ON DOMINATION IN HAMILTONIAN CUBIC GRAPHS

D. A. MOJDEH, S. A. HASSANPOUR,

H. ABDOLLAHZADEH AHANGAR and A. AHMADI HAJI

(Received May 8, 2006)

Submitted by Pu Zhang

Abstract

In 1996, Reed proved that the domination number $\gamma(G)$ of every n-vertex graph G with minimum degree at least 3 is at most $3 n / 8$. Also, he conjectured that $\gamma(H) \geq\left\lceil\frac{n}{3}\right\rceil$ for every connected 3-regular (cubic) n-vertex graph H. Reed's conjecture is obviously true for Hamiltonian cubic graphs. In this note, we present a sequence of Hamiltonian cubic graphs whose domination numbers are sharp. The connected domination number, independent domination number, and total domination number for these graphs are presented.

1. Introduction

Let G be a graph, with n vertices and e edges. Let $N(v)$ be the set of neighbors of a vertex v and $N[v]=N(v) \cup\{v\}$. Let $d(v)=|N(v)|$ be the degree of v. G is r-regular if $d(v)=r$ for all v; if $r=3$, then G is cubic. A vertex in a graph G dominates itself and its neighbors. A set of vertices S in a graph G is a dominating set, if each vertex of G is dominated by some vertex of S. The domination number $\gamma(G)$ of G is the minimum

[^0]Keywords and phrases: domination, Hamiltonian cubic graph, dominating set.
cardinality of a dominating set of G. A dominating set S is called a connected dominating set if the subgraph $G[S]$ induced by S is connected. The connected domination number of G denoted by $\gamma_{c}(G)$ is the minimum cardinality of a connected dominating set of G. A dominating set S is called an independent dominating set if S is an independent set. The independent domination number of G denoted by $i(G)$ is the minimum cardinality of an independent dominating set of G. A dominating set S is a total dominating set of G if $G[S]$ has no isolated vertex and the total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a total dominating set of G, (see $[1,2,5,6,7]$).

The problem of finding the domination number of a graph is NP-hard, even when restricted to cubic graphs. One simple heuristic is the greedy algorithm, (see [10]). Let d_{g} be the size of the dominating set returned by the greedy algorithm. In 1991, Parekh [8] showed that $d_{g} \leq n+1-\sqrt{2 e+1}$. Also, some bounds have been discovered on $\gamma(G)$ for cubic graphs. Reed [9] proved that $\gamma(G) \leq \frac{3}{8} n$. He conjectured that $\gamma(H) \geq\left\lceil\frac{n}{3}\right\rceil$ for every connected 3 -regular (cubic) n-vertex graph H. Reed's conjecture is obviously true for Hamiltonian cubic graphs. Fisher et al. [3, 4] repeated this result and showed that if G has girth at least 5 , then $\gamma(G) \leq \frac{5}{14} n$. In the light of these bounds on γ, in 2004, Seager considered bounds on d_{g} for cubic graphs and showed that:

Theorem A [10, Theorem 1]. For a cubic graph $G, d_{g} \leq \frac{4}{9} n$.
Theorem B [10, Theorem 2]. For an r-regular graph G with $r \geq 3$, $d_{g} \leq \frac{r^{2}+4 r+1}{(2 r+1)^{2}} n$.

The aim of this paper is to study of the domination number $\gamma(G)$, connected domination number $\gamma_{c}(G)$, independent domination number $i(G)$, and total domination number $\gamma_{t}(G)$ for Hamiltonian cubic graphs and it is given a sharp value for the domination numbers of these graphs.

The following will be useful.
Theorem C [4, Theorem 2.11]. For any graph of order n, $\left\lceil\frac{n}{1+\Delta G}\right\rceil$ $\leq \gamma(G)$.

2. Domination Number

In this section we show a sharp value of domination number of some cubic graph.

Let $G=(V, E)$ be a graph denoted in Figure $1, V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ $(n=2 r)$ and $E=\left\{v_{i} v_{j} \| i-j \mid=1\right.$ or $\left.r\right\}$. So G has two vertices v_{1} and v_{n} of degree two and $n-2$ vertices of degree three. By the graph, G is the graph described in Figure 1.

For the following we put $N_{p}[x]=\{z \mid z$ is only dominated by $x\} \cup\{x\}$.

Figure 1
Lemma 1. $\gamma(G)= \begin{cases}2\left\lfloor\frac{r}{4}\right\rfloor+2 & \text { if } r \equiv 3(\bmod 4) \\ 2\left\lfloor\frac{r}{4}\right\rfloor+1 & \text { otherwise. }\end{cases}$
Proof. Suppose that $r \equiv 3(\bmod 4)$, say $r=4 k+3$ for some positive integer k. It is easy to verify that the set of vertices $S_{0}=\left\{v_{1}, v_{5}, v_{9}, \ldots\right.$, $\left.v_{r-2}, v_{r}, v_{r+3}, v_{r+7}, \ldots, v_{2 r}\right\}$ is a dominating set for G. Therefore $\gamma(G) \leq$ $2\left\lfloor\frac{r}{4}\right\rfloor+2=2 k+2$. On the other hand, Theorem A implies that $\gamma(G) \geq$ $\left\lceil\frac{n}{1+3}\right\rceil=2 k+2$, so $\gamma(G)=2 k+2$. Now we suppose $r \equiv t(\bmod 4)$ such
that $t=0,1$ and 2 . Obviously the graph G dominated by the set $S_{0}=$ $\left\{v_{2}, v_{6}, v_{10}, \ldots, v_{r-t-2}, v_{r}, v_{r+4}, v_{r+8}, \ldots, v_{2 r-t}\right\}$, so necessarily $\gamma(G) \leq\left|S_{0}\right|$ $=2\left\lfloor\frac{r}{4}\right\rfloor+1=2 k+1$. Furthermore, Theorem A shows $\gamma(G) \geq\left\lceil\frac{n}{4}\right\rceil=2 k+\left\lceil\frac{t}{2}\right\rceil$.

