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Abstract

This paper is concerned with the decentralized stabilization of
input-decentralized linear large-scale systems. Three concepts called
strength of stability of subsystems, strength of connection between
subsystems and aggregating parameter matrix of overall system are
formulated, then two criteria for the existence of a decentralized state
feedback controller which guarantees the asymptotical stability of
closed-loop system are derived by using Lyapunov theory, and a
algorithm for designing such controller is proposed. A numerical
example is given to illustrate the application of the results obtained in
this paper.

1. Introduction and Problem Formulation

Let X be an input-decentralized linear large-scale system composed of
N interconnected subsystems 2; described by

N
zi : xi(t) = Aixi(t) + Biui(t) + Z AUJCJ(t), (1)

jil,jii
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where x; € R and u; € R™ represent the state and input of the
subsystem 2; respectively, A;, B; and A; are constant matrices of

N

. . . N
appropriate dimensions. We denote zi:l n; =n, Zizl

m; = m, and

assume that all pairs (4;, B;) are controllable, our general goal is to

stabilize the overall system (1) by employing a decentralized state
feedback controller

ui(t) = Kixi(t), 1=1,2,.., N (2)

for each subsystem Y;, where K; € R™*" (i =1, 2, ..., N) represent the

matrices of decentralized gains.

Applying the controller (2) to the system (1) results in the closed-loop

system

N
%;(t) = (A; + B;K;)x;(t) + ZAijxj(t)- ®3)
Jj=1,j#i

Definition 1. The system (1) is called decentrally stabilizable if there

exists a decentralized state feedback controller (2) for each subsystem >;

such that the closed-loop system (3) is asymptotically stable.

The problem above has been one of the must popular research topics
in control systems during the last decades because it is very important in
theory and application. Generally speaking, in spite of the controllable
hypothesis for each subsystem, it is not always possible to find the
decentralized controller with the desired stabilizing property. Therefore it
is necessary to make some additional conditions about the

interconnection matrix A;:, and many results were given [2-8, 10]. The

i
majority of these works are restricted to the system with a certain

structure about A;:, which limits very much their applications. So it is

i
natural to study right along on this problem.
On the other hand, the decentralized stabilization for a large-scale

system 1is evidently depended on the strength of stability of each

subsystem and the strength of connection between subsystems. One way
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to address the strength problem is to consider the magnitudes of
subsystem matrix A; and interconnection matrix A;. Up to date,

unfortunately, this approach has been received very little attention.

In this paper, we use the strength of stability and connection of
system (1) to study its decentralized stabilization. Based on the
magnitudes of subsystem matrix A; and the interconnection matrix A;;,
we first obtain a scalar matrix I' (called aggregating parameter matrix)
with lower order by the solution of the Riccati equation, then derive the
decentralized stabilization of (1) from the condition that the T is
M-matrix, develop a new scheme for designing the controller (2) which
guarantees the asymptotic stability of the closed-loop system (3). Finally
a typical example is given to show the feasibility of this scheme.
Compared with the corresponding results in the literature, our results
have the advantage of less restriction, simplicity of numerical

computation and easier to be applied.

Notations. Through the paper, Ap.(P) and A;,(P) denote the
maximum and minimum eigenvalues of symmetric matrix P, respectively.

For x e R", A =(a;)e R™", AT denotes the transpose of A and

1 m n 9 1
Al = [kmax(ATA)P’ I Al = [Z Za?jj x| = (xTx)2. The notation
i=1j=1

x>0 (x <0) means that all components of vector x are positive

(negative). For X e R, the notation X >0 (X <0) means that
matrix X is symmetric and positive-definite (negative-definite). I, is an

identity matrix of size n.
2. The Aggregating Parameter Matrix
Because (4;, B;) is controllable, the Riccati equation of matrix
AP +PA -PBBP,+1, =0, i=1,2 .., N (4)

exists unique the symmetric positive definite solution P,. Let
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T
yi= inf T i-12 . N 5)
x;#0,x;eR™ 2x; Pixi
T
x; P A;x;
vj = sup | % PAjx; | L i#j, i,j=12, .., N. (6)

%;#0, %20 \/(xiTPixi)(x]Tijj)

Definition 2. We call y;; the strength of stability of the subsystem

%;, vij the strength of connection between subsystems >; and ¥; (i # j).

