MEASURE IN GENERALIZED FUZZY SETS

MEHMET SAHIN and ZIYA YAPAR

(Received June 5, 2006)

Submitted by K. K. Azad

Abstract

In this article, using construction of fuzzy sets without depending on membership function, algebric properties of a family of fuzzy sets, three notions including a ring of generalized fuzzy sets GF(X) of X, a complete Heyting algebra (cHa) which contains the power set P(X) of X, an extension lattice $\overline{B(L)}$, where B=P(X), and the set of L-fuzzy sets, where $L=\{L_x \mid x\in X\}$, definitions of fuzzy σ -algebra and fuzzy measure are generalized. We obtain some results using these definitions which include a generalization of Proposition 2 in [4].

1. Introduction

Zadeh, in his monumental paper [11], defined a fuzzy set as follows: "A fuzzy set (class) A in X is characterized by a membership (characteristic) function $f_A(x)$ which associates with each point in X a real number in the interval [0,1], with the value of $f_A(x)$ at x representing the "grade of membership of x in A". Therefore, fuzzy sets are unreal sets which exist only when identified with membership functions. For example a fuzzy set labeled old may be characterized by

²⁰⁰⁰ Mathematics Subject Classification: 04A72, 28E10, 06D20.

Keywords and phrases: generalized fuzzy σ -algebras, generalized fuzzy measure, complete Heyting algebra.

s(x; 60, 70, 80) as introduced by Zadeh [12] or may be characterized by a triangular function. As shown by Nakajima [5], these two membership functions are equivalent under maxmin operations. The purpose of this paper is to generalize the definitions of fuzzy σ -algebra and fuzzy measure, called as generalized fuzzy σ -algebra and generalized fuzzy measure, respectively.

2. Preliminaries

In this section, we briefly review the well-known facts about lattice theory (Birkhoff [1], Iwamura [3]), propose an extension lattice, and investigate its properties. (L, \vee, \wedge) or simply L, closed under operations \vee and \wedge , is called a *lattice*, if it satisfies the cumulative, the associative and the absorption laws. A lattice L which satisfies, in addition, the distributive law is called *distributive*. For two lattices L and L', a bijection from L to L' which preserves lattice operations is called a *lattice-isomorphism*, or simply an *isomorphism*. If there is an isomorphism from L to L', then L is called *lattice-isomorphic* to L', and we write $L \cong L'$. We write $x \leq y$ if $x \wedge y = x$, or equivalently if $x \vee y = y$. We call a lattice L to be *complete* if every subset L of L possesses the supremum L and infimum L with respect to the order in L. A complete lattice L has the maximum and minimum elements, which are denoted by L and L0, or L1 and L2, respectively [6].

Definition 1. A complete distributive lattice L is called a *complete* Heyting algebra (cHa), if

$$\bigvee_{i \in I} (x_i \wedge y) = \left(\bigvee_{i \in I} x_i\right) \wedge y$$

for x_i , $i \in I$, and y in L, where I is an index set of arbitrary cardinal numbers [9].

Definition 2. Let L be a lattice and $c: L \to L$ be an operator. Then c is called a *complement* in L if the following conditions are satisfied [7]:

- (i) for $a \in L$, $a^c \wedge a = 0$, $a^c \vee a = I$,
- (ii) for $a, b \in L$, $a \le b \Rightarrow a^c \ge b^c$,

(iii) for
$$a \in L$$
, $(a^c)^c = a$.

Definition 3. Let L be a bounded lattice and $c: L \to L$ be an operator. Then c is called a *generalized complement* if the following conditions are satisfied [7]:

(i) for
$$a, b \in L$$
, $a \le b$, $a^c \ge b^c$,

(ii) for
$$a \in L$$
, $(a^c)^c = a$.

Definition 4. Let S be a fuzzy algebra of L^X . Then a function $m: S \to R_+$, is called a *fuzzy measure* if the following conditions are satisfied:

(i) for
$$A \in S$$
, $m(A) \ge 0$ and $m(\emptyset) = 0$,

(ii) for
$$A, B \in S$$
, if $A \leq B$, then $m(A) \leq m(B)$,

(iii) for
$$A, B \in S$$
, $m(A \vee B) + m(A \wedge B) = m(A) + m(B)$.

The pair (X, S) is called a fuzzy measurable space [7].

Lemma 1. For any distributive lattice L, there exists a set E such that L is lattice-isomorphic with some sublattice of the power set P(E), whose set operations are its lattice operations [3].

Definition 5. If l is a sublattice of a lattice L, then L is said to be an extension of l. If L_1 , a sublattice of L, is the minimal sublattice which contains the sublattice l of L and the subset M of L, then L_1 is the extension lattice of l obtained by adjoining M and is denoted by $L_1 = l(M)$.