Now, if $t=1$ or 2 , then $\gamma(G) \geq 2 k+1$, so $\gamma(G)=2 k+1$ in this case.
Finally, assume $t=0$, so $n=4 k$. We assume that S is an arbitrary dominating set for G. If $\left\{v_{1}, v_{n}\right\} \cap S \neq \varnothing$, then $\gamma(G)>2 k$. So we suppose that $\left\{v_{1}, v_{n}\right\} \cap S=\varnothing$. But $\left\{v_{2}, v_{r+1}\right\} \cap S \neq \varnothing$ and $\left\{v_{r}, v_{2 r-1}\right\} \cap S \neq \varnothing$. Thus we consider four cases:

Case 1. $\left\{v_{r}, v_{r+1}\right\} \subset S$. Since $N\left[v_{r}\right] \cap N\left[v_{r+1}\right] \neq \varnothing$, so $\gamma(G)>2 k$.
Case 2. $\left\{v_{2}, v_{2 r-1}\right\} \subset S$. If $v_{r} \in S$, then $\gamma(G)>2 k$, since $N\left[v_{r}\right] \cap$ $N\left[v_{2 r-1}\right] \neq \varnothing$. Now we suppose that $v_{r} \notin S$, so $v_{r-1} \in S$ or $v_{r+1} \in S$ for example $v_{r-1} \in S$, since $N\left[v_{r-1}\right] \cap N\left[v_{2 r-1}\right] \neq \varnothing$, so $\gamma(G)>2 k$.

Case 3. $\left\{v_{2}, v_{r}\right\} \subset S$. But $\left\{v_{4}, v_{r+5}\right\} \cap S=\varnothing$, so $v_{6} \in S$. By the same description we have $\left\{v_{10}, v_{14}, \ldots, v_{r-2}\right\} \subset S$ and this is impossible, because $N\left[v_{r}\right] \cap N\left[v_{r-2}\right] \neq \varnothing$, so $\gamma(G)>2 k$.

Case 4. $\left\{v_{r+1}, v_{2 r-1}\right\} \subset S$. The same argument which described in Case 3 can be used this case.

Suppose that the graphs G^{\prime} and $G^{\prime \prime}$ are two induced subgraphs of G such that $V\left(G^{\prime}\right)=V(G)-\left\{v_{1}, v_{n}\right\}$ and $V\left(G^{\prime \prime}\right)=V(G)-\left\{v_{1}\right\} \quad$ (or $V\left(G^{\prime \prime}\right)=$ $\left.V(G)-\left\{v_{2 r}\right\}\right)$.

Lemma 2. If $r \equiv 2$ or $3(\bmod 4)$, then $\gamma\left(G^{\prime}\right)=\gamma(G)$.
Proof. First, we suppose $r \equiv 2(\bmod 4)$, so $r=4 k+2$ for some positive integer k.

By Theorem A, $\gamma\left(G^{\prime}\right) \geq\left\lceil\frac{n\left(G^{\prime}\right)}{1+\Delta\left(G^{\prime}\right)}\right\rceil=2 k+1$.
Now we attend to S_{0} (Lemma 1 , in the case $\left.r \equiv 2(\bmod 4)\right)$. It is a dominating set for G^{\prime}, so $\gamma\left(G^{\prime}\right)=2 k+1$.

Suppose that $r \equiv 3(\bmod 4)$. If $\gamma\left(G^{\prime}\right)=\gamma(G)-1=2\left\lfloor\frac{r}{4}\right\rfloor+1$, then we suppose that S is a dominating set for G^{\prime}, such that $|S|=2\left\lfloor\frac{r}{4}\right\rfloor+1$, so for each $v \in S,\left|N_{p}[v]\right|=4$. By this description we have $\left\{v_{r-1}, v_{r+2}\right\}$ $\subset S$, obviously the vertex v_{3} does not dominate by v_{r+3} or v_{2}, so $v_{4} \in S$. Similarly $v_{r+6} \in S$ and finally the vertices $v_{r-3}, v_{r-4}, v_{2 r-2}$ and $v_{2 r-3}$ must be dominate by one vertex and this is impossible. So $\gamma\left(G^{\prime}\right)=2\left\lfloor\frac{r}{4}\right\rfloor+2=\gamma(G)$.

Lemma 3. If $r \equiv 0(\bmod 4)$, then $\gamma\left(G^{\prime \prime}\right)=\gamma(G)-1$.
Proof. We suppose $r=4 k$, where $k \in N$. It is easy to verify that $S_{0}^{\prime}=\left\{v_{4}, v_{8}, v_{12}, \ldots, v_{r-4}, v_{r}, v_{r+2}, v_{r+6}, \ldots, v_{2 r-6}, v_{2 r-2}\right\}$ is a dominating set for G^{\prime}, consequently $\gamma\left(G^{\prime}\right) \leq\left|S_{0}\right|=2 k$. But by Theorem A, $\gamma\left(G^{\prime}\right) \geq$ $\left\lceil\frac{8 k-2}{4}\right\rceil=2 k$, so $\gamma\left(G^{\prime}\right)=\gamma(G)-1$.

