THE ITERATIVE APPROXIMATION METHOD FOR FIXED POINTS OF Φ-HEMICONTRACTIVE MAPPING AND APPLICATIONS

JINRONG CHANG and YUGUANG XU

(Received March 15, 2006)

Submitted by K. K. Azad

Abstract

The objective of this paper is to introduce the Φ -hemicontractive mapping and to study iterative approximation method for the fixed points of the mapping by Mann iterative sequence with random errors $\{x_n\}$. Let X be a real Banach space and $T:X\to X$ be Φ -hemicontractive. The results show that $\{x_n\}$ converges strongly to an unique fixed point if T is uniformly continuous, and if X is uniformly smooth, then any continuity of T is unnecessary. As application, the approximation method for the solution of nonlinear equation with Φ -accretive mapping is obtained.

Throughout this paper, X is assumed a real Banach space with dual X^* , (\cdot, \cdot) denotes the generalized duality pairing of X and X^* . The mapping $J: X \to 2^{X^*}$ defined by

$$Jx = \{j \in X^* : (x, j) = ||x|| ||j||, ||j|| = ||x||\} \quad \forall x \in X$$
 (0.1)

2000 Mathematics Subject Classification: 47H17, 47H06, 47H10.

Keywords and phrases: Φ -hemicontractive mapping, Φ -accretive mapping, Mann iteration sequence.

This work is supported by the Natural Science Foundation of China (No. 10561011).

© 2007 Pushpa Publishing House

is called the *normalized duality mapping*. In particular, X is a uniformly smooth (equivalently, X^* is uniformly convex) Banach space if and only if J is single-valued and uniformly continuous on any bounded subset of X (see, Browder [2]).

To set the framework, we recall some basic notations as follows.

Definition 1 [9]. Let $T: X \to X$ be a mapping. For any given $x_0 \in X$ the sequence $\{x_n\}$ defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n + \gamma_n u_n \quad (n \ge 0)$$
 (0.2)

is called *Mann iteration sequence* with random errors. Here $\{u_n\}$ is a bounded sequence in X; $\{\alpha_n\}$ and $\{\gamma_n\}$ are two sequences in [0,1].

Definition 2. Let T be a mapping with domain $D(T) \subset X$ and range $R(T) \subset X$. T is called ϕ -hemicontractive if for all $x \in D(T)$ and $q \in F(T) := \{x \in D(T) : Tx = x\}$ there exist $j(x - q) \in J(x - q)$ and a strictly increasing function $\phi : [0, \infty) \to [0, \infty)$ with $\phi(0) = 0$ such that

$$(Tx - q, j(x - q)) \le ||x - q||^2 - \phi(||x - q||) ||x - q||. \tag{0.3}$$

T is called Φ -hemicontractive if for all $x \in D(T)$ and $q \in F(T)$ there exists $j(x-q) \in J(x-q)$ such that

$$(Tx - q, j(x - q)) \le ||x - q||^2 - \Phi(||x - q||).$$
 (0.4)

T is called Φ -accretive if for all $x, y \in D(T)$ there exist $j(x - y) \in J(x - y)$ and a strictly increasing function $\Phi : [0, \infty) \to [0, \infty)$ with $\Phi(0) = 0$ such that

$$(Tx - Ty, j(x - y)) \ge \Phi(||x - y||).$$
 (0.5)

Remark 1. The ϕ -hemicontractive mapping was introduced and studied by Osilike [6] in 1996. Obvious, every ϕ -hemicontractive mapping must be a Φ -hemicontractive mapping defined by $\Phi(s) = \phi(s)s$, and the class of ϕ -hemicontractive mappings is a proper subset of the class of Φ -hemicontractive mappings. For example, let E = R (the reals with the

usual norm) and let $K=[0,+\infty)$. Define $T:K\to K$ by $Tx=x-\frac{x}{1+x^2}$. It is easy to verify that T is Φ -hemicontractive with a fixed point x=0 and $\Phi:[0,+\infty)\to[0,+\infty)$ defined by $\Phi(s)=s^2/(1+s^2)$, and T is not Φ -hemicontractive.

Suppose that $A: X \to X$ is a Φ -accretive mapping and $S: X \to X$ is defined by Sx = f + x - Ax for all $x \in X$ and any given $f \in X$, it is easy to verify that q is a solution of Ax = f if and only if q is a fixed point of S. Hence, the solution of Ax = f is intimately connected with the fixed point of the mapping.