Definition 3. The matrix ' = (y;;) is called aggregating parameter

matrix of system (1), where

Vi =]
Yij = o i,j=12,.. N. (7
Yy VFJ
Before proceeding further, we give three lemmas which will be used
in the proof of main results.
Lemma 1. If square matrix A = (a;;) of size n satisfies a;; <0
(i # J), then the following four statements are equivalent in the sense that

each implies the other three
(1) Ais an M-matrix;
(2) All leading principal minors of matrix A are positive;

(3) There exists a positive diagonal matrix D >0 such that

DA+ ATD > 0,

(4) There exists a positive n-dimensional vector x > 0 such that
Ax > 0.

This lemma can be found in Siljak [9] and Arki [1].

Lemma 2. Suppose x € R", y e R™, A e R™". Then
A, = max yTAx . (8)
[4% = o |

Proof. Consider the following optimization problem
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max J = (y Ax)?,

subjectto ||x | =]y =1. 9)

By the Lagrange multiplier method, we have Ax™ = (y*TAx*) y* at the
optimal point (x*T, y*T )T, it follows that AT Ax* = (y*T Ax*)? =
max oJ, so the problem (9) is equivalent to

max J; = (x7 AT Ax),

subjectto | x| =1. (10)

Letting 0 < A; < X9 <--- <A, be all eigenvalues of nonnegative matrix
AT A. Tt is obvious that

A <y <A

n
which leads to
max J; = &, = Apax(ATA) = A 3.

Due to max J = max <Jy, this implies that equation (8) holds. The proof
is completed.

Lemma 3. Suppose that A = (a;;) and B = (b;) are two square
matrices of size n, and satisfy

@ a;2b;>0, i=12, ..,n

(ll) bL] < aij <0, I # j, i, _] =1, 2, ..., N.

If B is an M-matrix, then A is an M-matrix also.

Proof. It is easy to conclude the fact that (A — B)x > 0 holds for any
x > 0 under the conditions (1) and (i1). Because B is an M-matrix, there
exists an x5 >0 such that Bxy > 0 by Lemma 1, so Axg > Bxy > 0,

which implies that A is an M-matrix by Lemma 1 again. The proof is

completed.
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3. Main Results

In this section, we will apply the aggregating parameter matrix
defined in Section 2 to study the decentralized stabilization of system (1).
Two criteria for the existence of a decentralized state feedback controller
(2) will be derived by using Lyapunov theory. Our main results are stated
in following theorems.

Theorem 1. If the aggregating parameter matrix T = (y;;) of system

(1), defined by equations (5), (6) and (7), is an M-matrix, then the unique

positive definite symmetric solution P, of Riccati equation (4) provides us

the decentralized gain matrices
K; =-B'P, i=12 ., N, (11)
which guarantee the asymptotical stability of the closed-loop system (3).

Proof. Consider v; = x,T Px; as a Lyapunov function for subsystem
Y; . Taking its time derivative along the solution of (3) and by using (4),
(5) and (6) together, we have

U; = X; le + x; le

N
= —xiTxi —xiTPiBiBlTPixi + Z (o} PAUxJ +Xj ATle)
Jj=1, j#i

N
—X; xl ZZ L]j

Jj=1,j#1

IN

(12)

A
“l\’)||—i

N 1
< =2y;0; + 2 Z V;v2v2.
j=1, j#i
. . N .
Now we take a weighting sum v = Zi=1 d;v; as a candidate of Lyapunov

function for the closed-loop overall system (3), and denote V =
11 1
g, vg, ..., vg )''. Summing both sides of above inequality (12) from 1 to
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N combined with (7) leads to

