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Abstract

This paper studies Toeplitz operators on the Hardy space over polydisk.
We show that the finite products of Toeplitz operators is a Fredholm

operator only if the finite products of symbols is invertible in L*(T").

For f e L*(T"), the Toeplitz operator Ty commutes essentially with all

T, (=12 .., n) ifandonlyif f € H*(D").
1. Preliminaries

Let D be the open unit disk in the complex plane C. Its boundary is
the unit circle 7. The polydisk D" and the torus 7" are the subsets of
C™ which are Cartesian products of n copies of D and 7, respectively. Let

do(z) be the normalized Haar measure on 7". The Hardy space HZ(D")

is the closure of the polynomials in L2(T™", do) (or L*(T™)). Let P be the
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orthogonal projection from L?(T™) onto HZ(D™). The Toeplitz operator
with symbol fin L*(T") is defined by Tyh = P(fh), for all h e H%(D")
and the Hankel operator with symbol f is defined by H¢h = (I - P)(fh),

for all h e HXD"). K, (w,)= L s the reproducing kernel of
! (1 -Zzw,)
9 . 1-|z )2
Hardy space H“(D) at the point z; € D and k, (w;) = ———=—— is
! (1 - Zw0,)

the normalized reproducing kernel of H 2(D) at the point z; € D. It is

easy to check that the reproducing kernel of H 2(D") at the point z € D"
is the product K,(w) = H:l: (K (w;). So the normalized reproducing
kernel k. (w) of H2(D") at the point z € D" is also the product k,(w) =
H?: Lk (w;). We know that k, weakly converges to zero in HZ(D") as z

tends to the boundary of D". We denote by Aut(D") the group of all

biholomorphic automorphisms of D". The automorphisms of D" for
n > 2 are generated by the following three subgroups: rotations in each
variable separately Ry(z) = (¢®'z, ..., e®nz.), where Mébius transfor-

mations are in each variable separately ¥,,(z) = (W, (21)s .-, P, (21))

and the coordinate permutations. Here 0 € [0, 2r]* and w e D" are

fixed. Mobius transformations are in the form W, (z)=-———=
1-wz
(w e D, z € D). Thus an arbitrary ¥ € Aut(D") can be written in the

form
‘II(Z) = (eiel\ywl (Zc(l))’ ) eien\{/wn (Zc(n)))

for some w = (wy, ..., w,)e D", 6=(0;,...,0,) €0, 2n]", and o is a

coordinate permutations (see [10]). Let Z denote the set of all integers,
Z, denote the set of all nonnegative integers and Z_ denote the set of all

negative integers. We recall that by using multiple Fourier series,
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A ={f:f= Y @ Y |f@)f <o

aeZ” aeZ”

We note that for every ¢ = ((y,...,¢,)eT", o= (0,..., o, e Z",
¢ = C?l el ;aj = _?j, Cjzj =1. So we can also write f e LZ(Tn)

as

f=f50) = D fl@)i®
aeZ}

where zj =(j or Ej = Zj.

Lemma 1.1. Let

f=1G0)= ) fla)t®
aeZ}
Then
TrK,(w) = fw, 2)K(w) ¢ H*(D")

for every z € D" (see [4]).
Lemma 1.2. Let f and g be in L*(T™) (n > 2). Then for any z, e D,

w €T, we have

] imO
lim JT (Tngk21eiekz,, kzleiekz'>elm do

211
_ . ) , \ pimo
- .[T <Tf(u1ele')Tg(u1€le')kZ » k) edb,

where 0 € [0, 2n], for all me Z and 2z e D' are fixed. For fixed

w €T, where T is the Toeplitz operator on the H*(D" ™) (see [4]).

f(ue®)
2. Fredholm Toeplitz Operators

The object of the present section is to study the properties of Toeplitz
algebra. We write L(H2(D")) for all bounded linear operators on Hardy

space H?(D™). For the subset N < L*(T"), denote by F(N) the closed
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algebra generated by the set {Ty|f € N}. In the Hardy space H 2(D) of
the unit disk, Douglas [6] gave the following exact sequence:
(0) = com F(L™(T)) —» F(L(T)) - L”(T) — (0),

where com F(L*(T")) is the commutator ideal in F(L*(T")),
p: F(L*(T)) —» L*(T) is symbol map. In 2003, Zhang get the following
exact sequence:

(0) » semi F(L*(T")) —» F(L*(T™)) —» L*(T") - (0),
where semi F(L”(T"™)) denotes the semi-commutator ideal in F(L*(T"))
(see [13]). We have the following results.