Definition 6. A family GF(X), which is closed under operations \vee and \wedge , is called a *ring of generalized fuzzy subsets* of X, if it satisfies:

- (i) GF(X) is complete Heyting algebra with respect to \vee and \wedge ,
- (ii) GF(X) contains P(X), the power set of X, as a sublattice of GF(X),

- (iii) the operations \vee and \wedge coincide with set operations \cup (sum) and \cap (intersection), respectively, in P(X),
 - (iv) for any element A in GF(X), $A \vee X = X$ and $A \wedge \emptyset = \emptyset$.

Note that because of (iii), the lattice operations may also be denoted by \bigcup and \bigcap , in place of \vee and \wedge , respectively.

Next we generalize the notions of L-fuzzy sets [2] to \mathcal{L} -fuzzy sets. Suppose that a lattice L_x is assigned to each x in X. Let $\mathcal{L} = \{L_x \mid x \in X\}$ [6].

Definition 7. An \mathcal{L} -fuzzy set A is characterized by a membership function μ_A which associates with each point x in X, an element $\mu_A(x)$ in L_x . The family of all \mathcal{L} -fuzzy sets is denoted by LF(X). Set operations in LF(X) are defined as usual: that is, for A and B in LF(X), $\mu_{A\cup B}(x)=\mu_A(x)\vee\mu_B(x)$ and $\mu_{A\cap B}(x)=\mu_A(x)\wedge\mu_B(x)$. When each L_x is equal to L, \mathcal{L} -fuzzy sets reduce to Goguen's [2] L-fuzzy sets. An L-fuzzy set is called simple, if its membership function is a simple function: that is, if there is a finite division $\{E_1,...,E_n\}$ of X and a finite set $\{A_1,...,A_n\}$ of L such that $\mu_A(x)=A_i$ for $x\in E_i,\,i=1,...,n$. The set of all simple L-fuzzy sets on X is denoted by LF(X) [8].

Lemma 2. Let L be a distributive lattice such that $\max L = 1$ and $\min L = 0$, and let l and M be sublattices of L such that $\max l = \max M = 1$, and $\min l = \min M = 0$. Then l(M) equals

$$L_0 = \left\{ \bigvee_{i=1}^n (a_i \wedge x_i) | a_i \in l, x_i \in M, n = 1, 2, \ldots \right\}.$$

Proof. An element of L_0 can be denoted by $\bigvee_{i=1}^n (a_i \wedge x_i)$ with a_i not being zero for a finite number of i's. For $y = \bigvee_{i=1}^n (a_i \wedge x_i)$ and $z = \bigvee_{i=1}^m (b_j \wedge y_j)$, from the fact that L is a distributive, it follows that

$$y \lor z = \left(\left[\bigvee_{i=1}^{n} (a_i \land x_i) \right] \lor \left[\bigvee_{j=1}^{m} (b_j \land y_j) \right] \right) \in L_0.$$

Also,

$$y \wedge z = \left[\bigvee_{i=1}^{n} (a_i \wedge x_i) \right] \wedge \left[\bigvee_{j=1}^{m} (b_j \wedge y_j) \right]$$
$$= \bigvee_{i=1}^{n} \bigvee_{j=1}^{m} (a_i \wedge x_i) \wedge (b_j \wedge y_j)$$
$$= \bigvee_{i=1}^{n} \bigvee_{j=1}^{m} (a_i \wedge b_j) \wedge (x_i \wedge y_j).$$

Noting that, $a_i \wedge b_j \in l$ and $x_i \wedge y_j \in M$, we obtain

$$y \wedge z \in L_0$$
.

Depending on the same operations in L, it is seen that L_0 is a sublattice of L. L_0 contains l and M, because for any a in l and any x in M, $a=a \land 1$ and $x=1 \land x$ lie in L_0 . L' is a lattice in L, if $M \subseteq L'$ and $l \subseteq L'$, for $\bigvee a_i \in l$ and $x_i \in M$, $n \in N/\{0\}$,

$$a_i \wedge x_i \in l \Rightarrow \bigvee_{i=1}^n (a_i \wedge x_i) \in L' \Rightarrow L_0 \subseteq L' \Rightarrow L_0 = l(M).$$

So l(M) is a minimal sublattice which contains M[8].

