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Abstract

In 1996, Reed proved that the domination number y(G) of every

n-vertex graph G with minimum degree at least 3 is at most 3n/8. Also,
he conjectured that y(H) > [%—‘ for every connected 3-regular (cubic)

n-vertex graph H. Reed’s conjecture is obviously true for Hamiltonian
cubic graphs. In this note, we present a sequence of Hamiltonian cubic
graphs whose domination numbers are sharp. The connected domination
number, independent domination number, and total domination number

for these graphs are presented.

1. Introduction

Let G be a graph, with n vertices and e edges. Let N(v) be the set of
neighbors of a vertex v and N[v] = N(v)U {v}. Let d(v) = | N(v)| be the
degree of v. G is r-regular if d(v) = r for all v; if r = 3, then G is cubic. A

vertex in a graph G dominates itself and its neighbors. A set of vertices S
in a graph G is a dominating set, if each vertex of G is dominated by some

vertex of S. The domination number y(G) of G is the minimum
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cardinality of a dominating set of G. A dominating set S is called a

connected dominating set if the subgraph G[S] induced by S is connected.
The connected domination number of G denoted by v.(G) is the minimum

cardinality of a connected dominating set of G. A dominating set S is
called an independent dominating set if S is an independent set. The

independent domination number of G denoted by i(G) is the minimum

cardinality of an independent dominating set of G. A dominating set S is

a total dominating set of G if G[S] has no isolated vertex and the total
domination number of G, denoted by v,(G), is the minimum cardinality
of a total dominating set of G, (see [1, 2, 5, 6, 7]).

The problem of finding the domination number of a graph is NP-hard,

even when restricted to cubic graphs. One simple heuristic is the greedy
algorithm, (see [10]). Let dg be the size of the dominating set returned by

the greedy algorithm. In 1991, Parekh [8] showed that d, <n+1-+v2e+1.

Also, some bounds have been discovered on y(G) for cubic graphs. Reed
[9] proved that y(G) < %n He conjectured that y(H) > {%—l for every

connected 3-regular (cubic) n-vertex graph H. Reed’s conjecture is
obviously true for Hamiltonian cubic graphs. Fisher et al. [3, 4] repeated

this result and showed that if G has girth at least 5, then y(G) < % n. In
the light of these bounds on y, in 2004, Seager considered bounds on dg

for cubic graphs and showed that:

=

Theorem A [10, Theorem 1]. For a cubic graph G, d, < g

Theorem B [10, Theorem 2]. For an r-regular graph G with r > 3,

2
Sr +4r +1

(2r + 1)

The aim of this paper is to study of the domination number 7(G),
connected domination number v.(G), independent domination number
i(G), and total domination number v,(G) for Hamiltonian cubic graphs

and it is given a sharp value for the domination numbers of these graphs.
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The following will be useful.

Theorem C [4, Theorem 2.11]. For any graph of order n, {—1 +nAG—‘
< ¥(G).

2. Domination Number

In this section we show a sharp value of domination number of some
cubic graph.

Let G = (V, E) be a graph denoted in Figure 1, V = {v, v, ..., U, }
(n=2r) and E = {vjvj|[i-j|=1 or rj. So G has two vertices v; and
v,, of degree two and n — 2 vertices of degree three. By the graph, G is
the graph described in Figure 1.

For the following we put Np[x] = {z|z is only dominated by x} U {x}.

WV T3 Th o e Ve sl Ve Tra3pead 21 V2r

Figure 1

2L£J+2 if r =3 (mod4)

Lemma 1. y(G) =
ZLQJ +1 otherwise.