The following lemma plays a crucial role in the proofs of our main results.

Lemma 1 [1]. If X is a real Banach space, then there exists a $j(x + y) \in J(x + y)$ such that

$$||x + y||^2 \le ||x||^2 + 2(y, j(x + y)) \quad \forall x, y \in X.$$
 (0.6)

Now we prove the following approximative theorems.

Theorem 1. Suppose that $T: X \to X$ is a uniformly continuous Φ -hemicontractive operator with bounded range. If the Mann iteration sequence with random errors $\{x_n\}_{n=0}^{\infty}$ defined by (0.2) satisfying

(1.1)
$$\lim_{n\to\infty} \alpha_n = 0$$
 and $\sum_{n=0}^{+\infty} \alpha_n = +\infty$;

$$(1.2) \sum_{n=0}^{+\infty} \gamma_n < +\infty,$$

then for arbitrary $x_0 \in X$, $\{x_n\}$ converges strongly to the unique fixed point of T.

Proof. From (0.4), we know that $F(T) = \{q\}$. Putting $c = \sup\{\|Tx - q\| : x \in X\} + \|x_0 - q\|$ and $d = \sup\{\|u_n\| : n \ge 0\}$. For any $n \ge 0$, using induction, we obtain $\|x_n - q\| \le c + d\sum_{i=0}^{n-1} \gamma_i \le c + d\sum_{i=0}^{+\infty} \gamma_i$. Hence, we set $M = c + d\sum_{i=0}^{+\infty} \gamma_i$. Since $\lim_{n \to \infty} \|x_n - x_{n+1}\| = c$

 $\lim_{n\to\infty} \|\alpha_n x_n - \alpha_n T x_n - \gamma_n u_n\| = 0$, therefore

$$e_n := ||Tx_n - Tx_{n+1}|| \to 0 \text{ (as } n \to \infty)$$
 (0.7)

by the uniformly continuity of T.

Let $\sigma = \inf\{\|x_{n+1} - q\| : n \ge 0\}$. If $\sigma > 0$, then $\Phi(\|x_{n+1} - q\|) > \Phi(\sigma/2) > 0$ for all $n \ge 0$. Thus, there exists a natural number $N \in \mathcal{N}$ such that

$$\alpha_n \le \frac{1}{6}$$
 and $3M^2\alpha_n^2 + 3M\alpha_n e_n + 3M^2\gamma_n = o(\alpha_n)\alpha_n \le \alpha_n \Phi\left(\frac{\sigma}{2}\right)$ (0.8)

for all $n \ge N$, respectively. By (0.2), (0.6), (0.4) and (0.8), we have

$$\| x_{n+1} - q \|^{2} = \| (1 - \alpha_{n})(x_{n} - q) + \alpha_{n}(Tx_{n} - q) + \gamma_{n}u_{n} \|^{2}$$

$$\leq \| (1 - \alpha_{n})(x_{n} - q) \|^{2} + 2\alpha_{n}(Tx_{n} - Tx_{n+1}, j(x_{n+1} - q))$$

$$+ 2\alpha_{n}(Tx_{n+1} - q, j(x_{n+1} - q)) + 2M^{2}\gamma_{n}$$

$$\leq (1 - \alpha_{n})^{2} \| x_{n} - q \|^{2} + 2M\alpha_{n}e_{n} + 2\alpha_{n} \| x_{n+1} - q \|^{2}$$

$$- 2\alpha_{n}\Phi(\| x_{n+1} - q \|) + 2M^{2}\gamma_{n}$$

$$\leq \| x_{n} - q \|^{2} + 3M^{2}\alpha_{n}^{2} + 3M\alpha_{n}e_{n}$$

$$+ 3M^{2}\gamma_{n} - 2\alpha_{n}\Phi(\| x_{n+1} - q \|)$$

$$= \| x_{n} - q \|^{2} + o(\alpha_{n}) - 2\alpha_{n}\Phi(\| x_{n+1} - q \|)$$

$$(0.9)$$

for all $n \ge N$. It follows from (0.8) and (0.9) that

$$\|x_{n+1} - q\|^2 \le \|x_n - q\|^2 + o(\alpha_n) - 2\alpha_n \Phi\left(\frac{\sigma}{2}\right) \le \|x_n - q\|^2 - \alpha_n \Phi\left(\frac{\sigma}{2}\right)$$

for all $n \geq N$. By induction, we obtain

$$\Phi\left(\frac{\sigma}{2}\right) \sum_{j=N}^{+\infty} \alpha_j \le \|x_N - q\|^2 \le M^2. \tag{0.10}$$

