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Abstract

In 2003, Jiang gave a sufficient condition under which Jensen’s
inequality of bivariate function for g-expectation holds under the
situation that g does not depend on y, and in 2004, he gave a sufficient
and necessary condition under which Jensen’s inequality for
g-expectation holds in general under the situation that g does not
depend on y and is continuous in ¢. In this paper, after investigating
some relationship between the generator g and the conditional
g-expectation system, under the most elementary conditions with respect
to g-expectation, a sufficient and necessary condition under which
Jensen’s inequality of bivariate function for g-expectation holds is
obtained. At the same time, it is proved that under the condition g is
continuous in ¢, if Jensen’s inequality for g-expectation holds in general,
then g must not depend on y.

1. Preliminaries

Let (Q, F, P) be a probability space carrying a standard d-dimensional

Brownian motion (B;),,(, and let (F;),5, be the c-algebra generated by

t>0

(B;),50- We always assume that (F;), is right-continuous and complete.
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Let T > 0 be a given real number. In this paper, we always work in

the space (Q, Fr, P), and only consider processes indexed by ¢ € [0, T'].
For any positive integer d, let | z| denote Euclidean norm of z e R% 1 A

denotes the indicator of event A. R™ denotes the set of non negative real

numbers.

For notational simplicity, we use L% = [*(Q, Fp, P), LI? = [}(Q,

Fr, P) when t €[0, T], and define the following usual space of processes:
T 2
Ho = {4) : ¢ progressively measurable; E{I | 4() | dt} < +oo}.
0

Let us consider a function g(o, ¢, v, z) : @ x [0, T]x R x R¢ - R such

that the process (g(w, ¢, y, .2))t€[0 7] is progressively measurable for each

(y,z) in Rx Rd, and furthermore, g satisfies some of the following

assumptions:

(A1) There exists a constant u > 0, such that, P-a.s., we have
Yt y;, 2) € [0, TIx R (i =1, 2),
| g(o,t, 31, 21) - 8(o, £, y2, 29) | < (31 — 2 [+]21 — 22 |).
(A2) The process (g(w, ¢, 0, 0)),c[o, 7] belongs to Hy.
(A3) P-a.s., we have V(t, y) € [0, T]x R, g(¢, y, 0) = 0.
(A4) P-a.s., we have V(y, z) € R, t g(t, v,2) is right-continuous
in ¢ € [0, T') and left-continuous in 7.

Remark 1.1. The assumption (A3) implies the assumption (A2).

It is now well known that under the assumptions (Al) and (A2),
for any random variable & in L2, the following backward stochastic
differential equation (BSDE for short in the remaining of this paper):

T T
Yy = §+J. g(s, vs, 25)ds —J zg - dB,, u € [0, T}, 1)
u

u

has a wunique adapted and square-integrable solution, say
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(y5(0), zé(t))te[O,T], such that (y, z) is in the space Hqy x Hqy (see [8] for
details). The function g is called the generator of BSDE (1). In [10], under
the situation that (A3) holds, yé(O) is called g-expectation of &, denoted

by ¢ g[E)], and ya(t) is called conditional g-expectation of & with respect to
Fy, denoted by &g[&| F;].

For the convenience of readers, we list some basic properties of
conditional g-expectation and BSDEs, which will be used in the following
of this paper.

Proposition 1.1 (See [4, 10]). Let the generator g satisfy (Al) and
(A3). Then for each t < [0, T and for any (¢, ) € L% x L2, we have

(a) (Monotonicity) If & > m, P-a.s., then eg[&| F;] > eg[n| F;], P-a.s.

(b) For each constant ¢ € R, we have gg[c|F;] = ¢, P-a.s.

(c) For each A e F;, we have gg[Ely +nl ¢ | Fe] = egle| Fi]1a

+eg[n|Fi]1 P-a.s.

AC,
(d) There exists a universal constant K, such that E|eg[&|F,;]

—egn|F]? < KE|g-n .

The following Proposition 1.2 can be regarded as the greatest
achievements of theory of BSDESs, readers can see the proof in [5, 9].