Proof. Suppose that r = 3 (mod 4), say r = 4k + 3 for some positive
integer k. It is easy to verify that the set of vertices Sy = {v;, vs, Vg, ..,

Up_9, Ups Ups3s Upi7, -y Ugy) 18 @ dominating set for G. Therefore y(G) <

2{LJ +2 =2k +2. On the other hand, Theorem A implies that y(G) >

[1 ns—‘ =2k +2, so y(G) = 2k + 2. Now we suppose r =t (mod 4) such
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that ¢ = 0,1 and 2. Obviously the graph G dominated by the set Sy =

{vg, Vg, V10, s Up_4_95 Ups Upygs Upyg, -y Ugp_g), SO necessarily y(G) < |S |

= 2L£J +1=2k +1. Furthermore, Theorem A shows y(G)> [%—‘ =2k + {%—‘

Now, if t =1 or 2, then y(G) > 2k + 1, so y(G) = 2k + 1 in this case.

Finally, assume ¢ = 0, so n = 4k. We assume that S is an arbitrary
dominating set for G. If {v;, v,} NS = &, then y(G) > 2k. So we suppose
that {v;,v,} NS =@. But {vg,v,,1}NS = and {v,, vg,_1} NS = &.

Thus we consider four cases:

Case 1. {v,, v,41} = S. Since N[v,]N N[v,,1] = 9, so ¥(G) > 2k.

Case 2. {vg, vg9,_1} = S. If v, € S, then y(G) > 2k, since N[v,]N
Nlvg,_1] # @. Now we suppose that v, ¢ S, so v,_; € S or v,,; € S for
example v,_; € S, since N[v,_1]N Nlvg,_;] # &, so y(G) > 2k.

Case 3. {vg, v} = S. But {vy, v,,5}N S =, so vg € S. By the same
description we have {vig, V14, .-, Up_9} © S and this is impossible,

because N[v,|N Nlv,_o] = O, so y(G) > 2k.

Case 4. {v,;1, V9,_1} = S. The same argument which described in
Case 3 can be used this case.

Suppose that the graphs G' and G” are two induced subgraphs of G
such that V(G') = V(G) - {v;, v,} and V(G") = V(G)-{v;} (or V(G")=
V(G) - {vg,})-

Lemma 2. If r = 2 or 3 (mod 4), then y(G') = y(G).

Proof. First, we suppose r =2 (mod4), so r =4k + 2 for some
positive integer k.

n(G')

By Theorem A, v(G') > {T(G’)

W=2k+1.

Now we attend to Sy (Lemma 1, in the case r = 2 (mod 4)). It is a

dominating set for G’, so y(G') = 2k + 1.
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Suppose that r =3 (mod 4). If y(G')=7v(G)-1= 2L£J +1, then we

suppose that S is a dominating set for G’, such that | S| = 2{% J +1, so

for each v e S, |N,[v]| = 4. By this description we have {v,_1, vy,9}
c S, obviously the vertex vs does not dominate by v,,3 or vy, so
vy € S. Similarly v,, € S and finally the vertices v,_3, U,_4, Ug,_g

and vg,_3 must be dominate by one vertex and this is impossible. So
1G) =2 5| +2 = v(C)
Lemma 3. If r = 0 (mod 4), then y(G") = y(G) - 1.

Proof. We suppose r = 4k, where k € N. It is easy to verify that

St = {U4gs Ugs U192, «es Up_ss Upy Upy9, Upigs -os Uapg, Ugp_g) 18 @ dominating
set for G', consequently y(G') <|Sy | = 2k. But by Theorem A, y(G') >
[8’2‘ 2] _ 9k, s0 1(G) = 1(G) 1.

Lemma 4. If r =1 (mod 4), then y(G') = y(G) - 1.

Proof. We suppose r = 4k + 1, where k € N, by Theorem A, y(G') >
2k. On the other hand, the set Sy = {v4, Ug, .-, Up_1, Ups9, Upsgs s Uap_3}
is a dominating set for G, so y(G') < | Sy | = 2k. Therefore y(G') = 2k =
1(G) - 1.

