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Abstract

In this paper we study the existence of continuous solutions over

noncompact intervals of some nonlinear integral equations. A special

interest is devoted to the study of the solution sets of nonlinear Volterra

equations.

1. Introduction and Notations

Many problems (for instance in applied mechanics character) are

reduced to the solution of a nonlinear integral equation. This mainly

consists of the nonlinear generalization for the linear (possibly singular)

integral equations to nonlinear integral equations: these methods have

been used by many authors in the literature; see the books [14], [17] for

typical references.

One of the first beginning is the study of the existence of continuous

solutions of the following nonlinear Urison integral equation,

( ) ( ) ( )( ) ( )∫ ∞+∞−∈+=
t
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In general the specific character of a given integral equation is
expressed only in terms of the properties of the corresponding integral
operators which are contained in the equation we are dealing with.
Usually a proof showing the existence of a solution starting with some
conditions on the function ( )xstg ,,  as well as the limits of integration

and the function h is found. Besides the continuity property of the kernel
of the operator, the property of compactness is often requested as an
essential condition. This happens to be true, for instance, when the state
variable R⊂I  is a compact set or a measurable set in a suitable space.
In this case the study of the nonlinear operator, associated to the integral
equation, is achieved when a couple of Banach spaces such that the
nonlinear operator mapping the first of them into the other is shown to
have such good properties (see, e.g., [17]). So, based on these conditions, a
Banach space and a topology are chosen in such a way that the existence
problem is converted in showing the existence of a very good property of
the set of fixed point of our integral operator, i.e., the fact that the latter
in an δR -set (see, for instance, [1], [2], [5]).

So, in this paper, we are concerned with the solution sets for Volterra
integral equations like:

( ) ( ) ( ) ( )( )

( )
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0
xx
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(2)

where [ ) ,,0: nTIh R→=  ,: nIIk R→×  nnIg RR →×:  are

continuous functions, 0x  is a given vector of nR  and I is a (possible

unbounded) interval of .R

So we are trying to find conditions under which a given integral

operator defines a mapping from (suitably chosen) Banach spaces and

shares the property of continuity and, also in case of unboundedness of

the state set I, it turns out to be a condensing operator.

Remark. The use of a measure of noncompactness and the reduction

of the problem to the search for a fixed point of a condensing operator (or

to the study of good properties of it) is a tool previously used by the

authors (see [1]-[6]).
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In the following ( )rxB ,0  denotes an r-ball (in a metric space ,)),( dS

i.e., the set ( ){ },,: 0 rxxdSx <∈  centered in ,0x  where 0x  is any point

in S.

Further, let us consider the (Hilbert) space ( )nIL R,2  normed, as

usually, by ( )
21

2
2 





= ∫ I

dttxx  and its (affine) subspace =E

{ ( ) ( ) }.0:, 0
2 xxILx n =∈ R

Let X be some Banach space. If XV ⊂  is a subset, then V  denotes

its (topological) closure and cV  denotes the complement of V. Finally

( )XBd  denotes the set of all nonempty and bounded subsets of X.

Definition 1. Let X be a Banach space and XV ⊂  be a subset. A

measure ( ) +→µ RXBd:  defined by

( ) { ( )XBVV d∈>ε=µ :0inf  admits a finite cover

                                            by sets of diameter },ε≤

where the diameter of V is the { },,:sup VyVxyx ∈∈−  is called the

(Kuratowski) measure of noncompactness.

