 9) = =l -l ¥ [l cosh o,
Iz Ayl =lI=]-ll ¥ llsinho.
(2) For the space-like vectors x, y that span the space-like vector
space in Rio’
(e ) =lx]-1y]cose
if x A y is time-like vector, then
Ayl =1lx]-]ylsine.
(3) For the space-like vectors x, y that span the time-like vector space
in Rij’
[ ) [ =]x]-]y]coshe,

[z Ayl=lx]-]y]sinhe.
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(4) For the space-like vector x and positive time-like vector y in R?
[ (e, ) [ =[x ][]l ¥ [Isinh o,

[z Ayl =lx]-llylcoshe 1, 2]

A split quaternion is defined by the base {1, a, e?, %}, where, ;{, e_é,

e satisfy the equalities 612 =-1, 622 = +1, 69? =+1,

—_— — —_ - - — — —_ — —_ - —

€] €g = —€y € =¢€3, €93 =—€3 €y = —€, €3-€ = —€ ez = —€9. So
a split quaternion can be expressed as q = d + ae; + beg + ces, where, q,
b, ¢, d are real scalars. The set of split quaternions is represented by H. If

we take S, =d and V, = ag{ + beE +ce_;;, then the split quaternion

q=d+ ae_{ + be? + ce_g: can be re-written as ¢ =S, +V,. The split

quaternion addition is defined as

q1 +q9 = Sql +SQ2 +Vq1 +Vq2

for every ¢y, g € H. Note that S ., =8, +S,, and Vg .., =V,

+ Vq2. The scalar product of split quaternion is
g = ASy + LV,

where X\ 1s real scalar.

The split quaternion product denoted by x, is defined in the table

below
x |1 o e e
11 g e e
e | e 1 e ey
s | e —e3 1 —ef
es | e5 es e 1

Thus H is a real algebra.
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The conjugate K(q) of the split quaternion g = S, +V, 1s defined as

K(q) = S, = V4. The norm of the split quaternion g = d + aa + beé + ce_é

denoted by N(q) is N(q) = VK(q) x ¢ = Jq x K(q). Observe that

N(q):\/al2 +a?-b2 - [3].

The set {a + cag|a, ag € R, €2 = 0} is called the set of dual numbers
and represented by D. The set D> = {a + aaTﬂ&, a_(; e R3, &2 = 0}, with

the inner product of A = @ + sa_(;, B=b+ sb_(; in D? defined by

(A, B) = (a, b) + &((a, by) + (ag, b)) (1.1)
forms a space on D? that is called dual Lorentzian space and denoted by
Df’ . Here the inner products on the right side are Lorentzian inner
products in R3.

For all A =d + sa_(;, B=b+ ab_(; in D} the cross product A A B is

defined as

AAB=anb+e(@nby+agAb),
where, the cross product in the right side of equality are the cross

products on Rio’.

Let A=d+ aa_(; e D}, If the vector @ is space-like vector, then A is
said to be space-like dual vector, if the vector a is time-like vector, then
A is said to be time-like dual vector, and if the vector a is light-like

(null) vector, then A is said to be light-like dual vector or null dual
vector.

The norm of the dual vector A = a + sa—(; in D13 is defined by

o am
JA] = V(& Ay =a]+el%9) 5.

— )
lao |

If ||A|| =1, then the dual vector A is called unit dual vector.
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Let d be a directed line in R% whose direction is given by the vector

d. Then the type of the vector a determines the type of d. Namely, if the
vector a is time-like vector, then the line d is time-like line, if the vector
a 1s space-like vector, then the line d is space-like line and if the vector

a is null vector, then the line d is null line.
There exists one to one correspondence between directed lines in R%
and unit dual vectors in D13 [4, 5].

2. Dual Split Quaternions

Let g, gy be split quaternions. Then a dual split quaternion @ is
defined by @ = q + eqg. The set of dual split quaternions is denoted by
D. By taking dual numbers D, A, B, C the dual split quaternion
Q=D+ Ae_{ + Be? + Ce_g: can be re-written as @ = Sg + Vg, where

Sq = D, Vg = Ae; + Bey + Ces.

The sum of dual split quaternions €;, @5 is defined as

@+ @y = S +Sq, +Vo +Va,-
The product of dual split quaternion @ by the real scalar A is given by
2Q = 1Sg + AV

For all @ =q; + &qy,, Qs =qs + ¢qg, 1n D, their dual split

quaternionic product is given by
Q1 x Qo = q1 x g2 +elqy x gz, +q1 X q2)-

As aresult D forms a real algebra.