Let Gy be a graph of order mn (n = 2r), V(Gy) = {v11, V125 - U1p>
U915 U225 -» Vs wor Upls Um2s -r Upp ) a0d E = {uyj, vy}l j = 1| =1 or n}
U {vins i+t = 1, 2, ..y m =1} U {v11, vy} By this definition of Gy
the graph Gy is 3-regular graph. Suppose that the graph G} is an

induced subgraph of G, with the vertices v;;, v;g, ..., Uj,-
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mz—‘ if r=2 (mod4)

Theorem 5. v(G) = mG%—l + 1) if r =3 (mod 4).

Proof. We suppose that r = 2 (mod 4). We consider S; = {v;9, Vg,

ceey

m
Vi(r—4)s Virs Vi(r+4)s - Ui(2r~2)}~ The set Sy = U S; is a dominating set for
=1

Gg, so v(Gy) <| Sy | = m(Z[iJ + 1) = m[%—‘ If S is a dominating set of G

and |S|<m(2t£J + 1), then there is i € {1, ..., m}, such that |S N V(G})|

< 2L£J This contradicts Lemma 2, so y(Gy) = m(%iJ + 1) = m[%—‘ For

case r =3 (mod4), a same argument in case r =2 (mod4), shows

a=f3] )



ON DOMINATION IN HAMILTONIAN CUBIC GRAPHS 193

Theorem 6. If r =1 (mod 4), then y(Gy) = m[%—‘ - {%—‘

Proof. Suppose that r = 4k +1 and S; is a dominating set for G;. If
[{vi1, vin} N S| =2, then |S;|>2k+1. Because if |S|=2k+1, and
{vi1, vin} © S;, then for each vertex v e S;\{vj;, vj,}, |N,(v)|=4 and
[{iss Vigs s Vi(r—1)}H| = [{Vi(r+2)s Vi(r+3)> -+ Vi(ar—2)}|- This is impossible, so
| S; | > 2k +1. We consider

St = {viz, Vizs oo Vi(r-2)> Vi(r+1)> Vi(r+5)> -+ Vi(2r-4)s Ui(2r)}’
S7' = {vig, Vigs s Vi(r=5)s Vi(r-1) Vi(r+2)s Vi(r+6)> -+ Vi(2r—3)}>
Si" = {vins Vizs s Ui(r—4)s Virs Ui(r+3)> Vi(r+7)> -+ Ui(2r—2)}

and
Si = SiU St U Siis.

Now if m = 0 (mod 3), then theset S =S; US, US; U---US,,_q is

a dominating set for Gy. If m =1 (mod 3), then the set Sy =.S; U S, U

S;U---US,,_3US,, is a dominating set for Gy and if m = 2 (mod 3),

then the set Su=S; US, US; U---US,,_4 US,;,_1US,, is a dominating
r m n m

set for Gy. So v(Gg) <|Sy| = m(%zj + 1) - LEJ = m{z—l - LgJ, by

Lemma 4, we have y(Gy) = m{%w - [%-‘

Theorem 7. If r = 0 (mod 4), then
m(%iJ + lj - ZL%J -1 if m =2 (mod 3)

m(ZL%J + 1] - ZL%J otherwise.

Proof. First we suppose

7(Go) =

Si = {Ui3’ Uigs «++5 Ui(r—1)> Vi(r+1)> Vi(r+5)> Vi(r+9)s -+ Ui(2r—3)}’

"
St = {vit, viz, Vie» Vi10s - Vir-2, Vi(r+4)» Vi(r+8)» ---» Vi(2r-4)» Ui(2r)}’



194 MOJDEH, HASSANPOUR, AHANGAR and HAJI
S{" = {Vigs Vigs s Virs Vi(r+2)s Vi(r+6)s -+ Vi(2r—2)}-

We also suppose S; =S U S/,; US! 9. If m =0 (mod 3), then the set
So=5US8S,US;U---US,,_o is a dominating set for Gy. If
m =1 (mod 3), then the set Sp =S, US,US;U---US,,.oUS,, is a
dominating set for Gy. So if m =0 or 1 (mod3), then y(Gy) <|Sy| =

r

m(th . 1) - ZL%J Now if m = 2 (mod 3), then the set Sy = S, U S, U

S;U--US,_4US,,_1 US,, is a dominating set for Gy. So y(Gy) <

[So | = m(ZLiJ + 1) - 2{%J —1, but by Lemma 3, v(Gy) = | Sg, |

3. Connected, Independent and Total Domination Number

In this section we study v.(Gy), i(Gy) and v,(Go).