A measure like µ has interesting properties, some of which are listed

in the sequel:

(a) ( ) 0=µ V  if and only if V  is compact;

(b) ( ) ( ) ( )( ) ( ) ( ( ) =µ=µµ=µ VconvVVconvVV ;;  convex hull of );V

(c) ( ) ( )( ) ( ) ( ) ( ) [ ];1,0,11 2121 ∈αµα−+αµ≤α−+αµ VVVV

(d) if ,21 VV ⊂  then ( ) ( );21 VV µ≤µ

(e) if { }nV  is a nested sequence of closed sets of ( )XBd  and if

( ) ,0lim =µ+∞→ nn V  then ∩∞
=

∅≠
1

.
n nV

The corresponding measure of noncompactness for an operator is



www.p
phm

j.c
om

GIUSEPPE ANICHINI and GIUSEPPE CONTI418

defined by ( ) ( )( ) ( ){ }VkVFkF µ≤µ>=µ :0inf  for all bounded subsets

.XV ⊂

Definition 2. Let X be a complete metric space and XXf →:  be a

continuous mapping. Then f is called a k-set contraction if there exists
[ )1,0∈k  such that, for all bounded noncompact subsets V of X, the

following relation holds: ( )( ) ( )VkVf µ≤µ  [15, p. 160].

Definition 3. A continuous operator XXF →:  such that ( )( )VFµ

( ),Vµ<  for any bounded ,XV ⊂  is called condensing or densifying.

(The concept of measure of noncompactness is considerably dealt with
in [8] and [11].)

Definition 4. Let S and 1S  be topological spaces and let .: 1SSf →

Then f is said to be proper if, whenever 1K  is a compact subset of ,1S

( )1
1 Kf −  is a compact set in S.

It is also known [15, p. 160] that if X is a Banach space and
XXf →:  is a continuous k-set contraction, then fI −  is a proper

mapping.

The following considerations are contained in a result, due to Juberg
[16]; they will be useful in the proof of our main result:

Let ( )ba,  be any real (possible unbounded) interval and let ( ),, caLp

+∞≤≤ p1  be the Lebesgue’s space of (the power p) summable functions

over ( )ca,  for every ( )., bac ∈  For ( ),, bcLu p∈  ( ),, caLv q∈  where

,111 =+
qp

 we set

( ) ( )
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Let D be the linear operator defined by:

( ) ( ) ( ) ( ) ( )∫=
x

dyyfyvxuxfD
0

;

in the sequel we shall assume that D is a bounded operator in the space

( )., baLp  We want to recall that the operator D is bounded (in the

( )baLp ,  space) if and only if the function

( ) ( ) ( )
qx

a

qpb

x

p dyyvdyyux

11

















=ψ ∫∫

is bounded on ( )., ba

As matter of fact (see, for instance, [7]) let I be the real interval ( ],1,0

,1=p  ,+∞=q  ( ) ,1
y

yu =  ( ) .yyv =  A simple computation allows us to

see that ( ) :1
4
1

e
D

e
<µ<  so that D is a condensing noncompact operator

from ( ]( ) ( ]( ).1,01,01 ∞→ LL

Furthermore the measure of noncompactness of D, i.e., ( )Dµ  satisfies

(see [16]) ( ) .
2
1

1111
ρ≤µ≤ρ







+
pqp qpD

In the special case when ,2== qp  i.e., when the (Lebesgue) space

pL  is a Hilbert space ,2L  we obtain ( ) .2
8
1 ρ≤µ≤ρ D

Definition 5. An δR -set is the intersection of a decreasing sequence

{ }nA  of compact AR (metric absolute retracts; see [13] or [20], for a

reference).

Moreover it is known (see, for instance, [9]) that an δR -set is an

acyclic set in the 
∨

Cech homology.

The following characterization of an δR -set will be used in the sequel:
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Proposition 1 [13, p. 159]. Let S be a topological space and let X be a

Banach space with norm ;⋅  let XSf →:  be a proper mapping.

Assume further that for each positive N∈n  a proper mapping XSfn →:

is given and the couple of conditions is satisfied:

•  for any ,0>εn  ( ) ( ) ;, Sxxfxf nn ∈∀ε<−

•  for any Xy ∈  such that ,ny ε≤  the equation ( ) yxfn =  has

exactly one solution.

Then the set ( )01−= fQ  is an δR -set.