Lemma 3. Suppose that L is a complete Heyting algebra such that $\max L = 1$ and $\min L = 0$. If l and M are complete Heyting subalgebras of L such that $\max l = \max M = 1$ and $\min l = \min M = 0$, then, with I being any index set of arbitrary cardinal number,

$$\overline{l(M)} = \left\{ \bigvee_{i \in I} (a_i \wedge x_i) | a_i \in I, x_i \in M \right\}$$

is the minimal complete Heyting subalgebra of L which contains l and M.

Proof. See [8].

3. Generalized Fuzzy Measures

In this section, we investigate the algebraic structure of a family of fuzzy sets and give the definition of a σ -algebra of generalized fuzzy sets and also of generalized fuzzy measure. Furthermore, a lemma and a theorem are given depending on these definitions.

Definition 8. A family $S \subset GF(X)$ is called a generalized fuzzy σ -algebra of GF(X), if the following conditions are satisfied:

- (i) $\emptyset \in S$ and $X \in S$,
- (ii) for $A \in S$, $A \wedge A^c = 0$, $A \vee A^c = 1$, when $(A^c)^c = A$, $A^c \in S$,

(iii)
$$\left\{A_i\right\}_{i\in N}\subset S\Rightarrow \bigcup_{i=1}^{\infty}A_i\in S$$
.

Since $L = \{L_x : x \in X\}$, L_x is a complete Heyting algebra. For $A \in S \subset GF(X)$ and for $x \in X$, we have $\mu_A(x) \in L_{(x)}$. In other words, A is a L-fuzzy set. $A \land \varnothing = \varnothing$, $A \lor X = X$ and $S \subset GF(X)$ are closed under operations \land and \lor .

Definition 9. A function $m: S \to R_+^* = R_+ \cup \{+\infty\}$ is called a generalized fuzzy measure on S if the following conditions are satisfied:

- (i) for $A \in S$, $m(A) \ge 0$, $m(\emptyset) = 0$,
- (ii) for $A, B \in S$, if $m(A) \leq m(B)$, $A \leq B$,
- (iii) for $A, B \in S$, $m(A \vee B) + m(A \wedge B) = m(A) + m(B)$,

(iv)
$$(A_n)_{n\in\mathbb{N}}\subset S^N$$
, $A\in S:(A_n)\uparrow A\Rightarrow m(A_n)\uparrow m(A)$.

The pair (X, S) is called generalized fuzzy measurable space.

Lemma 4. Let S = P(X). Then a function $m : S \to R_+^*$, defined by $m(A) = \begin{cases} Number \ of \ elements \ in \ A, \ if \ A \ is \ finite, \\ \infty, \ if \ A \ is \ infinite, \end{cases}$

is a generalized fuzzy measure.

Proof. Write \cap *and* \cup in place of \wedge and \vee , respectively.

- (i) $m(A) \ge 0$ for $A \in P(X)$. $m(\emptyset) = 0$ for $\emptyset \in P(X)$.
- (ii) For $A, B \in S = P(X)$, if $A \subseteq B$, then the number of elements in A cannot exceed that of in B. Thus $m(A) \leq m(B)$.
- (iii) When $A, B \in S \Rightarrow m(A \vee B) + m(A \wedge B) = m(A) + m(B)$, $A \vee B = A \cup B$, $A \wedge B = A \cap B$ are obtained with m's reducing to classical measure.

$$A \setminus B = A \setminus (A \cap B)$$

$$A \setminus B = (A \cup B) \setminus B$$

$$\Rightarrow A \setminus (A \cap B) = (A \cup B) \setminus B. \tag{1}$$

Since $m(A \setminus B) = m(A) - m(B)$ for $A, B \in S$, from (1), it follows that

$$m(A) - m(A \cap B) = m(A \cup B) - m(B). \tag{2}$$

Let $F = A \cap B$ and $F \subset E$. Then from (2), $E = A \cup B$ and F = B. For E = A, we have

$$m(A \vee B) + m(A \wedge B) = m(A) + m(B)$$
.

(iv) For $A \in S$, $(A_n) \uparrow A \Rightarrow \lim_{n \to \infty} A_n = A$, that is,

$$\bigcup_{n=1}^{\infty} A_n = A \Rightarrow m(\lim_{n\to\infty} A_n) = m(A) \Leftrightarrow m(A_n) \uparrow m(A).$$