Lemma 8. v.(G) =r - 1.

Proof. Obviously Sy = {vg, v3, ..., U,} is a connected dominating set
for G, so y.(G) <r-1. Now we suppose S is an arbitrary connected
dominating set for G. If (S) is a path of length ! where at most r —2,
then for the first and last vertices of this path, we have | N, [x]| = | N, [¥]|
= 3 and for other vertices of this path | Np[z]| = 2, so UycgN[x]<2x3

+(r—4)x2=2r -2 =n-2, so S cannot dominate all vertices.
Lemma 9. i(G) = y(G).

Proof. Since the set Sy introduced in Lemma 1, is independent

dominating set for G, so i(G) < y(G), and therefore i(G) = y(G).

2% if =0 (mod3)
Lemma 10. v,(G) = 12 % +1 if r =1 (mod3) and r is even
r

+ 2 otherwise.

|
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Proof. First we assume r = 0 (mod 3), so r = 3. It is easy to verify
that the set Sy = {vg, V.9, Us, Upy5s s Up_1, Ugr_1} 18 a total dominating
set for G. This implies that v,(G) < |Sy | = 2. Now we suppose that S is

an arbitrary total dominating set for G. For each vertex v, € S,

|N,[x]| <3, so [%—‘ < 7,(G), this implies that v,(G) > [2 ESZ—‘ = 2,

therefore v;(G) = 21 = 2[§J

If r = 2 (mod 3), then r = 3/ + 2 and the set S; = {vg, V9, U5, U435,
<oy Up_3, Ugp_3, Uy, Ug,.} is a total dominating set for G, so y,(G) <|Sy |

2(31 + 2)
3

= 2l + 2. In this case, we have v,(G) > { —‘ =2l+2. So 1(G) =

20 + 2.

Now we suppose r = 3] +1 and S is an arbitrary total dominating set
for G, obviously | S| = 2/ + 1. If r is even, then the set

SZ = {047 U5, U105 U115 +++> Ur—12> Ur—-115 Ur—6> Ur—5; Ur_4,

Ursls Upt2s Upy7s Upy8s - U2r—9, UZr—l}’

therefore y;(G) = 21 +1 = 2L§J +1.

Now we suppose r is odd and S is a total dominating set for G, such
that |S|=2/+1. If {v, vy, NS =, for example v; € S, then

{va, 41} NS = &, (for example vy € S). Since |{V;,3, Upygs oo Uop}| =
[{vg, Vs, ..., U} +1, so there is a vertex v; € S\{v;} such that | N,[v;]]|
< 3, and this is contradiction, because for each vertex v; € S\{v;},

|Np[vi]| = 3.

So {v;, v9,} NS = and there are vertices v,, v,, v, such that

y’
|x-y|=1|z-y|=1land x <y <z
Now there are four cases:

Casel. x =r-1, y=rand z=r+1.
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In this case |{vy, v, ..., U NA| = |[{Upi1, Upygs ooy Vgp NA | =7 — 4,
where A = N[x]U N[y]U N[z]. But r is odd, so the vertices v,_3, v,_4,
Up_p, Ugp_y, Ugr_g and vg,._o must be dominated by two adjacent vertices

and 1t 1s a contradiction.

Case 2. x =r, y=r+1 and z =r + 2, the proof is similar to the

proof of Case 1.
Case 3. {vy, vy, U} C {v1, Vg, ..., U}, we consider B = {vy, vy, ..., Uy_g}.