Remark. Such a sequence nf  is called an nε  approximation (of the

function f ).

2. Main Result

We are ready to establish our (main) existence result for the (initial
value problem for) integral equations of the type here introduced.

First of all let ( ) ,,0: ErBF →  where r is a real number (suitably

defined later on in the proof), be defined as follows:

( ) ( ) ( ) ( ) ( )( )∫+=
t

dssysgstkthtyF
0

;,,  put also ( ) .0 20 Fm =

Theorem 1. Let ρ be the number previously defined. Then we assume

that:

1. there are functions nI R→φα :,  belonging to ( )IL2  such that

( ) ( ) ( )ststk φα=,  for every ( ) ;, IIst ×∈  moreover we assume that ;22 ρ<k

2. ( ) ( ),
2
1, tbxxtg +
ρ

≤  for ( ) ,, nIxt R×∈  ( ) ( ) ;0,2 ≥∈ tbILb

3. there is a ball ( )rB ,0  such that .
2

2

2

0
k

m
r

−ρ
ρ

>

Then the set of solutions of the integral problem (2) is an δR -set.

Remark. The first part of the assumption (1) is satisfied in many
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cases: for instance when ( )stk ,  is a Green function; see also [14] for

similar cases.

Proof. Clearly the above operator F is a single value mapping and a

possible fixed point of F is a solution of the integral problem (2).

In order to prove the theorem the following steps in the proof have to
be established:

  (i) F has a closed graph;

 (ii) F is a condensing mapping;

(iii) The set of fixed points of F is an δR -set.

Proof of Step (i). In fact, let 0yyn →  and put ( ) ( ) ( )( )., tytgtyG =

Now, from assumption (2), it follows that the superposition operator G

mapping the space [ )( )TL ,02  into [ )( )TL ,02  is continuous (see [12]);

thus we have ( ) ( ) .0lim 20 =− yGyG nn  By using the Hölder inequality,

we get:

( ) ( ) ( ) ( ) ( ) ( ) 2
1

2
020 




 −=− ∫ I
nn dssyFsyFyFyF

( ) ( )( ) ( ) ( )( )
2
1

2

0
0,,,,




















−= ∫ ∫I

t

n dtdssysgstksysgstk

( ) ( ) 202 yGyGk n −≤

and this quantity is going to zero whenever .+∞→n

Proof of Step (ii). Always working from ( )rB ,0  into E, we have

( ) ( ) ( ),yGHyF =  where

( ) ( ) ( ) ( ) ( ) ( )∫ +αφ=
t

thdssytstyH
0

.

Now, by assumptions (1) and (2), we have (see [12]) ( )( ) ≤µ VG

( ),
2
1 Vµ
ρ

 for any bounded set ( )nILV R×⊂ 2  and also, from (1),

( ) ;2ρ<µ H  so (see [4]) ( ) ( ) ( ) ( ) ( ) .1<µµ≤µ=µ GHyGHF
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Proof of Step (iii). Finally we have to prove that the set of fixed

points of the operator F is an δR -set.

Let us consider the mappings [ )( ) [ )( )TLTLFn ,0,0: 22 →  defined as:

( ) ( )
( )

( ) ( ) ( ) ( )( )









<≤αφ+

≤≤
=

∫
−

.if,

;0if

0
Tt

n
Tdssysgstth

n
Ttth

txF
n
Ttn

The mappings nF  are continuous mappings; by assumptions (1) and

(2) we have that they are also condensing.

The intervals ( ) ( )





 −





 +











 T

n
Tn

n
Tk

n
kT

n
T

n
T

n
T ,1...,,1,...,,2,,,0

are now coming in one after the other: each time the mappings nF  are

bijective and their inverses 1−
nF  are continuous. Moreover we have

02 →− FFn  as .+∞→n  The latter fact allows us to say that the

mappings nFI −  and FI −  are proper maps. Finally we can conclude

that the set of fixed points of F is an δR -set.
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