Lemma 4. If $r \equiv 1(\bmod 4)$, then $\gamma\left(G^{\prime}\right)=\gamma(G)-1$.
Proof. We suppose $r=4 k+1$, where $k \in N$, by Theorem A, $\gamma\left(G^{\prime}\right) \geq$ $2 k$. On the other hand, the set $S_{0}=\left\{v_{4}, v_{8}, \ldots, v_{r-1}, v_{r+2}, v_{r+6}, \ldots, v_{2 r-3}\right\}$ is a dominating set for G, so $\gamma\left(G^{\prime}\right) \leq\left|S_{0}\right|=2 k$. Therefore $\gamma\left(G^{\prime}\right)=2 k=$ $\gamma(G)-1$.

Let G_{0} be a graph of order $m n(n=2 r), V\left(G_{0}\right)=\left\{v_{11}, v_{12}, \ldots, v_{1 n}\right.$, $\left.v_{21}, v_{22}, \ldots, v_{2 n}, \ldots, v_{m 1}, v_{m 2}, \ldots, v_{m n}\right\}$ and $E=\left\{\left\{v_{i j}, v_{i l}\right\}| | j-l \mid=1\right.$ or $\left.n\right\}$ $\cup\left\{\left\{v_{i n}, v_{(i+1) 1}\right\} \mid i=1,2, \ldots, m-1\right\} \cup\left\{v_{11}, v_{m n}\right\}$. By this definition of G_{0} the graph G_{0} is 3-regular graph. Suppose that the graph G_{i}^{\prime} is an induced subgraph of G_{0} with the vertices $v_{i 1}, v_{i 2}, \ldots, v_{i n}$.

Figure 2
Theorem 5. $\gamma\left(G_{0}\right)= \begin{cases}m\left\lceil\frac{n}{4}\right\rceil & \text { if } r \equiv 2(\bmod 4) \\ m\left(\left\lceil\frac{n}{4}\right\rceil+1\right) & \text { if } r \equiv 3(\bmod 4) .\end{cases}$
Proof. We suppose that $r \equiv 2(\bmod 4)$. We consider $S_{i}=\left\{v_{i 2}, v_{i 6}, \ldots\right.$, $\left.v_{i(r-4)}, v_{i r}, v_{i(r+4)}, \ldots, v_{i(2 r-2)}\right\}$. The set $S_{0}=\bigcup_{i=1}^{m} S_{i}$ is a dominating set for G_{0}, so $\gamma\left(G_{0}\right) \leq\left|S_{0}\right|=m\left(2\left\lfloor\frac{r}{4}\right\rfloor+1\right)=m\left\lceil\frac{n}{4}\right\rceil$. If S is a dominating set of G and $|S|<m\left(2\left\lfloor\frac{r}{4}\right\rfloor+1\right)$, then there is $i \in\{1, \ldots, m\}$, such that $\left|S \cap V\left(G_{i}^{\prime}\right)\right|$ $\leq 2\left\lfloor\frac{r}{4}\right\rfloor$. This contradicts Lemma 2, so $\gamma\left(G_{0}\right)=m\left(2\left\lfloor\frac{r}{4}\right\rfloor+1\right)=m\left\lceil\frac{n}{4}\right\rceil$. For case $r \equiv 3(\bmod 4)$, a same argument in case $r \equiv 2(\bmod 4)$, shows $\gamma\left(G_{0}\right)=m\left(\left\lceil\frac{n}{4}\right\rceil+1\right)$.

Theorem 6. If $r \equiv 1(\bmod 4)$, then $\gamma\left(G_{0}\right)=m\left\lceil\frac{n}{4}\right\rceil-\left\lceil\frac{m}{3}\right\rceil$.
Proof. Suppose that $r=4 k+1$ and S_{i} is a dominating set for G_{i}. If $\left|\left\{v_{i 1}, v_{i n}\right\} \cap S\right|=2$, then $\left|S_{i}\right|>2 k+1$. Because if $|S|=2 k+1$, and $\left\{v_{i 1}, v_{i n}\right\} \subset S_{i}$, then for each vertex $v \in S_{i} \backslash\left\{v_{i 1}, v_{i n}\right\},\left|N_{p}(v)\right|=4$ and $\left|\left\{v_{i 3}, v_{i 4}, \ldots, v_{i(r-1)}\right\}\right|=\left|\left\{v_{i(r+2)}, v_{i(r+3)}, \ldots, v_{i(2 r-2)}\right\}\right|$. This is impossible, so $\left|S_{i}\right|>2 k+1$. We consider

$$
\begin{aligned}
& S_{i}^{\prime}=\left\{v_{i 3}, v_{i 7}, \ldots, v_{i(r-2)}, v_{i(r+1)}, v_{i(r+5)}, \ldots, v_{i(2 r-4)}, v_{i(2 r)}\right\}, \\
& S_{i}^{\prime \prime}=\left\{v_{i 4}, v_{i 8}, \ldots, v_{i(r-5)}, v_{i(r-1)}, v_{i(r+2)}, v_{i(r+6)}, \ldots, v_{i(2 r-3)}\right\}, \\
& S_{i}^{\prime \prime \prime}=\left\{v_{i 1}, v_{i 5}, \ldots, v_{i(r-4)}, v_{i r}, v_{i(r+3)}, v_{i(r+7)}, \ldots, v_{i(2 r-2)}\right\}
\end{aligned}
$$

and

$$
S_{i}=S_{i}^{\prime} \cup S_{i+1}^{\prime \prime} \cup S_{i+2}^{\prime \prime \prime}
$$