Proposition 1.2 (Comparison theorem). Let both g and g' satisfy
(A1) and (A2), let (€, &) e L% x L%. Moreover, let (y,, Zu)ue[O, 7 and
(vy,» 24, )ue[O, ul respectively, be the unique solutions of BSDE (1) and the
following BSDE

T T
Yu =8 +I g'(s, ys, 25)ds —I 2, -dBg, u € [0, T].
u

u

If P-as., & > &' and P-a.s., for each s € [0, T, g(s, vs, 25) = 8'(s, ¥, 25),
then for each t € [0, T, we have

P-as., y, 2 y;.
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The following Proposition 1.3 is often called the Representation

theorem of generator for BSDEs, readers can see the proof in [1].

Proposition 1.3 (Representation theorem). Let the assumptions (Al),
(A3) and (A4) hold for the generator g. Then for each (¢, y, z) € [0, T)

x R we have
L = Tim nlegly + 2 (Bryn - B)IF] -2} = g, , 2).

Since the notion of g-expectation was introduced, many properties of
g-expectation have been studied in [1, 4, 10]. Some properties of classical
mathematical expectation are preserved (monotonicity for instance), and
some important results on Jensen’s inequality for g-expectation were
obtained in [1-3, 6-7]. The following Propositions 1.4 and 1.5 come from
[7] and [6], respectively.

Proposition 1.4 (See [7]). Let g satisfy (A1), (A3) and (A4). If g does

not depend on y, then the following two conditions are equivalent:

(1) g is a super-homogeneous generator in z, i.e., P-a.s., we have
V(t, z, 1) € [0, T]x R, g, A2) = Aglt, 2).

(2) Jensen’s inequality for g-expectation on convex function holds in

general, i.e., for each convex function ¢(x): R - R and each & e L2T, if

o(E) e L2T, then for each t € [0, T], we have, P-a.s.,

eg[0(€)| Fi] = oleg[e| 7]l

Remark 1.2. Similarly, by replacing “>” with “<” in above two
inequality, we can give the definitions that sub-homogeneous generator
in z and Jensen’s inequality for g-expectation on concave function holds
in general. Similar to Proposition 1.4, we can prove that under the
same assumptions as Proposition 1.4, the above two conditions are also

equivalent.

Proposition 1.5 (See [6]). Suppose g satisfies (Al), (A3) and g does
not depend on y, moreover let g be a sub-linear generator in z, i.e., g also
satisfies the following two conditions:
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(1) P-a.s., Y, 2, 1) e [0, T]x R x R*, g(t, Az) = Ag(t, 2); (positive-

homogeneity).

2) P-as., Y(t, 2, 25)€[0, T]x R xRY, g(t, 2, +25) < g(t, 2,) + g(t, 23),
(sub-additive).
Then Jensen’s inequality of bivariate function for g-expectation holds, i.e.,
for any non negative variables (&,H)EL%' xL%p, and any semi-negative
definite bivariate function f(x, y): R xR* > R, if f(¢,n) e L%, then for
each t € [0, T], we have, P-a.s.,

eglf(& m)I 7] < fleglel 7l egln| 7).

Remark 1.3. A bivariate function f(x, y): R* xR" - R is semi-
negative definite means that it satisfies the following two conditions:

L5

(1) f(x, y) € C3(R* x R") and for each (x, y)e R* xR, %, o

0.
(2) for each (x,y)e R*"xR", the Hessian-matrix A(x, y)=

[an/ax2 02f | oxdy

62}‘/8 . 82f/6 5 J is semi-negative definite.
yox Y

2. Main Results

In this section, we always assume that the generator g satisfies (A1)
and (A3). Similar to the definitions in [7] and [6], we put forward the
following definition.