Do| =

N N N 1
6 <=2 dyu; +2) . Y diypPe? = VI(Dr+r'pyv, ()
p=) i1 =1, )i

where d; > 0 is weighting parameters, D = diag{d,, dy, ..., dy}. Due to

the condition that I' is an M-matrix, there exists a group of d; >0

(=1,2, .., N) such that DI + "D > 0 by Lemma 1, thus o < 0, this

assures the stability of the system (3). To prove the asymptotical
stability, it is sufficient to note the fact that V = 0 if and only if x = 0,

where x = (v, xJ, .., %), it follows that o(x) <0 for x # 0 and

v(0) = 0, this implies that the closed-loop overall system (3) is
asymptotically stable. The proof is completed.

Theorem 1 presents a criterion for the existence of a decentralized
state feedback controller (2) for the decentralized stabilization of system

(1). However, in order to apply Theorem 1, we should calculate strength

indices v; and y;;, which is very difficult by directly using (5) and (6).

The following result presents a method of calculating v;; and v;;.

Theorem 2. Suppose that v;; and y;; are defined by equations (5)
and (6) respectively, P; is the unique symmetric positive definite solution

of the Riccati equation (4), C; and C; are two nonsingular matrices such

that CI' PC; = I,,., CTP,C; = I, then

i’

1 _ .
(1) Yii = §>\‘min(Pi 1)’ 1=1,2,.., N, (14)

@ vy = |CTRAC; |y i#)0 i,j=12 .., N. (15)

Proof. (1) Because of P, > 0, there exists an orthogonal matrix O;
such that
OiTPiOi = diag{?f , iZ, oy N 3

n

where, 0 < kil < Xiz <. < Xin, are all eigenvalues of matrix P;. Applying
13
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orthogonal transformation x; = O;; to equation (5), we first have

[ | =&l then it follows that

T
vy = inf X; X; . 1 . 1

—L=t = inf ——— = inf ———F———
%20 95T Py, N ox] Px; lsil=1 2eT (0T PO,)e;

. 1 . 1 1 1
= inf o P - =ming——, —, ..., —
I8 =1 2¢] diag{dy, A5, ..., klni}é,i 20 20y 27Jni

1

-1 .
= § I‘nln(PL ), 1 = 1, 2, ceey N,
which completes the proof of part 1 of Theorem 2.
(2) Because of P, > 0, Pj > 0, there exist two nonsingular matrices

such that CiT PC; = Ini, C]-TPjCj = Inj. Applying nonsingular

transformations x; = C;§;, x; = C;£; to equation (6), we have

T AT
|&; C; PAUC]E_,J| B

up | T TPA
50570 e Eley)  lalHgI

] JE’J |

Yij =

which leads to v;; = || CTPA by Lemma 2, and this completes the

ij ] "2
proof of part 2 of Theorem 2. The proof of Theorem 2 is completed.

Remark 1. It is easy to conclude the fact from (14) and (15) that the
aggregating parameter matrix I' = (Vij) should be an M-matrix if all
interconnection magnitudes || A;; [, (i # j) are enough small. This means
in practice that the decentralized stabilization of system (1) can be
reached when strength of connection between subsystems is weaker.

Remark 2. Consider a special case that all inputs of system (1) are
identically equal to zero (y; =0,i=1,2, .., N), then the system (1)

becomes

N
xi(t) = Aixi(t) + Z Al]x](t), i=12,.., N. (16)
J=1,j#
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In this case, taking the Lyapunov equations
ATP +PA; +1, =0, i=12 ., N (17)
instead of the Riccati equations (4) and following the same arguments

with Theorem 1, we have
Corollary. If all isolated subsystems of (16) described by

%)= Ax;t), 1=1,2,.., N (18)
are asymptotically stable and the aggregating parameter matrix I' = (?ij)

of (16) (also defined by equations (5), (6) and (7)) is an M-matrix, then the
system (16) is asymptotically stable.