Now if $m \equiv 0(\bmod 3)$, then the set $S_{0}=S_{1} \cup S_{4} \cup S_{7} \cup \cdots \cup S_{m-2}$ is a dominating set for G_{0}. If $m \equiv 1(\bmod 3)$, then the set $S_{0}=S_{1} \cup S_{4} \cup$ $S_{7} \cup \cdots \cup S_{m-3} \cup S_{m}^{\prime}$ is a dominating set for G_{0} and if $m \equiv 2(\bmod 3)$, then the set $S_{0}=S_{1} \cup S_{4} \cup S_{7} \cup \cdots \cup S_{m-4} \cup S_{m-1}^{\prime} \cup S_{m}^{\prime}$ is a dominating set for G_{0}. So $\gamma\left(G_{0}\right) \leq\left|S_{0}\right|=m\left(2\left\lfloor\frac{r}{4}\right\rfloor+1\right)-\left\lfloor\frac{m}{3}\right\rfloor=m\left\lceil\frac{n}{4}\right\rceil-\left\lfloor\frac{m}{3}\right\rfloor$, by Lemma 4, we have $\gamma\left(G_{0}\right)=m\left\lceil\frac{n}{4}\right\rceil-\left\lceil\frac{m}{3}\right\rceil$.

Theorem 7. If $r \equiv 0(\bmod 4)$, then

$$
\gamma\left(G_{0}\right)= \begin{cases}m\left(2\left\lfloor\frac{r}{4}\right\rfloor+1\right)-2\left\lfloor\frac{m}{3}\right\rfloor-1 & \text { if } m \equiv 2(\bmod 3) \\ m\left(2\left\lfloor\frac{r}{4}\right\rfloor+1\right)-2\left\lfloor\frac{m}{3}\right\rfloor & \text { otherwise. }\end{cases}
$$

Proof. First we suppose

$$
\begin{aligned}
& S_{i}^{\prime}=\left\{v_{i 3}, v_{i 6}, \ldots, v_{i(r-1)}, v_{i(r+1)}, v_{i(r+5)}, v_{i(r+9)}, \ldots, v_{i(2 r-3)}\right\}, \\
& S_{i}^{\prime \prime}=\left\{v_{i 1}, v_{i 2}, v_{i 6}, v_{i 10}, \ldots, v_{i r-2}, v_{i(r+4)}, v_{i(r+8)}, \ldots, v_{i(2 r-4)}, v_{i(2 r)}\right\},
\end{aligned}
$$

$$
S_{i}^{\prime \prime \prime}=\left\{v_{i 4}, v_{i 8}, \ldots, v_{i r}, v_{i(r+2)}, v_{i(r+6)}, \ldots, v_{i(2 r-2)}\right\}
$$

We also suppose $S_{i}=S_{i}^{\prime} \cup S_{i+1}^{\prime \prime} \cup S_{i+2}^{\prime \prime \prime}$. If $m \equiv 0(\bmod 3)$, then the set $S_{0}=S_{1} \cup S_{4} \cup S_{7} \cup \cdots \cup S_{m-2}$ is a dominating set for G_{0}. If $m \equiv 1(\bmod 3)$, then the set $S_{0}=S_{1} \cup S_{4} \cup S_{7} \cup \cdots \cup S_{m-2} \cup S_{m}^{\prime}$ is a dominating set for G_{0}. So if $m \equiv 0$ or $1(\bmod 3)$, then $\gamma\left(G_{0}\right) \leq\left|S_{0}\right|=$ $m\left(2\left\lfloor\frac{r}{4}\right\rfloor+1\right)-2\left\lfloor\frac{m}{3}\right\rfloor$. Now if $m \equiv 2(\bmod 3)$, then the set $S_{0}=S_{1} \cup S_{4} \cup$ $S_{7} \cup \cdots \cup S_{m-4} \cup S_{m-1}^{\prime \prime} \cup S_{m}^{\prime \prime \prime}$ is a dominating set for G_{0}. So $\gamma\left(G_{0}\right) \leq$ $\left|S_{0}\right|=m\left(2\left\lfloor\frac{r}{4}\right\rfloor+1\right)-2\left\lfloor\frac{m}{3}\right\rfloor-1$, but by Lemma 3, $\gamma\left(G_{0}\right)=\left|S_{G_{0}}\right|$.

3. Connected, Independent and Total Domination Number

In this section we study $\gamma_{c}\left(G_{0}\right), i\left(G_{0}\right)$ and $\gamma_{t}\left(G_{0}\right)$.
Lemma 8. $\gamma_{c}(G)=r-1$.
Proof. Obviously $S_{0}=\left\{v_{2}, v_{3}, \ldots, v_{r}\right\}$ is a connected dominating set for G, so $\gamma_{c}(G) \leq r-1$. Now we suppose S is an arbitrary connected dominating set for G. If $\langle S\rangle$ is a path of length l where at most $r-2$, then for the first and last vertices of this path, we have $\left|N_{p}[x]\right|=\left|N_{p}[y]\right|$ $=3$ and for other vertices of this path $\left|N_{p}[z]\right|=2$, so $\cup_{x \in S} N[x] \leq 2 \times 3$ $+(r-4) \times 2=2 r-2=n-2$, so S cannot dominate all vertices.