If | B| = 0 (mod 6), then the vertices v,_1, v, U, 1, Ug,, Ug._1 and

Ug,_9 must be dominated by two adjacent vertices and this is impossible.

If | B| =1 (mod 6), then the vertices v,, v,,1, Up,9, U1, Ug,_1 and

U9, must be dominated by two adjacent vertices and this is impossible.

If | B| = 2 (mod 6), then the vertices v,,1, Uy;2, Upy3, U, Uy and

U9, must be dominated by two adjacent vertices and this is impossible.

If | B| = 3 (mod6), then the vertices v,_g, v,_1, U,, U, Vg, and

Ug,_1 must be dominated by two adjacent vertices and this is impossible.
If | B| = 4 (mod 6), then the vertices v,_1, v,, V41, U1, Ug and vy,
must be dominated by two adjacent vertices and this is impossible.

If | B| = 5 (mod 6), then the vertices v,_g, v,_1, U,, Uy, Ug and vg

must be dominated by two adjacent vertices and this is impossible.

Case 4. {vy, Uy, Uy} C {Ups15 Upyg, s Ugp ), @ same argument described

in Case 3 settles this case.

So |S|>20+1, but the set Sg = {vg, Uy,9, Uss Upy5, -oos Up_2, Ugp_s,

Up_1, Ug,_1} 1s a total dominating set for G. This implies y,(G) < 21 +

2=2L%J+2, 50 yt(G)=21+2=2EJ+2.

Lemma 11. y.(G') = v.(G).

Proof. Obviously v.(G') > r —2, but the set Sy in Lemma 1 is a
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connected dominating set for G', so y.(G') <r -1, therefore v.(G') =
r-1.
1:,(G)-2 if r =1 (mod 3) and r is odd

Lemma 12. y,(G') =
1:(G) otherwise.

Proof. If r = 0 (mod 3), then r = 3l. Since the set S, introduced in
Lemma 10 is a total dominating set for G', so y,(G') < 2I. On the other

hand, 7,(@) > {”(g')w - [61 - ﬂ _ 91, Therefore 7,(G') = 2.

If r = 2 (mod 3), then r = 3] + 2. In this case we suppose that S’ is

an arbitrary total dominating set for G'. It is simple to see | S"| > 2.
If | S'| = 21 + 1, then there are three cases:

Case 1. v, and v,,; belong to S But | N[v,]U N[v,;1]| =4, so
6] — 2 other vertices dominate by 2/ -1 vertices of S’, but this is
impossible, (because at most 6/ —3 vertices are dominated by 2/ -1
vertices).

Case 2. |{v,, v,11} N S| =1, without loss of generality we suppose
that v, € 8’ so v,y € 8" and for each vertex v; € S"\{vg}, |N,(v;)| = 3.
This implies {vg, v,,9} NS # D, so {vs,v,,3} =S and this is
impossible, because | {v,,5, Uy, - Ugr_2}| = | {5, Vg, s Up_3} |+ 1.

Case 3. {v,, .1} NS =3, so {v,_1,V,9} =S and also we have
{vy_9, Vo, 1} NS" # & and {vg, v,,3} NS’ # &. For example {vy, v, 5}
S’, this is impossible, since | {v,,4, Uyy5, - UVor_3}| = | Vg, U5, ooy Up_g} |+ 1.

So |S"|>20+2, but the set Sy = {vs, V.3, Vg, Upyg, - Up_2, Ugr_9,

Up, Upp1) 1S a total dominating set for G', so y,(G')<|Sp|=2l+2.

Combining the two inequalities, we obtain y,(G') = 2[ + 2.

