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Abstract

This paper is concerned with the decentralized stabilization of
input-decentralized linear large-scale systems. Three concepts called
strength of stability of subsystems, strength of connection between
subsystems and aggregating parameter matrix of overall system are
formulated, then two criteria for the existence of a decentralized state
feedback controller which guarantees the asymptotical stability of
closed-loop system are derived by using Lyapunov theory, and a
algorithm for designing such controller is proposed. A numerical
example is given to illustrate the application of the results obtained in
this paper.

1. Introduction and Problem Formulation

Let ∑ be an input-decentralized linear large-scale system composed of
N interconnected subsystems i∑  described by

( ) ( ) ( ) ( )∑
≠=

++=∑
N

ijj
jijiiiiii txAtuBtxAtx

,1

,: (1)
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where in
i Rx ∈  and im

i Ru ∈  represent the state and input of the

subsystem i∑  respectively, ,iA  iB  and ijA  are constant matrices of

appropriate dimensions. We denote ∑ =
=

N
i i nn

1
,  ∑ =

=
N
i i mm

1
,  and

assume that all pairs ( )ii BA ,  are controllable, our general goal is to

stabilize the overall system (1) by employing a decentralized state
feedback controller

( ) ( ) NitxKtu iii ...,,2,1, == (2)

for each subsystem ,i∑  where ( )NiRK ii nm
i ...,,2,1=∈ ×  represent the

matrices of decentralized gains.

Applying the controller (2) to the system (1) results in the closed-loop
system

( ) ( ) ( ) ( )∑
≠=

++=
N

ijj
jijiiiii txAtxKBAtx

,1

. (3)

Definition 1. The system (1) is called decentrally stabilizable if there

exists a decentralized state feedback controller (2) for each subsystem i∑

such that the closed-loop system (3) is asymptotically stable.

The problem above has been one of the must popular research topics
in control systems during the last decades because it is very important in
theory and application. Generally speaking, in spite of the controllable
hypothesis for each subsystem, it is not always possible to find the
decentralized controller with the desired stabilizing property. Therefore it
is necessary to make some additional conditions about the

interconnection matrix ,ijA  and many results were given [2-8, 10]. The

majority of these works are restricted to the system with a certain

structure about ,ijA  which limits very much their applications. So it is

natural to study right along on this problem.

On the other hand, the decentralized stabilization for a large-scale
system is evidently depended on the strength of stability of each
subsystem and the strength of connection between subsystems. One way
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to address the strength problem is to consider the magnitudes of

subsystem matrix iA  and interconnection matrix .ijA  Up to date,

unfortunately, this approach has been received very little attention.

In this paper, we use the strength of stability and connection of

system (1) to study its decentralized stabilization. Based on the

magnitudes of subsystem matrix iA  and the interconnection matrix ,ijA

we first obtain a scalar matrix Γ (called aggregating parameter matrix)

with lower order by the solution of the Riccati equation, then derive the

decentralized stabilization of (1) from the condition that the Γ is

M-matrix, develop a new scheme for designing the controller (2) which

guarantees the asymptotic stability of the closed-loop system (3). Finally

a typical example is given to show the feasibility of this scheme.

Compared with the corresponding results in the literature, our results

have the advantage of less restriction, simplicity of numerical

computation and easier to be applied.

Notations. Through the paper, ( )Pmaxλ  and ( )Pminλ  denote the

maximum and minimum eigenvalues of symmetric matrix P, respectively.

For ,nRx ∈  ( ) ,nm
ij RaA ×∈=  TA  denotes the transpose of A and

[ ( )] ,2
1

max2 AAA Tλ=  ,
2
1

1 1

2










= ∑∑

= =

m

i

n

j
ijE aA  ( ) .2

1

xxx T=  The notation

( )00 <> xx  means that all components of vector x are positive

(negative). For ,nnRX ×∈  the notation ( )00 <> XX  means that

matrix X is symmetric and positive-definite (negative-definite). nI  is an

identity matrix of size n.