Lemma 9. $i(G)=\gamma(G)$.
Proof. Since the set S_{0} introduced in Lemma 1, is independent dominating set for G, so $i(G) \leq \gamma(G)$, and therefore $i(G)=\gamma(G)$.

Lemma 10. $\gamma_{t}(G)= \begin{cases}2\left\lfloor\frac{r}{3}\right\rfloor & \text { if } r \equiv 0(\bmod 3) \\ 2\left\lfloor\frac{r}{3}\right\rfloor+1 & \text { if } r \equiv 1(\bmod 3) \text { and } r \text { is even } \\ 2\left\lfloor\frac{r}{3}\right\rfloor+2 & \text { otherwise. }\end{cases}$

Proof. First we assume $r \equiv 0(\bmod 3)$, so $r=3 l$. It is easy to verify that the set $S_{0}=\left\{v_{2}, v_{r+2}, v_{5}, v_{r+5}, \ldots, v_{r-1}, v_{2 r-1}\right\}$ is a total dominating set for G. This implies that $\gamma_{t}(G) \leq\left|S_{0}\right|=2 l$. Now we suppose that S is an arbitrary total dominating set for G. For each vertex $v_{x} \in S$, $\left|N_{p}[x]\right| \leq 3, \quad$ so $\left\lceil\frac{n}{3}\right\rceil \leq \gamma_{t}(G)$, this implies that $\gamma_{t}(G) \geq\left\lceil\frac{2 \times 3 l}{3}\right\rceil=2 l$, therefore $\gamma_{t}(G)=2 l=2\left\lfloor\frac{r}{3}\right\rfloor$.

If $r \equiv 2(\bmod 3)$, then $r=3 l+2$ and the set $S_{1}=\left\{v_{2}, v_{r+2}, v_{5}, v_{r+5}\right.$, $\left.\ldots, v_{r-3}, v_{2 r-3}, v_{r}, v_{2 r}\right\}$ is a total dominating set for G, so $\gamma_{t}(G) \leq\left|S_{0}\right|$ $=2 l+2$. In this case, we have $\gamma_{t}(G) \geq\left\lceil\frac{2(3 l+2)}{3}\right\rceil=2 l+2$. So $\gamma_{t}(G)=$ $2 l+2$.

Now we suppose $r=3 l+1$ and S is an arbitrary total dominating set for G, obviously $|S| \geq 2 l+1$. If r is even, then the set

$$
\begin{gathered}
S_{2}=\left\{v_{4}, v_{5}, v_{10}, v_{11}, \ldots, v_{r-12}, v_{r-11}, v_{r-6}, v_{r-5}, v_{r-4},\right. \\
\left.v_{r+1}, v_{r+2}, v_{r+7}, v_{r+8}, \ldots, v_{2 r-2}, v_{2 r-1}\right\}
\end{gathered}
$$

therefore $\gamma_{t}(G)=2 l+1=2\left\lfloor\frac{r}{3}\right\rfloor+1$.
Now we suppose r is odd and S is a total dominating set for G, such that $|S|=2 l+1$. If $\left\{v_{1}, v_{2 r}\right\} \cap S \neq \varnothing$, for example $v_{1} \in S$, then $\left\{v_{2}, v_{r+1}\right\} \cap S \neq \varnothing$, (for example $v_{2} \in S$). Since $\left|\left\{v_{r+3}, v_{r+4}, \ldots, v_{2 r}\right\}\right|=$ $\left|\left\{v_{4}, v_{5}, \ldots, v_{r}\right\}\right|+1$, so there is a vertex $v_{i} \in S \backslash\left\{v_{1}\right\}$ such that $\left|N_{p}\left[v_{i}\right]\right|$ <3, and this is contradiction, because for each vertex $v_{i} \in S \backslash\left\{v_{1}\right\}$, $\left|N_{p}\left[v_{i}\right]\right|=3$.

So $\left\{v_{1}, v_{2 r}\right\} \cap S=\varnothing$ and there are vertices v_{x}, v_{y}, v_{z} such that $|x-y|=1,|z-y|=1$ and $x<y<z$.

Now there are four cases:
Case 1. $x=r-1, y=r$ and $z=r+1$.

In this case $\left|\left\{v_{1}, v_{2}, \ldots, v_{r}\right\} \backslash A\right|=\left|\left\{v_{r+1}, v_{r+2}, \ldots, v_{2 r}\right\} \backslash A\right|=r-4$, where $A=N[x] \cup N[y] \cup N[z]$. But r is odd, so the vertices v_{r-3}, v_{r-4}, $v_{r-5}, v_{2 r-4}, v_{2 r-3}$ and $v_{2 r-2}$ must be dominated by two adjacent vertices and it is a contradiction.

Case 2. $x=r, y=r+1$ and $z=r+2$, the proof is similar to the proof of Case 1.

Case 3. $\left\{v_{x}, v_{y}, v_{z}\right\} \subset\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, we consider $B=\left\{v_{1}, v_{2}, \ldots, v_{x-2}\right\}$.
If $|B| \equiv 0(\bmod 6)$, then the vertices $v_{r-1}, v_{r}, v_{r+1}, v_{2 r}, v_{2 r-1}$ and $v_{2 r-2}$ must be dominated by two adjacent vertices and this is impossible.