Now we suppose r =1 (mod 3), so r = 3/ + 1. If r is odd, then the set

SO = {057 V6> U115 V125 -+ Up—25 Up—15 Up425 Up435 Upt85 Upi9; -ov5 U2p—5, UZr—4} 1s
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a total dominating set for G', so |S;|<|Sy|=2l But |S,|> {@—l

= 21, therefore y;(G") = v,(G) — 2. If r is even, then the set Sy introduced
in Lemma 10 is a total dominating set for G', so y(G')< 2l +1. If
y(G') =2l and S’ is a total dominating set for G’ such that | S'| = 21,
then for each vertex v; € S', | N,[v;]|=38. So {v,, v,41, Vg, Vg, 1} NS = B,
this implies that {v,_1,v,_9, 05,9, 0,,3} = S". So {vs,v4,v,,4}NS =T and
{vs,vg} = S'. Since r is even we can assume r = 6/’ + 4. Therefore the
vertices U,_4, Up_5, Up_g, Ugp_3, Ugp_4 and vg,_s must be dominated by
two adjacent vertices of S, and this is impossible. So
1:.(G") =20 +1 = y(G).

Theorem 13. y.(Gy) = m(r — 1).

Proof. It is an immediate consequence by Lemmas 8 and 11.

Theorem 14. i(Gy) = y(Gy).

Proof. Since the set S; in Theorems 5, 6 and 7 is an independent
dominating set for G, so i(Gy) = 7(Gp).

Theorem 15. If r = 0 (mod 3), then v,(Gy) = ZmL%J

m
Proof. The set Sy = USi with S; = {vj9, Vi(r+2)> Vis» Vi(r+5)s
i=1

Vi(r—1)» Vi(2r—1)} i @ total dominating set for Go, so v,(Go)<|Sy|=

2mLLJ. On the other hand by Lemma 12, we have y;(G}) = ZLLJ for each

3 3

1 < i < m. Therefore y,(Gy) = ZmL%J

Theorem 16. If r = 2 (mod 3), then v,(Gy) = Zm{%—‘

Proof. A same argument described in Theorem 15 can be used in this
theorem.
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Theorem 17. If r =1 (mod 3), then
r .
m(2{§J + 1) r is even
Yt(Go) =

r m .
2m{§—‘ - 2[? J otherwise.

m
Proof. First we suppose r is even. The set Sy = U S; with
i=1
S; = {Ui4’ Ui5s Uj105 Uil1s «++ Vj(r-12)> Vi(r-11)s Vi(r-6)> Vi(r-5)» Vi(r-4)> Vi(r+1)»

Ui(r+2)> Vi(r+7)> Vi(r+8)> +++» Vi(2r-9)> Vi(2r-8), Vi(2r-2) Ui(2r—l)}

is a total dominating set for Gy, so y;(Gy)<|Sy|= m(2L%J +1j. If

1:(Gp) < m(2t%J + 1), then there is i € {1, 2, ..., m} such that y,(G}) <
Z{QJ +1 and this contradicts Lemma 12.

Next, we suppose r is odd. We consider
St = {vir, Viz, Vig, Vir0s Vitss Vit6s - Vi(r—4)s Vi(r-3)» Vi(r+4)> Vi(r+5)s
Vi(r+6)> Vi(r+7)> Vi(r+12)> Vi(r+13)s Vi(r+17)> Vi(r+18)> -+ Vi(2r-1) Ui(2r)}
and
S = {vis, Vies Vit1> Vin2s - Vi(r-2)s Vi(r-1)» Vi(r+2)» Vi(r+3)> Vi(r+8)>
Vi(r+9)s s Vi(2r—5)> Vi(2r—4)}-
If m is even, then the set Sy = 8{ US4 US;US,U--US,_US., isa

total dominating set for Gy. If m is odd number, then the set Sj =
S;USsUSsUS;U--US;,_sUS;,_1 US,, is a total dominating set for

Go. So 1,(Go) <|Sh | = 2mm - 2[% It v,(Go) < Zm[ g] - 2@ then

there is i e {l, 2, .., m} such that y,(G}) < 2{%1 and this contradicts

Lemma 12.
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Problem. What are the domination numbers of the Hamiltonian

4-regular graphs?
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