2. The Aggregating Parameter Matrix

Because ( )ii BA ,  is controllable, the Riccati equation of matrix

NiIPBBPAPPA
ini

T
iiiiii

T
i ...,,2,1,0 ==+−+ (4)

exists unique the symmetric positive definite solution .iP  Let
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....,,2,1,
2

inf
,0

Ni
xPx

xx

ii
T
i

i
T
i

Rxx
ii

in
ii

==γ
∈≠

(5)

( ) ( )
....,,2,1,,,sup

0,0
Njiji

xPxxPx

xAPx

jj
T
jii

T
i

jiji
T
i

xx
ij

ji

=≠=γ
≠≠

(6)

Definition 2. We call iiγ  the strength of stability of the subsystem

iji γ∑ ,  the strength of connection between subsystems i∑  and ( ).jij ≠∑

Definition 3. The matrix ( )ijγ=Γ  is called aggregating parameter

matrix of system (1), where







=
≠γ−

=γ
=γ ....,,2,1, Nji

ji

ji

ij

ii

ij (7)

Before proceeding further, we give three lemmas which will be used
in the proof of main results.

Lemma 1. If square matrix ( )ijaA =  of size n satisfies 0≤ija

( ),ji ≠  then the following four statements are equivalent in the sense that

each implies the other three

(1)  A is an M-matrix;

(2)  All leading principal minors of matrix A are positive;

(3)  There exists a positive diagonal matrix 0>D  such that

;0>+ DADA T

(4)  There exists a positive n-dimensional vector 0>x  such that

.0>Ax

This lemma can be found in Siljak [9] and Arki [1].

Lemma 2. Suppose ,nRx ∈  ,mRy ∈  .nmRA ×∈  Then

.max
12 AxyA T

yx ==
= (8)

Proof. Consider the following optimization problem
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( ) ,max 2AxyJ T=

subject to    .1== yx (9)

By the Lagrange multiplier method, we have ( ) ∗∗∗∗ = yAxyAx
T

 at the

optimal point ( ) ,, TTT
yx ∗∗  it follows that ( ) == ∗∗∗∗ 2AxyAxAx

TT T

,max J  so the problem (9) is equivalent to

 ( ),max 1 AxAxJ TT=

subject to     .1=x (10)

Letting nλ≤≤λ≤λ≤ 210  be all eigenvalues of nonnegative matrix

.AAT  It is obvious that

,11 nJ λ≤≤λ

which leads to

( ) .max 2
2max1 AAAJ T

n =λ=λ=

Due to ,maxmax 1JJ =  this implies that equation (8) holds. The proof

is completed.

Lemma 3. Suppose that ( )ijaA =  and ( )ijbB =  are two square

matrices of size n, and satisfy

 (i) ;...,,2,1,0 niba iiii =>≥

(ii) ....,,2,1,,,0 njijiab ijij =≠≤≤

If B is an M-matrix, then A is an M-matrix also.

Proof. It is easy to conclude the fact that ( ) 0≥− xBA  holds for any

0>x  under the conditions (i) and (ii). Because B is an M-matrix, there

exists an 00 >x  such that 00 >Bx  by Lemma 1, so ,000 >≥ BxAx

which implies that A is an M-matrix by Lemma 1 again. The proof is

completed.
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3. Main Results

In this section, we will apply the aggregating parameter matrix
defined in Section 2 to study the decentralized stabilization of system (1).
Two criteria for the existence of a decentralized state feedback controller
(2) will be derived by using Lyapunov theory. Our main results are stated
in following theorems.

Theorem 1. If the aggregating parameter matrix ( )ijγ=Γ  of system

(1), defined by equations (5), (6) and (7), is an M-matrix, then the unique

positive definite symmetric solution iP  of Riccati equation (4) provides us

the decentralized gain matrices

,...,,2,1, NiPBK i
T
ii =−= (11)

which guarantee the asymptotical stability of the closed-loop system (3).

Proof. Consider ii
T
ii xPxv =  as a Lyapunov function for subsystem

.i∑  Taking its time derivative along the solution of (3) and by using (4),

(5) and (6) together, we have

ii
T
iii

T
ii xPxxPxv +=

 ( )∑
≠=

++−−=
N

ijj
ii

T
ij

T
jjiji

T
iii

T
iii

T
ii

T
i xPAxxAPxxPBBPxxx

,1

 ∑
≠=

+−≤
N

ijj
jiji

T
ii

T
i xAPxxx

,1

2

 ∑
≠=

γ+γ−≤
N

ijj
jiijiii vvv

,1

2
1

2
1

.22 (12)

Now we take a weighting sum ∑ =
=

N
i iivdv

1
 as a candidate of Lyapunov

function for the closed-loop overall system (3), and denote =V

( ) ....,,, 2
1

2
1

2
2
1

1
T

Nvvv  Summing both sides of above inequality (12) from 1 to
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N combined with (7) leads to