Definition 2.1. Let the generator g satisfy (Al) and (A3). Then we
say g 1s a super-homogeneous (resp., sub-homogeneous, homogeneous)
generator in (y, z) if g also satisfies the following condition: P-a.s., we have

V(t, Y, 2) € [O’ T] X R1+d’ VA € R’ g(t’ 7\)’, 7\'2) 2 }\‘g(t’ Y, z)(resp,, S; :)'

We say g is a positive-homogeneous generator in (y, z) if g also satisfies

the following condition: P-a.s., we have

V(¢ y, 2) € [0, T]x R'*? vi e RY, g(t, Ay, A2) = Agl(t, y, 2).
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We say g is a super-additive (resp., sub-additive, additive) generator in

(v, 2) if g also satisfies the following condition: P-a.s., V(¢, y;, z;) € [0, T]
« RI*9( =1, 2),
g(t, y1 +y9, 21 +29) 2 gt, 31, 21) + 8(¢, yg, 22) (vesp, <, =).
Remark 2.1. If g is a super-additive generator in (y, z), then P-a.s.,

for (¢, v1, y9, 2) € [0, T]x R1"1*¢ we have

g(t, X1s Z)_ g(t7 Y2, Z) 2 g(t7 Y1 — Y2, O) =0.

Thus g must not depend on y. Hence g is a super-additive (resp., sub-

additive) generator in (y, z) if and only if g does not depend on y and is a

super-additive (resp., sub-additive) generator in z.

Definition 2.2. Let the generator g satisfy (Al) and (A3). Then we
say the conditional g-expectation system is super-homogeneous (resp., sub

-homogeneous, homogeneous) if ¢ g[- | F;] satisfies the following condition:

V(g t) € L x [0, T], VA € R, Pas., eg[A&| F] > heg[g| 7] (resp., <, =).

We say the conditional g-expectation system is positive-homogeneous if

e[| F;] satisfies the following condition:

V(g t) € L x [0, T], VA € RY, P-as., e [ME| F;] = he,[E] F; ). @)

We say the conditional g-expectation system is super-additive (resp., sub-

additive, additive) if €4[-| ;] satisfies the following condition:
V(g;, t) e I x[0,T](i =1,2), P-as.,

8g[&l + §2|-7:t]2 8g[&l |-7:t]+ 8g[&2 |Ft](resp-’ 5, :)-

Remark 2.2. It is easy to prove that (2) is equivalent to the following
3):

V(g ¢) e LF x[0, T], Vi e R*, P-as., e,0&|F;]2 e g[g| F;] (resp.,<), (3)
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considering that
1 1
g DL )2 heg 23817, | 2 0 Lo 01 1) = 0051 7] (resp., 9)

The following Theorems 2.1-2.2 investigate some relationship
between the generator g of BSDE and the conditional g-expectation
system.

Theorem 2.1. Let the generator g satisfy (Al), (A3) and (A4). Then the
following two conditions are equivalent:

(1) g is a super-homogeneous (resp., sub-homogeneous, homogeneous,
positive-homogeneous) generator in (y, z).

(2) the conditional g-expectation system is super-homogeneous (resp.,
sub-homogeneous, homogeneous, positive-homogeneous).

Theorem 2.2. Let the generator g satisfy (Al), (A3) and (A4). Then the
following two conditions are equivalent:

(1) g does not depend on y and is a super-additive (resp., sub-additive,
additive) generator in z.

(2) the conditional g-expectation system is super-additive (resp., sub-
additive, additive).

Remark 2.3. (1) = (2) in Theorems 2.1-2.2 does not need the
condition (A4). (1) = (2) in Theorem 2.2 has been proved in [6].

The following Theorems 2.3-2.4 are the main results of this paper.

Theorem 2.3. Let the generator g satisfy (Al), (A3) and (A4). If
Jensen’s inequality for g-expectation on convex (resp., concave) function
holds in general, then g must not depend on y.

Theorem 2.4. Let the generator g satisfy (Al) and (A3). Then the
following conditions are equivalent:

(1) Jensen’s inequality of bivariate function for g-expectation holds.

(2) For any non negative variables (&1, &) € Lz x L% and any (t, ;) €
[0, T]xR*(i = 1, 2, 3),
eg[M& +Aglo — Az | Fy] < Megler | o]+ hoegléa | F] - A3, P-as.
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(3) For any non negative variables (¢, ) € L% x L% and any (t, 1) e
[0, T]x R*,

(1) egle —A|F] < ggl€l Fi] -2, P-as,
(i)  eg[r&| Fi] = regle| 7], P-as., (4)
(iii) 8g[§+n|}—t]gSg[m}—t]"‘ag[nu?t]’ P-as.