(0.10) is in contradiction with $\sum_{j=0}^{+\infty} \alpha_j = +\infty$. From this contradiction, we get $\sigma = 0$. Therefore, there exists a subsequence $\{x_{n_j}\} \subset \{x_n\}$ such that $x_{n_j} \to q$ as $j \to \infty$. For any given $\varepsilon > 0$ there exists an integer $j_0 \geq N$ such that $\|x_{n_j} - q\| < \varepsilon$ and $o(\alpha_{n_j}) \leq 2\alpha_{n_j} \Phi(\varepsilon)$ for all $j \geq j_0$. If j_0 is fixed, then we shall prove that $\|x_{n_{j_0}+k} - q\| < \varepsilon$ for all integers $k \geq 1$.

The proof is by induction. For k=1, suppose $\|x_{n_{j_0}+1}-q\|\geq \epsilon$. It follows from (0.9) and $\Phi(\|x_{n_{j_0}+1}-q\|)\geq \Phi(\epsilon)$ that

$$\begin{split} \varepsilon^{2} & \leq \|x_{n_{j_{0}}+1} - q\|^{2} \\ & \leq \|x_{n_{j_{0}}} - q\|^{2} + o(\alpha_{n_{j_{0}}}) - 2\alpha_{n_{j_{0}}} \Phi(\varepsilon) \\ & \leq \|x_{n_{j_{0}}} - q\|^{2} < \varepsilon^{2}. \end{split}$$

It is a contradiction. Hence, $\|x_{n_{j_0}+1}-q\|<\varepsilon$ holds for k=1. Assume now that $\|x_{n_{j_0}+p}-q\|<\varepsilon$ for some integer p>1. We prove $\|x_{n_{j_0}+p+1}-q\|<\varepsilon$. Again, assuming the contrary, $\Phi(\|x_{n_{j_0}+p+1}-q\|)$ $\geq \Phi(\varepsilon)$, as above, it leads to a contradiction as follows

$$\varepsilon^{2} \leq \|x_{n_{j_{0}}+p+1} - q\|^{2} \leq \|x_{n_{j_{0}}+p} - q\|^{2} < \varepsilon^{2},$$

where $n_{j_0}+p>n_{j_0}\geq j_0\geq N$. Therefore, $\|x_{n_{j_0}+k}-q\|<\varepsilon$ holds for all integers $k\geq 1$, so that $x_{n_{j_0}+k}\to q$ as $k\to\infty$. The proof is completed.

Theorem 2. Let $T: X \to X$ be a Φ -hemicontractive mapping with bounded range and X be uniformly smooth. Suppose that the Mann iteration sequence with random errors $\{x_n\}_{n=0}^{\infty}$ defined by (0.2) satisfying the conditions (1.1) and (1.2) in Theorem 1, then for arbitrary $x_0 \in X$, $\{x_n\}$ converges strongly to the unique fixed point of T.

Proof. From (0.4), we know that the fixed point of T is unique. Let q be the fixed point of T in X. By similar arguments as in the proof of Theorem 1, we set $M = c + d \sum_{i=0}^{+\infty} \gamma_i$. From the uniformly continuity of J, we have

$$e_n := ||J(x_{n+1} - q) - J(x_n - q)|| \to 0 \quad (as \ n \to \infty).$$

Using (0.2), (0.6) and (0.4), we have

$$\|x_{n+1} - q\|^{2} = \|(1 - \alpha_{n})(x_{n} - q) + \alpha_{n}(Tx_{n} - q) + \gamma_{n}u_{n}\|^{2}$$

$$\leq \|(1 - \alpha_{n})(x_{n} - q)\|^{2} + 2\alpha_{n}(Tx_{n} - q, J(x_{n+1} - q))$$

$$+ 2\gamma_{n}(u_{n}, J(x_{n+1} - q))$$

$$\leq \|(1 - \alpha_{n})(x_{n} - q)\|^{2} + 2\alpha_{n}(Tx_{n} - q, J(x_{n} - q))$$

$$+ 2\alpha_{n}(Tx_{n} - q, J(x_{n+1} - q) - J(x_{n} - q)) + 2M^{2}\gamma_{n}$$

$$\leq \|x_{n} - q\|^{2} + 2M^{2}\gamma_{n} + M^{2}\alpha_{n}^{2} + 2M\alpha_{n}e_{n}$$

$$- 2\alpha_{n}\Phi(\|x_{n+1} - q\|)$$

$$= \|x_{n} - q\|^{2} + o(\alpha_{n}) - 2\alpha_{n}\Phi(\|x_{n+1} - q\|). \tag{0.11}$$

By similar arguments as in the proof of Theorem 1, we have that $\{x_n\}$ converges strongly to the unique fixed point q of T. The proof is completed.