If $|B| \equiv 1(\bmod 6)$, then the vertices $v_{r}, v_{r+1}, v_{r+2}, v_{1}, v_{2 r-1}$ and $v_{2 r}$ must be dominated by two adjacent vertices and this is impossible.

If $|B| \equiv 2(\bmod 6)$, then the vertices $v_{r+1}, \quad v_{r+2}, \quad v_{r+3}, v_{1}, v_{2}$ and $v_{2 r}$ must be dominated by two adjacent vertices and this is impossible.

If $|B| \equiv 3(\bmod 6)$, then the vertices $v_{r-2}, v_{r-1}, v_{r}, v_{1}, v_{2 r}$ and $v_{2 r-1}$ must be dominated by two adjacent vertices and this is impossible.

If $|B| \equiv 4(\bmod 6)$, then the vertices $v_{r-1}, v_{r}, v_{r+1}, v_{1}, v_{2}$ and $v_{2 r}$ must be dominated by two adjacent vertices and this is impossible.

If $|B| \equiv 5(\bmod 6)$, then the vertices $v_{r-2}, v_{r-1}, v_{r}, v_{1}, v_{2}$ and v_{3} must be dominated by two adjacent vertices and this is impossible.

Case 4. $\left\{v_{x}, v_{y}, v_{z}\right\} \subset\left\{v_{r+1}, v_{r+2}, \ldots, v_{2 r}\right\}$, a same argument described in Case 3 settles this case.

So $|S|>2 l+1$, but the set $S_{3}=\left\{v_{2}, v_{r+2}, v_{5}, v_{r+5}, \ldots, v_{r-2}, v_{2 r-2}\right.$, $\left.v_{r-1}, v_{2 r-1}\right\}$ is a total dominating set for G. This implies $\gamma_{t}(G) \leq 2 l+$ $2=2\left\lfloor\frac{r}{3}\right\rfloor+2$, so $\gamma_{t}(G)=2 l+2=2\left\lfloor\frac{r}{3}\right\rfloor+2$.

Lemma 11. $\gamma_{c}\left(G^{\prime}\right)=\gamma_{c}(G)$.
Proof. Obviously $\gamma_{c}\left(G^{\prime}\right)>r-2$, but the set S_{0} in Lemma 1 is a
connected dominating set for G^{\prime}, so $\gamma_{c}\left(G^{\prime}\right) \leq r-1$, therefore $\gamma_{c}\left(G^{\prime}\right)=$ $r-1$.

Lemma 12. $\gamma_{t}\left(G^{\prime}\right)= \begin{cases}\gamma_{t}(G)-2 & \text { if } r \equiv 1(\bmod 3) \text { and } r \text { is odd } \\ \gamma_{t}(G) & \text { otherwise. }\end{cases}$
Proof. If $r \equiv 0(\bmod 3)$, then $r=3 l$. Since the set S_{0} introduced in Lemma 10 is a total dominating set for G^{\prime}, so $\gamma_{t}\left(G^{\prime}\right) \leq 2 l$. On the other hand, $\gamma_{t}\left(G^{\prime}\right) \geq\left\lceil\frac{n\left(G^{\prime}\right)}{3}\right\rceil=\left\lceil\frac{6 l-2}{3}\right\rceil=2 l$. Therefore $\gamma_{t}\left(G^{\prime}\right)=2 l$.

If $r \equiv 2(\bmod 3)$, then $r=3 l+2$. In this case we suppose that S^{\prime} is an arbitrary total dominating set for G^{\prime}. It is simple to see $\left|S^{\prime}\right|>2 l$.

If $\left|S^{\prime}\right|=2 l+1$, then there are three cases:
Case 1. v_{r} and v_{r+1} belong to S^{\prime}. But $\left|N\left[v_{r}\right] \cup N\left[v_{r+1}\right]\right|=4$, so $6 l-2$ other vertices dominate by $2 l-1$ vertices of S^{\prime}, but this is impossible, (because at most $6 l-3$ vertices are dominated by $2 l-1$ vertices).

Case 2. $\left|\left\{v_{r}, v_{r+1}\right\} \cap S^{\prime}\right|=1$, without loss of generality we suppose that $v_{r} \in S^{\prime}$ so $v_{r-1} \in S^{\prime}$ and for each vertex $v_{i} \in S^{\prime} \backslash\left\{v_{2}\right\},\left|N_{p}\left(v_{i}\right)\right|=3$. This implies $\left\{v_{2}, v_{r+2}\right\} \cap S^{\prime} \neq \varnothing$, so $\left\{v_{3}, v_{r+3}\right\} \subset S^{\prime}$ and this is impossible, because $\left|\left\{v_{r+5}, v_{r+6}, \ldots, v_{2 r-2}\right\}\right|=\left|\left\{v_{5}, v_{6}, \ldots, v_{r-3}\right\}\right|+1$.

Case 3. $\left\{v_{r}, v_{r+1}\right\} \cap S^{\prime}=\varnothing$, so $\left\{v_{r-1}, v_{r+2}\right\} \subset S^{\prime}$ and also we have $\left\{v_{r-2}, v_{2 r-1}\right\} \cap S^{\prime} \neq \varnothing$ and $\left\{v_{2}, v_{r+3}\right\} \cap S^{\prime} \neq \varnothing$. For example $\left\{v_{2}, v_{r-2}\right\} \subset$ S^{\prime}, this is impossible, since $\left|\left\{v_{r+4}, v_{r+5}, \ldots, v_{2 r-3}\right\}\right|=\left|\left\{v_{4}, v_{5}, \ldots, v_{r-4}\right\}\right|+1$.