Based on the results of Theorems 1 and 2, a new scheme for the
decentralized stabilization of the system (1) by means of decentralized

state feedback controller (2) can be performed as follows:

Step 1. For each i (1 <i < N), solve matrix Riccati equation (4) for
P.

Step 2. Compute the invertible matrix C; such that CiT PC; = I,.

Step 3. Using the matrices P, and C; obtained above, compute
parameters y;; by equations (14) and (15), and construct aggregating

parameter matrix I' = (v;;) of system (1) by Definition 3.

Step 4. Verify whether matrix T' = (y;;) is an M-matrix or not. If yes,

then turn to step 5, and otherwise, to stop.

Step 5. Take the decentralized state feedback controller (2) for
system (1) as following

u;(t) = -BTPx;(t), i=1,2 .., N.

In the algorithm above, we should solve the Riccati equation (4) and

compute the invertible matrix C; which may involve very difficult

numerical calculation. In order to get the criterion that is easier to be

applied, let us first consider a class of input-decentralized large-scale
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system with single-input subsystems described by
N
X‘i(t) = Aixi(t) + biui(t) + ZALJxJ(t), 1=1,2, ..., N, (19)
Jj=1,j#i

where (4;, b;) are given in the companion form:

0 1 - 0 0 0
0 0 - 0 0 0
A; = b =
0 0 -« 0 1 0
o ab - a _, a 1

Now given a group of positive numbers

(ch >0lcl zobif r#l,i=1,2..,N, k=12 .. n)

Denote
- L T R B
op = min {o}), oy = max (o}, ph = o}, & = TMII Wi ol W s
where i, j =1, 2, ..., N, and W, is a Vandermonde matrix
1 1 1
P Py P
L \2 L \2 L \2
W, =| (p1) (P2) (py,,)
i \n; -1 i\ —1 i -1
(p1)" (p5)™ e (e )

As straightforward application of Theorems 1, 2 and Corollary, we have

Theorem 3. Let A; = (agq). Then the system (19) is decentrally

stabilizable if there exist real numbers By, B, ..., By and o > 1 such that

Q = (w;) € RNV s an M-matrix, where
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obafii=1,2 ., N,

2
3 Bih (20

i SRR
Eil Ailli=j=12 ., N.

o
Ajj = (apg),

g = aij (03

ai, i (l—p)Bi+(q—1)Bj, p=12

ey Ny, g = 1, 2, ceey nj

Proof. Since (4;, b;) is controllable, there exists k; such that A; +

b;k; has a set of distinct real eigenvalues
A @

Applying the nonsingular transformations
xl(t) = Rlvvlyz(t)’ 1=12.,N (22)

to the closed-loop system

N
xi(t) = (AL + biki)xi(t) + Z Aljx](t), I = 1, 2, ceey N, (23)
j=1,j#i
we have
. N pE—
.fi(t) = Aifi(t) + Z Aijfj(t), i1=1,2, .., N, (24)
j=1,j=i
where

R; = diag{l, o, ..., o (i 1Pi VoA = {oPipl aPiph, aﬁip;i},

and Aj; = W 'R A RW; = WTAW.

It is clear that the system (19) is decentrally stabilizable if and only if
the system (24) is asymptotically stable. In the following, we will use
Corollary to study the asymptotical stability of (24).

First, the Lyapunov equations of (24) can be written as
AP+ PA; + 1, =0, 1=1,2,.., N, (25)

1

which gives a unique symmetric positive definite solution P, = — 3 A}l.
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Then, by using equations (14) and (15), it is straightforward to verify
that the strength indices y;; and y;; of (24) satisfy

(1) ’Yu = Gl;naﬁl’ i = 1’ 2, ey N,

L;-8;

). v L
(2)0SYL] S()L2 él]"Al] ", 1+ ], L,]I]_, 2, ceny N,

which, together with the conditions of Theorem 3 and Lemma 3, implies
that the aggregating parameter matrix of the system (24) is an
M-matrix. By Corollary, it follows that the system (24) is asymptotically
stable, this, combined with the argument above, completes the proof of

Theorem 3.