Corollary 1. Suppose that $A: X \to X$ is a uniformly continuous Φ -accretive mapping and the range of (I-A) is bounded. If the equation Ax = f has a solution and the Mann iteration sequence with random errors $\{x_n\}_{n=0}^{\infty}$ defined by (0.2) satisfying the conditions (1.1) and (1.2) in Theorem 1, then for arbitrary $x_0 \in X$, $\{x_n\}$ converges strongly to the unique solution of Ax = f.

Proof. Putting $T: X \to X$ by Tx = f + x - Ax for all $x \in X$. Obvious, if $q \in X$ is a solution of Ax = f, then q is a fixed point of T and T is Φ -hemicontractive. Thus, Corollary 1 follows from Theorem 1.

Similarly, we obtain

Corollary 2. Let $A: X \to X$ be a Φ -accretive mapping and the range of (I-A) be bounded and X be uniformly smooth. Suppose that the Mann iteration sequence with random errors $\{x_n\}_{n=0}^{\infty}$ defined by (0.2) satisfying the conditions (1.1) and (1.2) in Theorem 1. For any given $f \in X$, if Ax = f has a solution in X, then for arbitrary $x_0 \in X$, $\{x_n\}$ converges strongly to the unique solution of Ax = f.

Remark 2. The corresponding results (see, for example, Theorems 4.1 and 4.2 in [3], Theorems 3 and 4 in [8], Corollary 4 in [7], Corollary 3.3 in [5], Corollaries 3.2 and 3.4 in [9], Theorem 2 in [10] and Corollary 3.2 in [4]) are improved in the following senses:

- (i) For the convergence of $\{x_n\}_{n=0}^{\infty}$, if X is arbitrary Banach space, then the mapping may not be Lipschitz; if X is uniformly smooth, then the mapping may not be continuous or demicontinuous.
- (ii) The mappings are Φ -hemicontractive or Φ -accretive, they may not be ϕ -hemicontractive or ϕ -strongly accretive.
 - (iii) The random errors of iterative process have been considered.

References

- E. Asplund, Positivity of duality mappings, Bull. Amer. Math. Soc. 73 (1967), 200-203.
- [2] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968), pp. 1-308, Amer. Math. Soc., Providence, R. I., 1976.
- [3] S. S. Chang, Y. J. Cho, B. S. Lee and S. M. Kang, Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudocontractive mappings in Banach spaces, J. Math. Anal. Appl. 224 (1998), 149-165.
- [4] X. P. Ding, Iterative process with errors to nonlinear Φ-strongly accretive operator equations in arbitrary Banach spaces, Comput. Math. Appl. 33(8) (1997), 75-82.
- [5] Z. Q. Liu and S. M. Kang, Convergence theorems for φ-strongly accretive and φ-hemicontractive operators, J. Math. Anal. Appl. 253 (2001), 35-49.
- [6] M. O. Osilike, Iterative solution of nonlinear equations of the φ-strongly accretive type, J. Math. Anal. Appl. 200 (1996), 259-271.

- [7] M. O. Osilike, Iterative solutions of nonlinear φ-strongly accretive operator equations in arbitrary Banach spaces, Nonlinear Anal. 36 (1999), 1-9.
- [8] M. O. Osilike, Stability of the Mann and Ishikawa iteration procedures for φ-strong pseudocontractions and nonlinear equations of the φ-strongly accretive type, J. Math. Anal. Appl. 227 (1998), 319-334.
- [9] Y. G. Xu, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224 (1998), 91-101.
- [10] L. C. Zeng, Error bounds for approximation solutions to nonlinear equations of strongly accretive operators in uniformly smooth Banach spaces, J. Math. Anal. Appl. 209(1) (1997), 67-80.

Department of Mathematics
Kunming Teacher's College
Kunshi Road No: 2
Kunming Yunnan 650031
P. R. China
a mail: changir 1969@sing.com.e

e-mail: changjr1969@sina.com.cn mathxu126@126.com