( )∑ ∑ ∑
= = ≠=

Γ+Γ−=γ+γ−≤
N

i

N

i

N

ijj

TT
jiijiiiii VDDVvvdvdv

1 1 ,1

2
1

2
1

,22 (13)

where 0>id  is weighting parameters, { }....,,,diag 21 NdddD =  Due to

the condition that Γ is an M-matrix, there exists a group of 0>id

( )Ni ...,,2,1=  such that 0>Γ+Γ DD T  by Lemma 1, thus ,0≤v  this

assures the stability of the system (3). To prove the asymptotical

stability, it is sufficient to note the fact that 0=V  if and only if ,0=x

where ( ) ,...,,, 21
TT

N
TT xxxx =  it follows that ( ) 0<xv  for 0≠x  and

( ) ,00 =v  this implies that the closed-loop overall system (3) is

asymptotically stable. The proof is completed.

Theorem 1 presents a criterion for the existence of a decentralized
state feedback controller (2) for the decentralized stabilization of system
(1). However, in order to apply Theorem 1, we should calculate strength

indices iiγ  and ,ijγ  which is very difficult by directly using (5) and (6).

The following result presents a method of calculating iiγ  and .ijγ

Theorem 2. Suppose that iiγ  and ijγ  are defined by equations (5)

and (6) respectively, iP  is the unique symmetric positive definite solution

of the Riccati equation (4), iC  and jC  are two nonsingular matrices such

that ,
inii

T
i ICPC =  ,

jnjj
T
j ICPC =  then

(1) ( ) ,...,,2,1,
2
1 1

min NiPiii =λ=γ − (14)

(2) ....,,2,1,,,2 NjijiCAPC jiji
T
iij =≠=γ (15)

Proof. (1) Because of ,0>iP  there exists an orthogonal matrix iO

such that

{ },...,,,diag 21
i
n

ii
ii

T
i i

OPO λλλ=

where, i
n

ii
i

λ≤≤λ≤λ< 210  are all eigenvalues of matrix .iP  Applying
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orthogonal transformation iii Ox ξ=  to equation (5), we first have

,iix ξ=  then it follows that

 
( ) iii

T
i

T
iii

T
i

x
ii

T
i

i
T
i

xii
OPOxPxxPx

xx

iii ξξ
===γ

=ξ=≠ 2

1inf
2

1inf
2

inf
110

{ } 











λλλ
=

ξλλλξ
=

=ξ i
n

ii
i

i
n

iiT
i ii

i 2

1...,,
2

1,
2

1min
...,,,diag2

1inf
2121

1

( ) ,...,,2,1,
2
1 1

min NiPi =λ= −

which completes the proof of part 1 of Theorem 2.

(2) Because of ,0>iP  ,0>jP  there exist two nonsingular matrices

such that ,
inii

T
i ICPC =  .

jnjj
T
j ICPC =  Applying nonsingular

transformations ,iii Cx ξ=  jjj Cx ξ=  to equation (6), we have

( ) ( )
,supsup

10,0
jjiji

T
i

T
i

j
T
ji

T
i

jjiji
T
i

T
i

ij CAPC
CAPC

jiji

ξξ=
ξξξξ

ξξ
=γ

=ξ=ξ≠ξ≠ξ

which leads to 2jiji
T
iij CAPC=γ  by Lemma 2, and this completes the

proof of part 2 of Theorem 2. The proof of Theorem 2 is completed.

Remark 1. It is easy to conclude the fact from (14) and (15) that the

aggregating parameter matrix ( )ijγ=Γ  should be an M-matrix if all

interconnection magnitudes ( )jiAij ≠2  are enough small. This means

in practice that the decentralized stabilization of system (1) can be
reached when strength of connection between subsystems is weaker.

Remark 2. Consider a special case that all inputs of system (1) are

identically equal to zero ( ),...,,2,1,0 Niui =≡  then the system (1)

becomes

( ) ( ) ( )∑
≠=

=+=
N

ijj
jijiii NitxAtxAtx

,1

....,,2,1, (16)
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In this case, taking the Lyapunov equations

NiIAPPA
iniii

T
i ...,,2,1,0 ==++ (17)

instead of the Riccati equations (4) and following the same arguments
with Theorem 1, we have

Corollary. If all isolated subsystems of (16) described by

( ) ( ) NitxAtx iii ...,,2,1, == (18)

are asymptotically stable and the aggregating parameter matrix ( )ijγ=Γ

of (16) (also defined by equations (5), (6) and (7)) is an M-matrix, then the

system (16) is asymptotically stable.