3. The Proof of Main Results

Lemma 3.1. Let the generator g satisfy (Al), (A3) and (A4). Then for
each L € R, the following two conditions are equivalent:

(1) P-a.s., V(t, y,2)e[0, T]x R*?, g(t, My, A2) > Ag(t, v, z) (resp., <, =).
@) V(& t) € L x[0, T], P-as., e,[Ae| F;] 2 ke [5] F;] (resp., <, =).

Proof. Only need to prove the case “>”, similarly we can prove the

remaining.

It is obvious when A = 0 considering (A3) and (b) of Proposition 1.1.
In the following we prove the case A # 0. The method of proof comes
from [1] and [7].

(1) = (2) For the given A € R and any & L%r, we can suppose that

(V> 2y )ue[o, 7] and (v15 20, )ue[t,T]’ respectively, be the unique solutions

of BSDE (1) and the following BSDE
T T
Yu = AE +J g(s, vs, 25)ds —J zg - dB,, u € [0, T (5)
u

u

Then we have

T T
Ay, = AE + J. rg(s, yg, 2g)ds — I Az, - dBq
u u

T T
= AE +I g(s, Ay, Azg)ds —I Azg - dBg, u € [0, T, (6)
u u

where

g(s, v, 2) = Ag(s, y/%, 2/0), (s, y, 2) € [0, T]x RI*<,
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We can prove that g satisfies the assumptions (A1) and (A2) when
s € [0, T]. Thus from the existence and uniqueness of solution of the

following BSDE (7), by (6), we can conclude that (Ay,, Az, )uE[O 7] is just

the square-integrable adapted solution (¥, Z, )ue[o 7] of BSDE (7):

T T
¥, = AE +J. (s, vg, 24)ds —I zg -dBg, u € [0, TY. (7
u

u
By the condition (1) and the definition of g, we can get that, P-a.s.,
8(s, Js» Z5) = 8(s, hys, hzg) 2 Ag(s, s, 25) = &(s, hys, Azg)

= g(s, ¥, 25), Vs € [0, T'].

Thus by Comparison theorem, comparing BSDE (5) with BSDE (7), we
can conclude that, for each ¢ € [0, T,

P-as., eg[Me| Fy] = yp 2 5 = hyy = hegle| Fil

(2) = (1) For the given A € R and each (¢, y, z) € [0, T) x R let

us choose a large enough n such that ¢ +1/n < T, and choose & = y + z

“(By11/n — By), which obviously & L%’. By the condition (2), we have,
P-a.s.,

eg[ME| Fr] > hegle| Fy ).
So we have, P-a.s.,

8g{k[y"'z'(Bt+1/n _Bt)]|~7:t}_7"y 2 k{gg[y"'z'(BHl/n _Bt)|~7:t]_y}- (8)

Due to Proposition 1.3, we know there exists a subsequence {n;};_; such

that

klglc}o nk{eg[)‘y +Az - (B)H—l/nk - Bt)|‘7:t] - }\Q’} = g(t’ Ay, XZ)> P-as.,

I}I—I)Iolo n’k{ag[y—‘rz : (Bt+1/nk _Bt)|ft]_y} = g(ty Y, 2)7 P—a.S.
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Coming back to (8), we have, P-a.s.,
8(t, Ly, h2) 2 hg(t, v, 2).

By (A4), we know that for each (y, z), the process t — g(¢, y, z) is left-

continuous in 7. Hence we have, P-a.s.,

g(T, Ay, Az) = lim g(T - &, Ay, A2)
e—0
> lim Ag(T -, y, z) = Ag(T, y, 2).
e—0
Thus by (A1) and (A4), we know that, P-a.s.,
Yt 3, 2) € [0, TIx R, gt Ay, X2) = Aglt, 3, 2).
The proof is complete.

Remark 3.1. (1) = (2) in Lemma 3.1 does not need the condition (A4).

Proof of Theorem 2.1. By Lemma 3.1, we immediately obtain
Theorem 2.1.

Proof of Theorem 2.2. Only need to prove the case “sub-additive” of
(2) = (1). The method of proof comes from [1] and [7].