Notation 1. Define μ^0 as $\mu_A^0 = \{(x, \alpha_x) \in X_X L_x : \alpha_x < \mu_A(x)\}$. Thus μ_A^0 means area under $\mu_A(x)$. For operators \wedge , \vee used in the lattice L_x , $\mu_A(x) \wedge \mu_B(x)$ and $\mu_A(x) \vee \mu_B(x)$, have their usual meaning. If \wedge , \vee are operators used in GF(X), then $A \wedge B$ means $\mu_{A \cap B}$, where \cap , \cup are used in $X \times L$. For $A, B \in S$, consider

$$\begin{split} \mu_{A \cap B} &= \{(x, \, \alpha_x) : \alpha_x < \mu_{A \cap B}(x)\} \\ &= \{(x, \, \alpha_x) : \alpha_x < \mu_{A \cap B}(x) \le \mu_A(x) \le \mu_B(x), \\ \alpha_x < \mu_{A \wedge B}(x) \le \mu_B(x)\}. \end{split}$$

Then

$$\alpha_x < \mu_A(x)$$
 and $\alpha_x < \mu_B(x) \Rightarrow \alpha_x < \min\{\mu_A(x), \mu_B(x)\}.$

Thus $\mu_A(x) \wedge \mu_B(x)$ is valid for L_x . Here μ_A^0 , $\mu_B^0 \in X \times L$.

$$(x, \alpha_x) \in (\mu_A \wedge \mu_B)^0 \Rightarrow (x, \alpha_x) \in \mu_A^0, (x, \alpha_x) \in \mu_B^0,$$

where

$$(\mu_A \wedge \mu_B)(x) = \min\{\mu_A(x), \, \mu_B(x)\},\,$$

$$(\mu_A \wedge \mu_B)^0 \subset \mu_A^0 \cap \mu_B^0, \quad \mu_A^0 \cap \mu_B^0 \subset X \times L.$$

Since

$$(x, \alpha_x) \in (\mu_A^0 \cap \mu_B^0) \Rightarrow \alpha_x < \mu_A(x) \text{ and } \alpha_x < \mu_B(x),$$

$$\alpha_x < \min(\mu_A(x), \mu_B(x)) \Rightarrow (x, \alpha_x) \in (\mu_A \wedge \mu_B)^0,$$

$$(\mu_A \wedge \mu_B)^0 = \mu_A^0 \cap \mu_B^0.$$

Next,

$$(x, \alpha_x) \in (\mu_A \vee \mu_B)(x) \Rightarrow \alpha_x < (\mu_A \vee \mu_B)(x) = \max{\{\mu_A(x), \mu_B(x)\}}.$$

If $(\mu_A \vee \mu_B)(x) = \mu_B(x)$, then $\alpha_x < \mu_B(x)$, $(x, \alpha_x) \in \mu_B^0$, and hence $(x, \alpha_x) \in \mu_A^0 \cup \mu_B^0$. Similarly, if

$$(\mu_A \vee \mu_B)(x) = \mu_A(x) \Rightarrow (x, \alpha_x) \in \mu_A^0 \cup \mu_B^0,$$

then

$$(\mu_A \vee \mu_B)^0 \subset \mu_A^0 \cup \mu_B^0 \in X \times L \Rightarrow \mu_{A \vee B} \subset \mu_A^0 \cup \mu_B^0.$$

Conversely, $\forall (x, \alpha_x) \in \mu_A^0 \cup \mu_B^0 \Rightarrow (x, \alpha_x) \in \mu_A^0$ or $(x, \alpha_x) \in \mu_B^0$. Let, for example, $(x, \alpha_x) \in \mu_A^0$. Then

$$\alpha_{x} < \mu_{A}(x) \Rightarrow \alpha_{x} < \max\{\mu_{A}(x), \mu_{B}(x)\}$$

$$\Rightarrow \alpha_{x} \in (\mu_{A} \vee \mu_{B})(x)$$

$$\Rightarrow (x, \alpha_{x}) \in (\mu_{A} \vee \mu_{B})^{0}$$

$$\Rightarrow (\mu_{A} \vee \mu_{B})^{0} = \mu_{A}^{0} \cup \mu_{B}^{0}.$$

Theorem 1. Let $S(\in GF(X))$ be a σ -algebra of generalized fuzzy sets. Let A(S) be classical σ -algebra determined by $\{\mu_A^0: A \in S\}$ on $X \times L_x$. If $Q: (X \times L_x, A(S)) \to R_+^*$ is a (finite) measure where $m: S \to R_+^*$ is such that $m(\mu_A) = Q(\mu_A^0)$, then m is a generalized fuzzy measure.

Proof. (i) We have $m(\varnothing) = Q(\mu_{\varnothing}^0) = 0$, where $\mu_{\varnothing}^0 = \{(x, \alpha_x) \in X \times L_x : \alpha_x < \mu_{\varnothing}(x) = 0\}$. As $\alpha_x \in L_x$ cannot be found so, μ_{\varnothing}^0 is a \varnothing set. Since Q is a measure, $Q(\mu_{\varnothing}^0) = Q(\varnothing) = 0$. Therefore, $m(\mu_{\varnothing}) = Q(\mu_{\varnothing}^0)$.