Based on the results of Theorems 1 and 2, a new scheme for the
decentralized stabilization of the system (1) by means of decentralized
state feedback controller (2) can be performed as follows:

Step 1.  For each ( ),1 Nii ≤≤  solve matrix Riccati equation (4) for

.iP

Step 2.  Compute the invertible matrix iC  such that .
inii

T
i ICPC =

Step 3.  Using the matrices iP  and iC  obtained above, compute

parameters ijγ  by equations (14) and (15), and construct aggregating

parameter matrix ( )ijγ=Γ  of system (1) by Definition 3.

Step 4.  Verify whether matrix ( )ijγ=Γ  is an M-matrix or not. If yes,

then turn to step 5, and otherwise, to stop.

Step 5.  Take the decentralized state feedback controller (2) for
system (1) as following

( ) ( ) ....,,2,1, NitPxBtu i
T

i =−=

In the algorithm above, we should solve the Riccati equation (4) and

compute the invertible matrix iC  which may involve very difficult

numerical calculation. In order to get the criterion that is easier to be
applied, let us first consider a class of input-decentralized large-scale
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system with single-input subsystems described by

( ) ( ) ( ) ( )∑
≠=

=++=
N

ijj
jijiiiii NitxAtubtxAtx

,1

,...,,2,1, (19)

where ( )ii bA ,  are given in the companion form:

.

1

0

0

0

,

1000

0000

0010

121


























=



























=

−

i

i
n

i
n

ii

i b

aaaa

A

ii

Now given a group of positive numbers

{ }....,,2,1,...,,2,1,if0 i
i
l

i
r

i
k nkNilr ==≠σ≠σ|>σ

Denote

{ } { }
( )

,,,max,min 22
12

1

11 jii
m

j
M

i
M

ij
i
k

i
k

i
knk

i
M

i
knk

i
m WW

ii

−
≤≤≤≤ σ

σσ
=ξσ−=ρσ=σσ=σ

where ,...,,2,1, Nji =  and iW  is a Vandermonde matrix

( ) ( ) ( )

( ) ( ) ( )

.

111

11
2

1
1

22
2

2
1

21



























ρρρ

ρρρ

ρρρ

=

−−− i
i

ii

i

i

ni
n

nini

i
n

ii

i
n

ii

iW

As straightforward application of Theorems 1, 2 and Corollary, we have

Theorem 3. Let ( ).ij
pqij aA =  Then the system (19) is decentrally

stabilizable if there exist real numbers Nβββ ...,,, 21  and 1>α  such that

( ) NN
ij R ×∈ω=Ω  is an M-matrix, where
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( )





=≠ξα−

=ασ
=ω

β−β

β

....,,2,1,
~

,...,,2,1,

2
1

NjiA

Ni

ijij

i
m

ij
ij

i

(20)

( ),~~ ij
pqij aA =

( ) ( )
....,,2,1,...,,2,1,~ 11

ji
qpij

pq
ij
pq nqnpaa ji ==α= β−+β−

Proof. Since ( )ii bA ,  is controllable, there exists ik  such that +iA

iikb  has a set of distinct real eigenvalues

{ }....,,, 21
i
n

ii
i

iii ραραρα βββ (21)

Applying the nonsingular transformations

( ) ( ) NitxWRtx iiii ...,,2,1, == (22)

to the closed-loop system

( ) ( ) ( ) ( )∑
≠=

=++=
N

ijj
jijiiiii NitxAtxkbAtx

,1

,...,,2,1, (23)

we have

( ) ( ) ( )∑
≠=

=+Λ=
N

ijj
jijiii NitxAtxtx

,1

,...,,2,1, (24)

where

{ ( ) } { },...,,,,...,,,1diag 21
1 i

n
ii

i
n

i i
iiiiiiR ραραρα=Λαα= ββββ−β

and .
~111

jijijjijiiij WAWWRARWA −−− ==

It is clear that the system (19) is decentrally stabilizable if and only if
the system (24) is asymptotically stable. In the following, we will use
Corollary to study the asymptotical stability of (24).