The conjugate of the dual split quaternion @ = g + £q( is denoted by
K(®) and is defined as

K(Q) = K(q) + &K(qo)-
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The norm N(Q) of @ is given by
N(@) = K(@)xQ = Q x K(Q).
The inverse of @ with N(Q) # 0 is defined as

1 _ K@)
A V()

For all @, @5 in D

N(@ x &) = N(@) N(@y),
(@ x Q)" = @' <@
3. Dual Lorentzian Angles

Using the inner product (1.1), the following theorems can be proven.
Theorem 1. Let A and B be time-like unit dual vectors. Then

(A, B) = —cosh(¢ + £¢y),

A A B = Nsinh(¢ + £9g).

Here, N is unit dual vector corresponding to the line which is

perpendicular to both lines corresponding to the vectors A and B.

Theorem 2. Let a, b be space-like unit vectors that span space-like

vector space. Then A = + aa_(; and B=b + Sb_o’ are space-like unit dual

vectors such that
(A, E) = cos(p + £¢g),
A A B = N sin(¢ + &¢g).

Theorem 3. Let d, b be space-like unit vectors that span time-like

vector space. Then A = G + eag and B=b+ eby are time-like unit dual

vectors such that
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(A, B) = cosh(¢ + £9g),

A A B = N sinh(¢ + £¢y).

Theorem 4. Let A = d + 8a_(; be space-like unit dual vector and let

B=b+ sb_(; be time-like unit dual vector. Then,
(A, B) = sinh(¢ + &),

A A B = N cosh(p + g9p).
4. Motions in Lorentzian Space R?

4.1. Motions in between time-like lines

- — —

Theorem 5. Let A =d+eag, B=0b+eby be time-like unit dual

vectors and let N = M Then
AAB

Bx A = —(cosh(¢ + epg) + N sinh(¢ + £¢p)).
Proof. Consider the equality
AxB-(Ad B)+AnE
Then the proof follows from Theorem 1. 0
Corollary 1. Let A =a+ 8(1_(5, B=b+ ab_(; be time-like unit dual
vectors and P, = cosh(¢ + ego) + N sinh(¢ + £py). Then A = Bx ]?(;,
BoPxA
Corollary 2 (Rotation Operator). If the lines corresponding to the
time-like unit dual vectors A, B intersect, then the dual angle between
these lines is @ + €0 = ¢. In this case,
Fd = cosh ¢ + N sinh ¢.

Since A = BXE; and B =E§><A, multiplying A by E; from left
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means that rotating the line corresponding to A around N -axis in
positive direction by ¢ angle. Similarly, multiplying B by 1?(; from right
means that rotating the line corresponding to B around N -axis in

negative direction by ¢ angle. Here, Py is called a rotation operator.

Corollary 3 (Translation Operator). If the lines corresponding to the
time-like unit dual vectors ;1, B are parallel, then the dual angle between

these lines is 0 + €@y = €@q. In this case,
FO =1+ a(pON.

Since A = Bx 17(; and B = 17(; x A, multiplying A by FO’ from left
means that sliding the line corresponding to A in the direction of N -axis
by ¢g. Similarly, multiplying B by F(; from right means that sliding the

line corresponding to B in the direction of -N by @g. Here, ]?(; is called

a translation operator.

Corollary 4 (Screw Operator). If the dual angle between the lines

corresponding to the time-like unit dual vectors A, B is ¢© + €@y and
1?(; = cosh(p + epg) + N sinh(¢ + £9g),

then since A = B x 1?(; and B = E; x A, multiplying A by ]?(; from left
means that first, rotating the line corresponding to A around N -axis in
positive direction by ¢ angle, then sliding this line in the direction of N by
@g- This is the screw motion. Similarly, multiplying B by Fd from right
means that, first, rotating the line corresponding to B around N -axis in
negative direction by ¢ angle, then sliding this line in the direction of -N
by @g. Here, 17(; is called a screw operator. By taking ¢y = 0 in screw
operator, a rotation operator is obtained. By taking ¢ =0 in screw

operator, a translation operator is obtained.
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Example 1. For ¢t € R, the unit dual vectors corresponding the lines

alt) = (0,0,0)+£(3,2,1) and, B(t) = (1, 0, 0) + £(3, 1, 2) are A = @ 1, %)

3 1

+¢0,0,0) and B = (5, 5 1) + 8(0, -1, %), respectively. Then the

corresponding screw operator is

pob (3 3 3), 3,(4 .33
074 4° 4 4 4 40 2))
4.2. Motions between space-like lines in space-like vector space

Theorem 6. Let a, b be space-like vectors that span space-like vector
space and A = a + sc?d, B=b+ 8176 be space-like unit dual vectors. Then
Bx A = cos(¢ + epg) — N sin(¢ + £¢q),

where
AAB
|4~ B|

N
Corollary 5. Let Py = cos(¢ + £pg) — N sin(¢ + egg). Then

In Corollaries 6, 7 and 8 below, the vectors @ and b are space-like

vectors that span space-like vector space. Also, A=a+ sc?d and B =
b+ 817(; are space-like unit dual vectors.
Corollary 6. If the lines corresponding to the unit dual vectors A and