(2) = (1) For the given (¢, v;, z;) € [0, T)x R (i =1, 2), let us
choose a large enough n such that ¢ +1/n < T, and choose §; = y; + z;
- (Bysyn — By) (i = 1, 2), which obviously &; e I%. Then by the condition
(2), we can get that, P-a.s.,

Sg[};l + };2 |-7:t] = Sg[al |-7:t]+3g[§2 |-7:t],

so we have, P-a.s.,

2 2
Sg{z [y +2 - (Bt+1/n - Bt)]j'—t} - Z Yi
i=1

i=1

2
< Z{Sg[yi +2; - (Bean — B Fel = w3
i1
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Thus similar to the proof of Lemma 3.1, making use of Proposition
1.3, (Al) and (A4), we can deduce that P-a.s., for (¢, y;, z;) € [0, T]

x R1*4(; = 1, 2), we have
g(t, y1 + ya, 21 +22) < g(t, 31, 21) + 8, 2, 22)-
Hence it follows that (1) holds by Remark 2.1.

Proof of Theorem 2.3. Only need to prove the case “convex

function”, similarly we can prove the remaining part of this theorem.

In fact, since Jensen’s inequality for g-expectation on convex function

holds in general, we know that for each & e L% and convex function ¢(x),

if @&) e LQT, then for each t € [0, T'], we have, P-a.s.,
eg[0(E)| Fi] = o(eglE] 7).

Thus for any given (¢, y, z) € [0, T') x R, let us pick a large enough n
such that ¢ +1/n < T, and choose & = y + z - (B,1/, — B;), and for any

given a € R, let ¢(x) = x + a, which obviously & e L%, o¢(x) is a convex

function and ¢(&) € L%. Then we can get that, P-a.s.,
eglé + al| Fi] = eglo(&)| F] > olegle| Fi]) = egle| 7]+ a
So we have, P-a.s.,
8g[y+2'(Bt+1/n - B)+alF]-(a+y)
> eg[y+ 2 (Byam — B F] -y

Thus similar to the proof of Lemma 3.1, making use of Proposition 1.3,
(Al) and (A4), we can deduce that P-a.s.,

Y(t, y, 2, a) € [0, TIx RY9 gt a+y, 2) > glt, y, 2).

Given (¢, z), let both y and a change arbitrarily. Then we can conclude

that the generator g must not depend on y.
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Remark 3.2. By the proof of this theorem, we know that when (A1),
(A3) and (A4) hold for the generator g, if for each ¢ € [0, T] and (&, a) €

I% xR, eglé+a|F] > eg[6| Fi]+ a (<), P-a.s., then g must not depend
on y.

Combining Proposition 1.4 and Theorem 2.3, we can obtain the

following corollary:

Corollary 3.1. Let g satisfy (Al), (A3) and (A4). Then the following

two conditions are equivalent:

(1) g does not depend on y and is a super-homogeneous (sub-

homogeneous) generator in z.

(2) Jensen’s inequality for g-expectation on convex (concave) function

holds in general.

Proof of Theorem 2.4. We can easily prove that (1) = (2) by choosing
the semi-negative bivariate functions f(x, ¥) = Aqx + L9y — A3. (2) = (3)
is clear by Remark 2.2. In the following, we prove that (3) = (1). The
approach of the following proof partly derives from [6]. Firstly, we prove
the following Proposition 3.1:

Proposition 3.1. Let g satisfy (Al) and (A3). If the condition (3) in
Theorem 2.4 holds, then for each t € [0, T] and n < L% and for each non

negative variable & e L%v,
egle+ | F]< e el F]+n
and for each t € [0, T] and any non negative variables & e L%v andmn € L%,

egE| 7] = meglel 7]

Proof. Given t€[0,T], let {A;}7"; be an F;-measurable partition of
Q (i.e., A; are disjoint, F, -measurable and UA; =Q) and let ; e R (i =1,
2, ..., m). From (c) of Proposition 1.1, (i), (iii) and (b) of Proposition 1.1, we

can deduce that for each non negative variable § e LZT,
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m
Sgli + z Al | Fy
i-1