Theorem 2.1. There exists a *-homomorphism & from the quotient

algebra F(L*(T"))/K onto L*(T") such that p =¢&on, where K is
compact operator ideal of L(H?(D™)), n is the canonical homomorphism
from L(H*(D")) onto the corresponding Calkin algebra and
p: F(L*(T")) —» L*(T") is symbol map.

Proof. By Zhang’s Proposition 1 in [13], K < com F(L*(T")) c

semi F(L*), so the theorem holds immediately from Zhang’s exact

sequence.

Theorem 2.2. Let f; (i=1,2,...,m) be all in L*(T") such that
product Tfle2 ---Tfm is a Fredholm operator. Then product fifs---f, is
invertible in L*(T").

Proof. It T; Ty, -+ Ty is a Fredholm operator, then Tc(Tfle2 ---Tfm)
is invertible in L(H%(D"))/K. Since F(L*(T™))/K is a closed self-adjoint
subalgebra of L(H?*(D"))/K, (T4 Ty, T ) is invertible in
F(L*(T"))/K by Douglas’s Theorem 4.28 in [6]. Hence there exists a
Be F(L*)(T") such that n(T; Ty )n(B)=mn(l). Since & is a
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*-homomorphism from F(L*(T"))/K onto L*(T"), &on(Ty - Ty )&
om(B)=Eom(l)=1. It follows that p(Tfl Tfm) =Eo TC(Tfl Tfm)
= f; - f,, is invertible in L”(T"™). This completes the proof.

Corollary 2.3 (Spectrum Inclusion Theorem). Let fi, fo, ..., f, be in
L*(T™). Then

o(My My ) < oo(Ty, Ty ),

where My is a multiplication operators on H%(D"), oMy, - My )
denotes the spectrum of operator Mf1 '”Mfm’ and cse(Tf1 wam) denotes

the essential spectrum of operator Tf1 Tfm‘

3. The Essential Commutant of Analytic Toeplitz Algebra

The main purpose of this section is the description of the essential
commutant of analytic Toeplitz algebra. For A, B e L(H?(D")), if
AB - BA € K, then we say that A essentially commutes with B. The set
of operators which essentially commutes with all operators in F(N) is

called the essential commutant of F(N), denoted by E.F(N), where N
CL7(T"). Let A, ={f e L*(T"):T; c EF(H*(D"))}, A ={f e L*(T"):
Hy is compact}. When n =1, Davidson [2] showed E.F(H”(D"))=
F(A,)+K =F(A)+K, A.=A=H*+C in 1977. When n >1,
A, o Ao H”(S,)+C(S,), but A= H”(S,)+C(S,) (see [3]), where
S,, is the unit sphere in C". Guo and Sun have obtained E.F(H”(S,))
= F(A,)+ K in [8], and Ding and Sun prove that A, = A, E.F(H”) =
E.F(H” + C) = E.F(A), on Hardy space over unit sphere (see [5]). We

know that the function theory on the polydisk D" is quite different from
the function theory on the unit disk and unit ball (see [11], [12]).

Naturally, Sun put forward the problem: E.F(H*(D™)) = ? The object of
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the section is to discuss which operators commute essentially with all
analytic Toeplitz operators on Hardy space over polydisk. We shall see
many differences in Toeplitz operator theory between on the polydisk and
the disk or the sphere.