So $\left|S^{\prime}\right| \geq 2 l+2$, but the set $S_{0}^{\prime}=\left\{v_{3}, v_{r+3}, v_{6}, v_{r+6}, \ldots, v_{r-2}, v_{2 r-2}\right.$, $\left.v_{r}, v_{r+1}\right\}$ is a total dominating set for G^{\prime}, so $\gamma_{t}\left(G^{\prime}\right) \leq\left|S_{0}^{\prime}\right|=2 l+2$. Combining the two inequalities, we obtain $\gamma_{t}\left(G^{\prime}\right)=2 l+2$.

Now we suppose $r \equiv 1(\bmod 3)$, so $r=3 l+1$. If r is odd, then the set $S_{0}=\left\{v_{5}, v_{6}, v_{11}, v_{12}, \ldots, v_{r-2}, v_{r-1}, v_{r+2}, v_{r+3}, v_{r+8}, v_{r+9}, \ldots, v_{2 r-5}, v_{2 r-4}\right\}$ is
a total dominating set for G^{\prime}, so $\left|S_{t}\right| \leq\left|S_{0}\right|=2 l$. But $\left|S_{t}\right| \geq\left\lceil\frac{n\left(G^{\prime}\right)}{3}\right\rceil$ $=2 l$, therefore $\gamma_{t}\left(G^{\prime}\right)=\gamma_{t}(G)-2$. If r is even, then the set S_{2} introduced in Lemma 10 is a total dominating set for G^{\prime}, so $\gamma\left(G^{\prime}\right) \leq 2 l+1$. If $\gamma\left(G^{\prime}\right)=2 l$ and S^{\prime} is a total dominating set for G^{\prime} such that $\left|S^{\prime}\right|=2 l$, then for each vertex $v_{i} \in S^{\prime},\left|N_{p}\left[v_{i}\right]\right|=3$. So $\left\{v_{r}, v_{r+1}, v_{2}, v_{2 r-1}\right\} \cap S^{\prime}=\varnothing$, this implies that $\left\{v_{r-1}, v_{r-2}, v_{r+2}, v_{r+3}\right\} \subset S^{\prime}$. So $\left\{v_{3}, v_{4}, v_{r+4}\right\} \cap S^{\prime \prime}=\varnothing$ and $\left\{v_{5}, v_{6}\right\} \subset S^{\prime}$. Since r is even we can assume $r=6 l^{\prime}+4$. Therefore the vertices $v_{r-4}, v_{r-5}, v_{r-6}, v_{2 r-3}, v_{2 r-4}$ and $v_{2 r-5}$ must be dominated by two adjacent vertices of S^{\prime}, and this is impossible. So $\gamma_{t}\left(G^{\prime}\right)=2 l+1=\gamma(G)$.

Theorem 13. $\gamma_{c}\left(G_{0}\right)=m(r-1)$.
Proof. It is an immediate consequence by Lemmas 8 and 11.
Theorem 14. $i\left(G_{0}\right)=\gamma\left(G_{0}\right)$.
Proof. Since the set S_{0} in Theorems 5, 6 and 7 is an independent dominating set for G_{0}, so $i\left(G_{0}\right)=\gamma\left(G_{0}\right)$.

Theorem 15. If $r \equiv 0(\bmod 3)$, then $\gamma_{t}\left(G_{0}\right)=2 m\left\lfloor\frac{r}{3}\right\rfloor$.
Proof. The set $S_{0}=\bigcup_{i=1}^{m} S_{i}$ with $S_{i}=\left\{v_{i 2}, v_{i(r+2)}, v_{i 5}, v_{i(r+5)}, \ldots\right.$, $\left.v_{i(r-1)}, v_{i(2 r-1)}\right\}$ is a total dominating set for G_{0}, so $\gamma_{t}\left(G_{0}\right) \leq\left|S_{0}\right|=$ $2 m\left\lfloor\frac{r}{3}\right\rfloor$. On the other hand by Lemma 12, we have $\gamma_{t}\left(G_{i}^{\prime}\right)=2\left\lfloor\frac{r}{3}\right\rfloor$ for each $1 \leq i \leq m$. Therefore $\gamma_{t}\left(G_{0}\right)=2 m\left\lfloor\frac{r}{3}\right\rfloor$.

Theorem 16. If $r \equiv 2(\bmod 3)$, then $\gamma_{t}\left(G_{0}\right)=2 m\left\lceil\frac{r}{3}\right\rceil$.
Proof. A same argument described in Theorem 15 can be used in this theorem.