First, the Lyapunov equations of (24) can be written as

,...,,2,1,0 NiIPP
iniiii ==+Λ+Λ (25)

which gives a unique symmetric positive definite solution .
2
1 1−Λ−= iiP
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Then, by using equations (14) and (15), it is straightforward to verify

that the strength indices iiγ  and ijγ  of (24) satisfy

(1) ,...,,2,1, Niii
mii =ασ=γ β

(2) 
( )

,...,,2,1,,,
~

0 2
1

NjijiAijijij
ij =≠ξα≤γ≤
β−β

which, together with the conditions of Theorem 3 and Lemma 3, implies
that the aggregating parameter matrix of the system (24) is an

M-matrix. By Corollary, it follows that the system (24) is asymptotically
stable, this, combined with the argument above, completes the proof of
Theorem 3.

Remark 3. The result obtained in Theorem 3 can be easily
generalized to the system with multi-input. One way, as pointed out in

[4], transforms iA  and iB  into Luenberger’s canonical form, and by

applying the method treated in Theorem 3, the same result can be
performed. The details are omitted here.

Remark 4. By well-known inequality EAA ≤2  and Lemma 3,

it follows that the result still holds in Theorem 3 if we take E•  instead

of the .2•  This substitution is quite interesting and useful because the

calculation of 2•  is more difficult than that of .E•

4. Illustrative Example

To illustrate the application of methods obtained in this paper, we
present the following example.

Example. Consider an input-decentralized large-scale system which
is composed of following two interconnected subsystems

( ) ( ) ( ) ( ) ( ),

11

00

11

00

12

01

43

21

2112

1000

1232

0010

12111 tutxtxtxS























+























+























−−

−
=
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( ) ( ) ( ) ( ) ( ).
1

0

6412

5103

43

10
21222 tutxtxtxS 










+










+










=

Because the subsystem 1S  is multi-inputting, we first apply the state

feedback

( ) ( ) ( )tutxtu 111
10

10

0012

1212









 −
+











−−

−
= (26)

to the 1S  and obtain two single-input subsystems

( ) ( ) ( ) ( ) ( ),
1

0

43

21

32

10
112111111 tutxtxtxS 










+










+










=

( ) ( ) ( ) ( ) ( ),
1

0

12

01

21

10
122121212 tutxtxtxS 










+










+











−−
=

where ( ) ,, 12111
TTT xxx =  ( ) ., 12111

Tuuu =  Substituting ( )TTT xxx 12111 ,=

into ,2S  we can rewrite 2S  as

( ) ( ) ( ) ( ) ( ) ( ).
1

0

64

51

12

03

43

10
21211222 tutxtxtxtxS 










+










+










+










=

Now consider a large-scale system S  composed of three single-input

subsystems ,11S  12S  and .2S  According to Theorem 3, let ,21 =σi  =σi
2

( ),3,2,13 =i  1321 =β=β=β  and α to be determined later. By simple

calculation, the corresponding matrix Ω in Theorem 3 about the system

S  is found as

.

21122.67

4.2220

8.4402



















αα−−

−α

α−α

=Ω

It is easy to verify that Ω is an M-matrix for sufficiently large positive

number α (for example, ),1400>α  which implies by Theorem 3 that

system S  (i.e., the system considered in example) is decentrally

stabilizable.
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To get the gain matrices of controller (2) for each subsystem, we
denote

( ) ( ) ( ) ( ) ( ) ( ),,, 222121212111111 txktutxktutxktu TTT === (27)

where ,11k  12k  and 2k  can be approached by the procedure of the pole

assignment for control system (see (21) in the proof of Theorem 3)

.
54

63
,

52

61
,

53

62 2

2

2

12

2

11 













α−−

α−−
=















α−

α−
=















α−−

α−−
= kkk (28)

Substitute (27) and (28) into (26), obtain

( ) ( )

( ) ( ) ( )

( )











>α

α−−α−−=















α−α−−−

α+−α+−α−−α−
=

1400

.54,63

,
526112

5163526

2
2

2

12

22

1

txtu

txtu

5. Conclusion

In this paper, we have studied the decentralized stabilization of
input-decentralized linear large-scale systems. Based on three concepts
called strength of stability of subsystems, strength of connection between
subsystems and aggregating parameter matrix of overall system, the
existence and designing problem of a decentralized state feedback
controller which guarantees the asymptotical stability of closed-loop
system have been investigated by using Lyapunov theory. Time-delays,
uncertainties and discrete case in the system (1) are not considered for
simplicity. However, the results obtained can be easily generalized to the
system with time-delays, uncertainties and discrete case.
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