Remark 3. The result obtained in Theorem 3 can be easily
generalized to the system with multi-input. One way, as pointed out in

[4], transforms A; and B; into Luenberger’s canonical form, and by

applying the method treated in Theorem 3, the same result can be

performed. The details are omitted here.

Remark 4. By well-known inequality | A [, <| Az and Lemma 3,
it follows that the result still holds in Theorem 3 if we take | ¢ ||, instead
of the | o |,. This substitution is quite interesting and useful because the

calculation of | e ||2 is more difficult than that of | e | o

4. Illustrative Example
To illustrate the application of methods obtained in this paper, we
present the following example.

Example. Consider an input-decentralized large-scale system which

1s composed of following two interconnected subsystems

01 0 0 12 0 0
' 2 3 2 -1 3 4 11
(S1) ()= x(¢) + xo(t) + 1 (¢),
0 0 10 0 0
2 1 -1 -2 2 1 11
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01 3 01 5 0
(Sg)  xa(t) = { Jx2(t) +( }ﬁ(t) +{ Juz(t)
3 4 2 1 4 6 1

Because the subsystem S; is multi-inputting, we first apply the state

feedback
2 1 -2 1 0 -1
up(t) = [ ]x1(t) + [ J%(t) (26)
-2 -1 0 0 0 1

to the S; and obtain two single-input subsystems

0 1 1 2 0
(S11)  #11() = ( jxn(t) +[ }%(t) +[ ]ﬁu(t),
2 3 3 4 1

0 1 1 0 0
(S12)  %p9(t) = ( Jxm(t) +[ ]x2(t) +[ Jﬁm(t),
2 2 1 1

where x; = (xly, x5), @ = (@, @)’ . Substituting x; = (x5, xi5)"

into Sy, we can rewrite Sy as

_ 0 1 3 0 1 5 0
(Sg)  %q(t) = [ ]xz(t) + ( ]xn(t) + ( Jxm(t) + [ }%(t)-
3 4 2 1 4 6 1

Now consider a large-scale system S composed of three single-input
subsystems S;1, S;y and Sy. According to Theorem 3, let ci =2, Gé =
3(1=1,2,3), By =Bs = B3 =1 and a to be determined later. By simple
calculation, the corresponding matrix Q in Theorem 3 about the system
S is found as
20 0 —44.8a
Q=] 0 20 -22.4
-67.2 -112a 20

It is easy to verify that Q is an M-matrix for sufficiently large positive

number o (for example, o > 1400), which implies by Theorem 3 that

system S (e. the system considered in example) is decentrally
stabilizable.
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To get the gain matrices of controller (2) for each subsystem, we

denote

@1 (t) = kb (), @a(t) = kisxa(t),  us(t) = k3 xo(2), 27

where k1, kg and kg can be approached by the procedure of the pole

assignment for control system (see (21) in the proof of Theorem 3)
-2 - 602 1- 602 -3 - 602
ki1 = , kg = , kg = : (28)
-3 - 5a 2 - 5a -4 - ba
Substitute (27) and (28) into (26), obtain

60> -2-5a -3+6a -1+5a
ul(t) = 9 xl(t)’
-2 -1 1 - 6a 2 - ba (o > 1400)

us(t) = (-3 — 602, -4 — 5a)xy ().
5. Conclusion

In this paper, we have studied the decentralized stabilization of
input-decentralized linear large-scale systems. Based on three concepts
called strength of stability of subsystems, strength of connection between
subsystems and aggregating parameter matrix of overall system, the
existence and designing problem of a decentralized state feedback
controller which guarantees the asymptotical stability of closed-loop
system have been investigated by using Lyapunov theory. Time-delays,
uncertainties and discrete case in the system (1) are not considered for
simplicity. However, the results obtained can be easily generalized to the

system with time-delays, uncertainties and discrete case.
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