Theorem 3.1. Let A be a bounded operator on H>(D") such that

T AT, = A, i=12 ..,n

Then there exists a function f e L*(T™) such that
A=Ty
Proof. Let A(D") be the polydisk algebra. For any f e A(D"), we
have f € H*(D") and | f|ly< | f|,. Hence A:(A(D"),|-|,)— H*(D")

is continuous, since A is a bounded linear operator on H 2(D"). Also

TE,-ATZ,- =A,i=12,..,n implies

Ty AT g T =A
%

=m Mn
z Zn Zn

for every (my, ..., m,) € Z'. By Guo and Chen’s Lemma 2.2 in [7], there
exists a function f e L2(T™) such that A = Ts. Since A is bounded on

H%(D"), f e L*(T"™). This completes the proof of Theorem 3.1.

Theorem 3.2. Let f be in L*(T"). If Ty commutes essentially with all
T, (=12 ..,n),then fe H*(D") (n 2 2).

Proof. Let TszL- = TZin +K; (i=1,2,...,n), where K; are all
compact operators on H2(D"). Thus we have

<Tszikw’kwi ’ kw'kwi> = <Tzinkw'kwi> + <Kikw'kwi’ kw’kwi>'

As w' — p' e T" !, we obtain that

(T Teikuys ) = (T Tr(w - Yoy Fuwy)
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by Lemma 1.2. Hence
Ty Ty = Te Ty,
where Ty .y and T, are Toeplitz operators on H 2(T), for almost all fix

u e T™ 1. 1t follows that f is analytic in variable z; by Halmos theorem

in [9]. So f € H*(D™"). This completes the proof of Theorem 3.2.

Corollary 3.3. A, ={feL*(T"):T; € E.F(H*(D"))} = H*(D")
(n = 2).

Theorem 3.4. Let f e L”(T") and H; be Hankel operator on
H%(D") (n > 2). Then the following are equivalent:

(1) Hy = 0.

(2) Hy is compact.

(3) ||[Hfk, | - 0 as z —» aD".

4) ((T‘f‘z —Tfo)kZ, k) > 0 as z - oD".

) f e H”.

Proof. We have only to prove that (4) implies (5). Suppose that
condition (4) holds, then by using Theorem 2.1, we have

lim <(T" f ‘2 - Tfo)kru'kzi’ kru'kzi > = <(T" F(w') ‘2 - Tf(u’.)Tf(u'~))kzi’ kzi > =0

ro1-
for almost all fix p' e T" ~1. This implies that
Ty Tt = T\f(u“) 2

Hence f(u'-) is analytic in variable z; due to Brown and Halmos’s

theorem in [1]. Thus f € H*(D"). This completes the proof of Theorem
3.4.
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Corollary 38.5. A, = A = H*(D"), when n > 2.

Theorem 3.6. Let S € E.F(H™(D")). Then there is an f e L*(T")
and bounded operator o € L(H2(D")) such that S = T; +o.

Proof. Set o, =S - TzlkSTzf for ke Z,. Since {0}, :ke Z,} is

norm bounded, there exists a subsequence which is w * — convergent. We

may assume that, without loss of generality, the subsequence is
{op : ke Z.}. Let

o =w*— lim op.
k—wx
Let
STZi = TZiS + Ki’
where K; are all compact. Then

To.(S - 6)T,. = w*— lim (T2, ST . T,.)
i i m—w 1 Z z i

m—>o0

= w*— lim (T_p STy + T T KT 1)
Zl Zl 21 14 Zl

=w#*- lim T7_,ST™ = S - o,
m—w 2] 21

since K; is compact implies w * —lim,,_,, TEmTEiKiTZm = 0. Theorem
1 1
3.1 implies that S — ¢ = Ty for some f € L”(T"). This gives the desired

result.

Note. If we can prove operator ¢ is compact, then E.F(H™(D"))
= F(H”(D")) + K. Although we cannot prove that in now, but we still
have the conjecture: E.F(H*(D")) = F(H*(D"))+ K when n > 2.
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