Theorem 17. If $r \equiv 1(\bmod 3)$, then

$$
\gamma_{t}\left(G_{0}\right)= \begin{cases}m\left(2\left\lfloor\frac{r}{3}\right\rfloor+1\right) & r \text { is even } \\ 2 m\left\lfloor\frac{r}{3}\right\rceil-2\left\lfloor\frac{m}{2}\right\rfloor & \text { otherwise. }\end{cases}
$$

Proof. First we suppose r is even. The set $S_{0}=\bigcup_{i=1}^{m} S_{i}$ with

$$
\begin{aligned}
& S_{i}=\left\{v_{i 4}, v_{i 5}, v_{i 10}, v_{i 11}, \ldots, v_{i(r-12)}, v_{i(r-11)}, v_{i(r-6)}, v_{i(r-5)}, v_{i(r-4)}, v_{i(r+1)},\right. \\
&\left.v_{i(r+2)}, v_{i(r+7)}, v_{i(r+8)}, \ldots, v_{i(2 r-9)}, v_{i(2 r-8)}, v_{i(2 r-2)}, v_{i(2 r-1)}\right\}
\end{aligned}
$$

is a total dominating set for G_{0}, so $\gamma_{t}\left(G_{0}\right) \leq\left|S_{0}\right|=m\left(2\left\lfloor\frac{r}{3}\right\rfloor+1\right)$. If $\gamma_{t}\left(G_{0}\right)<m\left(2\left\lfloor\frac{r}{3}\right\rfloor+1\right)$, then there is $i \in\{1,2, \ldots, m\}$ such that $\gamma_{t}\left(G_{i}^{\prime}\right)<$ $2\left\lfloor\frac{r}{3}\right\rfloor+1$ and this contradicts Lemma 12.

Next, we suppose r is odd. We consider

$$
\begin{aligned}
S_{i}^{\prime}= & \left\{v_{i 1}, v_{i 2}, v_{i 9}, v_{i 10}, v_{i 15}, v_{i 16}, \ldots, v_{i(r-4)}, v_{i(r-3)}, v_{i(r+4)}, v_{i(r+5)},\right. \\
& \left.v_{i(r+6)}, v_{i(r+7)}, v_{i(r+12)}, v_{i(r+13)}, v_{i(r+17)}, v_{i(r+18)}, \ldots, v_{i(2 r-1)}, v_{i(2 r)}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
S_{i}^{\prime \prime}= & \left\{v_{i 5}, v_{i 6}, v_{i 11}, v_{i 12}, \ldots, v_{i(r-2)}, v_{i(r-1)}, v_{i(r+2)}, v_{i(r+3)}, v_{i(r+8)},\right. \\
& \left.v_{i(r+9)}, \ldots, v_{i(2 r-5)}, v_{i(2 r-4)}\right\} .
\end{aligned}
$$

If m is even, then the set $S_{0}=S_{1}^{\prime} \cup S_{2}^{\prime \prime} \cup S_{3}^{\prime} \cup S_{4}^{\prime \prime} \cup \cdots \cup S_{m-1}^{\prime} \cup S_{m}^{\prime \prime}$ is a total dominating set for G_{0}. If m is odd number, then the set $S_{0}=$ $S_{1}^{\prime} \cup S_{2}^{\prime \prime} \cup S_{3}^{\prime} \cup S_{4}^{\prime \prime} \cup \cdots \cup S_{m-2}^{\prime} \cup S_{m-1}^{\prime \prime} \cup S_{m}^{\prime}$ is a total dominating set for G_{0}. So $\gamma_{t}\left(G_{0}\right) \leq\left|S_{0}^{\prime}\right|=2 m\left\lceil\frac{r}{3}\right\rceil-2\left\lfloor\frac{m}{2}\right\rfloor$. If $\gamma_{t}\left(G_{0}\right)<2 m\left\lceil\frac{r}{3}\right\rceil-2\left\lfloor\frac{m}{2}\right\rfloor$, then there is $i \in\{1,2, \ldots, m\}$ such that $\gamma_{t}\left(G_{i}^{\prime}\right)<2\left\lceil\frac{r}{3}\right\rceil$ and this contradicts Lemma 12.

Problem. What are the domination numbers of the Hamiltonian 4-regular graphs?

References

[1] G. Chartrand, H. Galvas, R. C. Vandell and F. Harary, The forcing domination number of a graph, J. Combin. Math. Combin. Comput. 25 (1997), 161-174.
[2] W. E. Clark and L. A. Dunning, Tight upper bounds for the domination numbers of graphs with given order and minimum degree, Electron. J. Combin. 4(1) (1997), 25.
[3] D. Fisher, K. Fraughnaugh and S. Seager, Domination of graphs with maximum degree three, Proceedings of the Eighth Quadrennial International Conference on Graph Theory, Combinatorics, Algorithms and Applications I (1998), 411-421.
[4] D. Fisher, K. Fraughnaugh and S. Seager, The domination number of cubic graphs of larger girth, Proceedings of the Ninth Quadrennial International Conference on Graph Theory, Combinatorics, Algorithms and Applications (to appear).
[5] W. Goddard and M. A. Henning, Clique/connected/total domination perfect graphs, Bulletin of the ICA 41 (2004), 20-21.
[6] S. Gravian and M. Mollard, Note on domination numbers of cartesian product of paths, Discrete Appl. Math. 80 (1997), 247-250.
[7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[8] A. K. Parekh, Analysis of a greedy heuristic for finding small dominating sets in graphs, Inform. Process. Lett. 39 (1991), 237-240.
[9] B. Reed, Paths, starts, and the number three, Combin. Probab. Comput. 5 (1996), 277-295.
[10] S. M. Seager, The greedy algorithm for domination in cubic graphs, Ars Combin. 71 (2004), 101-107.

D. A. Mojdeh

Department of Mathematics
University of Mazandaran, Babolsar, Iran
e-mail: dmojdeh@umz.ac.ir

S. A. Hassanpour and H. Abdollahzadeh Ahangar
Islamic Azad University, Babol Branch, Iran

A. Ahmadi Haji

Islamic Azad University, Ghaemshahr Branch, Iran

[^0]: 2000 Mathematics Subject Classification: 05C69.