B intersect, then the dual angle between these lines is ¢ + €0 = ¢. The

rotation operator for this case is
E; = cos ¢ — N sin ¢.
And also,
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Corollary 7. If the lines corresponding to the unit dual vectors A and
B are parallel, then the dual angle between these lines is 0 + £Qg = Q.
The translation operator for this case is

1?’(; =1- g(pON .
Also,
A-BxB. B-BxA

Corollary 8. If the dual angle between the lines corresponding to the

unit dual vectors is ¢ + ¢y, then screw operator is
F(; = cos(¢ + £pg) — N sin(g + £¢).

Also,

A = B x }_7(;, B= F(; x A.
Example 2. The lines a(t) = (0, 0, 0) + ¢(1, 2, 1) and B(t) = (1, 0, 0)

+ (1, -1, 3) corresponding to the unit dual vectors A = (%, 1, %)

+¢0,0,0) and B = (%, —%, 1) + 8(0, -1, —%), respectively. Then the

corresponding screw operator is

> 7 1 1 7 (1 1 1
B-0+(g535) 455 5 3)

4.3. Motions between space-like lines in time-like vector space

Theorem 7. Let a, b be space-like vectors that span time-like vector

space and A = d + 8(1_(;, B=b+ sb_(; be space-like unit dual vectors. Then
Bx A = cosh(¢p + e9g) — N sinh(¢ + &¢y),

where

AArB

N — = = .
|4~ B
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Corollary 9. Let Py = cosh(¢ + £pg) — N sinh(¢ + egg). Then

In Corollaries 10, 11 and 12 below, the vectors a and b are space-

- —

like vectors spanning time-like vector space. Moreover, A = @ + €ag and

B=0b+ 817(; are space-like unit dual vectors.

Corollary 10. If the lines corresponding to the unit dual vectors A
and B intersect, then the dual angle between these lines is @ + €0 = o.
Thus the rotation operator is

F(; = cosh ¢ — N sinh ¢.
Also,
A=BxP,, B=P,xA.
Corollary 11. If the lines corresponding to the unit dual vectors A

and B are parallel, then the dual angle between these lines is
0 + epg = @g. In this case, the translation operator is
17(; =1- SQON.
Also,
A-BxB. B-BxA
Corollary 12. If the dual angle between the lines corresponding to the
unit dual vectors is ¢ + €@, then the screw operator is
By = cosh(¢ + egp) — N sinh(e + £¢g).
Also,
A=BxP, B=PxA.
Example 3. The lines a(¢) = (0, 0, 0) + ¢(1, 2, 1) and B(¢) = (1, 0, 0) +

£(3, 8, 1) corresponding to the unit dual vectors A= (l, 1, %

: j+s(o, 0, 0)
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and B = (3, 3, 1) + &(0, -1, 3), respectively. Then the corresponding screw

= 1 3 1 7 3 1
PO —2"1‘(—5,—1,5)"1‘8(54‘(5,5,5)).

4.4. Motions between time-like lines and space-like lines

operator 1s

Theorem 8. Let A = d+aa75 be space-like unit dual vector and,

B=b+ sl?d be time-like unit dual vector. And let N = M Then

14 B
Bx A = sinh(¢ + £¢g) — N cosh(¢ + £¢; ).
Corollary 13. Let P, = sinh(¢ + £p) — N cosh(¢ + £¢g ). Then
A=-BxP,, B-=DPxA.
In Corollaries 14 and 15, A=a+ aa_(; is space-like unit dual vector
and B = b + 8[7(; is time-like unit dual vector.

Corollary 14. If the lines corresponding to the unit dual vectors A
and B intersect, then the dual angle between these lines is ¢ + €0 = @. In

this case, the rotation operator is
17(; = sinh ¢ — N cosh ¢.
Also,
A- BxF. B-PB i
Corollary 15. Let the dual angle between the lines corresponding to

the unit dual vectors A, B be ¢ + €9g. Then screw operator is
Py = sinh(¢ + &gy ) — N cosh(¢ + £¢g).
Also,

A= _BxB, B--BxA
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Example 4. The lines a(t) = (0, 0, 0) + #(2, 1, 2) and B(¢) = (1, 0, 0) +

t(3, 2, 1) corresponding to the unit dual vectors A = (2, 1, 2) + £(0, 0, 0)

%, 1, l) + 8(0, —%, 1), respectively. The screw operator

and B:( 5

corresponding to the these lines is
Y 3 1 3
PO =-1+ (—E, —2, —Ej + 8(5 + (2, 2, 1))
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