(ii) Suppose μ_A , $\mu_B \in S$. Let $\mu_A \leq \mu_B$. Then

$$\mu_A^0 = \{(x, \alpha_x) \in X \times L_x : \alpha_x < \mu_A(x)\}$$

and

$$\mu_A(x) \le \mu_B(x) \Rightarrow \alpha_x < \mu_B(x).$$

Thus $(x, \alpha_x) \in \mu_B^0$. Since Q is a measure, $Q(\mu_A^0) \leq Q(\mu_B^0)$. Further, since $m(\mu_A) = Q(\mu_A^0)$ and $m(\mu_B) = Q(\mu_B^0)$,

$$m(\mu_A) = Q(\mu_A^0) \le Q(\mu_B^0) = m(\mu_B) \Rightarrow m(\mu_A) \le m(\mu_B).$$

(iii) For $A, B \in S$, consider $\mu_A, \mu_B \in S$. Then

$$m(\mu_A \wedge \mu_B) + m(\mu_A \vee \mu_B) = Q((\mu_A \wedge \mu_B)^0) + Q((\mu_A \vee \mu_B)^0).$$
 (3)

Since $(\mu_A \wedge \mu_B)^0 = \mu_A^0 \cap \mu_B^0$ and $(\mu_A \vee \mu_B)^0 = \mu_A^0 \cup \mu_B^0$,

$$Q((\mu_A \vee \mu_B)^0) = Q(\mu_A^0) + Q(\mu_B^0) - Q(\mu_A^0 \cap \mu_B^0).$$

From (3)

$$Q((\mu_{A} \wedge \mu_{B})^{0}) + Q((\mu_{A} \vee \mu_{B})^{0})$$

$$= Q((\mu_{A} \wedge \mu_{B})^{0}) + Q(\mu_{A}^{0}) + Q(\mu_{B}^{0}) - Q(\mu_{A}^{0} \cap \mu_{B}^{0})$$

$$= Q((\mu_{A} \wedge \mu_{B})^{0}) + Q(\mu_{A}^{0}) + Q(\mu_{B}^{0}) - Q((\mu_{A} \wedge \mu_{B})^{0})$$

$$= Q(\mu_{A}^{0}) + Q(\mu_{B}^{0})$$

$$= m(\mu_{A}) + m(\mu_{B}).$$

Hence

$$m(\mu_A \vee \mu_B) + m(\mu_A \wedge \mu_B) = m(\mu_A) + m(\mu_B).$$

(iv) Let $(\mu_{A_n})_{n\in N}\in S^N$. Suppose that $(\mu_{A_n})\uparrow \mu_A$. This requires $(\mu_{A_n}^0)\uparrow \mu_A^0$.

Since Q is a measure, $Q(\mu_{A_n}^0) \uparrow Q(\mu_A^0)$ is valid. From this it follows that $m(\mu_{A_n}) = Q(\mu_{A_n}^0) \uparrow Q(\mu_A^0) = m(\mu_A)$.

References

- G. Birkhoff, Lattice Theory, 3rd ed., AMS Colloquium Publications, Providence, RI, 1967.
- [2] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174.
- [3] T. Iwamura, Sokuran, Kyoritsn Shuppan, Tokyo, 1966.
- [4] E. P. Klement and W. Schwyhla, Correspondence between fuzzy measures and classical measures, Fuzzy Sets and Systems 7 (1982), 57-70.
- [5] N. Nakajima, On determination of membership functions, Preprints of Second Fuzzy Systems Symposium, 1986, pp. 154-159.
- [6] N. Nakajima, Generalized fuzzy sets, Fuzzy Sets and Systems 32 (1989), 307-314.
- [7] M. Sahin, Generalized σ -algebras and generalized fuzzy measures, Ph.D. Thesis, pp. 1-76, Trabzon, Turkey, 2004.
- [8] M. Sahin, Generalized fuzzy sets, Proc. Jangjeon Math. Soc. 8 (2005), 153-158.
- [9] G. Takeuti, Senkeidaisu to Ryosirikigaku, Shokabo, Tokyo, 1981.
- [10] Z. Y. Wang and G. J. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.
- [11] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.
- [12] L. A. Zadeh, Calculus of fuzzy restrictions, Fuzzy Sets and their Applications to Cognitive and Decision Processes, pp. 1-39, Academic Press, New York, 1975.

Department of Mathematics Faculty of Arts and Sciences University of Gaziantep Gaziantep, Turkey e-mail: mesahin@gantep.edu.tr