= 3g|:zlAi(a + 7\'i)|-7:t
i=1

S RVEHIEYA

i=1

IA

D 14,leglel 7]+ 2]
i=1

m
egle| Fil+ D hily,.
i=1

Moreover, if A; >0 (i =1, 2, ..., m), then by (c) of Proposition 1.1 and (ii)

we also have

m m m
sg{z xilAiaft} = Y 1asglEI F] = D 1 ke 61 7]
i=1 =1 =1

In other words, for any non negative variable & e L%w and any simple

function n € L?,
8g[§+n|-7:t] 3 Sg[‘:|-7:t]+n

and for any non negative variable & e L%v and any non negative simple

function n € L?,
egE| Fi] = megle] 7]

Thus from the continuity of ¢ g[- | F;] in I* given by (d) of Proposition 1.1,
it follows that Proposition 3.1 is true.

Now, let us come back the proof of Theorem 2.4. Given a semi-
negative bivariate function f(x, y) e C2(R* xR*), let non negative
variables (¢, m) e L% x L% and f(¢, n) e L%. For each ¢ [0, T], let
(20, ¥0) = (egl&| F1], eg[n| F]), by (a) and (b) of Proposition 1.1, we
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know that (xg, y9) € R™ x RT. For the given t € [0, T] and any n € N,

we define

0
Qt,n = ﬂ%(’co, yO) +

%(XO’ yO) +|f(x0, yo)l < n}

From [6], we know that, P-a.s.,

ella, , F& WIF] < 5| o, , (0, 30)+ Lo, , L (o, 0) (& - %)
+1a,, L0, 30)(1- 3017 | ©)

By the definition of €, ,,, since %(xo, Y0)s %(xo, Y0)s f(xg, ¥9) are all

F; -measurable, we can conclude that
0 0 2
lg, , f(x0, y0) —1q,, %(Xm Yo)xo —1q, , %(xo, ¥0)Yo € Li.

Considering that &, n, g—i (xg, ¥o) and % (xg, ¥o) are all non negative, it

follows that by Proposition 3.1 and (iii), P-a.s.,

0 0
g 1Qtnf(x07yo)+19tn—f(xo,yo)(i—xo)ﬂgtn—f(xo,yo)(ﬂ—yo)|ft
’ M Ox Oy
1%} 0
<1g,  fxo, y0) —1q, , —f(xo, ¥o)¥o — 1o, , —f(xo, ¥0)Yo
’ I Ox Oy
0 0
+ Sg[lgm é(xo, ¥0)€ +1g, , %(xo, yo)nlft}
0 0
<1g,  flxo, ¥0) - 1q, , —f(xo, ¥0)xo —1lg, , —f(xo, ¥0)Y0
’ M Ox Oy

0 0
+ 5g|:1§2t’n %(Xoy yO)&‘ft:l + Sglith,n %(xo, yO)T”]'—t:l

=1g, , f(x0, Y0). (10)
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Combining (9) with (10), we can conclude that, P-a.s.,

eglla, , f& M F] < 1g, , (%0, 0)-

Then according to [6] again, we can know that, P-a.s.,
Sg[f((tw n)'ft] < f(ag[§|ft]7 8g[n|Ft])

Because that ¢ € [0, T] is any given, we know that Jensen’s inequality of
bivariate function for g-expectation holds.

Remark 3.3. Proposition 1.5 can be regarded as a corollary of
Theorem 2.4. In fact, by Theorems 2.1-2.2, we can prove that when (A1),
(A3) and (A4) hold for the generator g, g does not depend on y and is

sub-linear generator in z, which are the conditions of Proposition 1.5, if

and only if (4) holds for any variables (¢, ) € L% x L% and any (¢, 1) e
[0, T]xR*.

Corollary 3.2. Let the generator g satisfy (Al) and (A3), and g do not
depend on y. Then the following conditions are equivalent:

(1) Jensen’s inequality of bivariate function for g-expectation holds.

(2) For any non negative variables (€, m) € L% x L% and any (¢, 1)

[0, T]x R™,

{sg[kﬂ}"t] = hegl€| 7], P-as.,
egl& + | F] < egle] Frl+ eg[n| 7], P-as.

Remark 3.4. Proposition 1.5 can also be regarded as a corollary of
Corollary 3.2.
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