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Abstract

We introduce the semicircular normal (SCN) family of distributions for

observations on the half-circle and for axial data. Suitably transformed,

it can also be used for fully circular data. For small angles, the SCN

and the normal distribution are equivalent and there is a limiting

relationship between the SCN and the von Mises distribution. We also

develop a bivariate version of the SCN. Inference for the SCN is

straightforward, using method of moments, maximum likelihood, or

Bayesian estimators. We illustrate the applicability of the SCN with

some examples.
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1. Introduction

Suppose a herpetologist observes sea turtles emerging from the surf
to locate nesting sites, where the directions taken by the turtles are
confined to a 180° arc. Similarly, an ornithologist observing the departure
of sea birds form the shear face of a cliff need only record angles from

within [ ]π,0  radians. A full-circular distribution, such as the von Mises,

see for example, Jammalamadaka and SenGupta [3], is not needed in
situations such as these. We refer to observations in these cases as

semicircular data. In this paper, we introduce a new distribution for

semicircular data. The new distribution is constructed by projecting the
support of a normal density onto a semicircle. We shall call this the

semicircular normal (SCN) family of distributions. This new family of

distributions is simpler than other families for angular data, but no less
flexible in application. Indeed, the SCN family can be extended to
bimodal forms and to the full circle. Furthermore, it is particularly adept
as a model for axial data.

2. The Semicircular Normal Distribution

The semicircular normal (SCN) distribution is obtained by projecting

a normal distribution over a semicircular segment. In this section, we
derive the density and consider its properties.

Let x have a normal distribution with mean zero and variance .2σ
For a positive real number r, define the angle θ by

( ) .arctan 
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r
xxg

Hence ( ) ( ).tan1 θ=θ= − rgx  It follows that ( )θ
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2secr
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of θ is

( ) [ ( )]
θ

θ=θ −
d
dxgff 1

( ) ( )
.,,

22
,

2

tan
expsec

2 2

22
2 +∈σπ<θ<π−









σ

θ−θ
πσ

= Rr
rr



w
w

w
.p

ph
m

j.c
om

THE SEMI-CIRCULAR NORMAL DISTRIBUTION 209

Let .rσ=ϕ  Then, allowing for negative angles, we have

( ) ( ) ( )
.,

22
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2

tan
expsec
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2 +∈ϕπ<θ<π−









ϕ

θ−θ
πϕ

=θ Rf (1)

We refer to (1) as the semicircular normal (SCN) density and write

( ).,0SCN~ ϕθ  Notice that (1) is not defined at 2π±=θ  as ( ) 02cos =π

and therefore ( )2sec2 π  is not defined. However, ( ) .0lim
2

=θ
π→θ

f  More

generally, we introduce the parameter µ as the location parameter for the

SCN relative to the horizontal axis and write the density as
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It is straightforward to show that the cumulative distribution for θ is

( ) ( ) ,tan1




 µ−α
ϕ

Φ=αF

where Φ is the standard normal CDF. Equivalently, ( ) ( )erfF 21=α

[ ( ) ],2tan ϕµ−α×  where erf is the error function defined by ( ) =xerf

( )∫ −π
x u due
0

.2
2

 The function ( )xerf  differs from the CDF of a normal

distribution only by a multiplicative constant. See for example, Spiegel

[5, p. 183].

3. Inference for the SCN

We now consider estimation of the parameters of the SCN. Our main

interest is Bayesian methodology, but we first derive maximum likelihood

estimators for µ and ϕ since the MLE. Suppose that we have a random

sample, ,...,,, 21 nθθθ  from a SCN with pdf (1). Let ( )....,,1 nθθ=θ

Then the log-likelihood is

( ) ( ) ( )[ ] ( )∑ ∑
= =

µ−θ
ϕ

−µ−θ−ϕ−=|ϕµ
n

i

n

i
iinl
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We find the MLE for µ assuming ϕ is known. From (2), the

log-likelihood equation for µ is

( ) ( ) ( )∑ ∑
= =

=µ−θµ−θ
ϕ

+µ−θ−
n

i

n

i
iii

1 1

2
2

.0sectan1tan2 (3)

There is no closed form solution for µ in (3) so we must solve numerically

to obtain the maximum likelihood estimator. However, in the special case

of small ,µ−θi  simplifying assumptions can be made using small angle

approximations. In that case

( ) µ−θ≈µ−θ iitan (4)

and

( ) .1sec2 ≈µ−θi (5)

Substituting (4) and (5) into (3), we have
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or equivalently, we have for small ( )∑
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2

,021,  for

.212 ≠ϕ  This yields the small angle maximum likelihood estimator

∑
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Now suppose µ is known and ϕ is unknown. We have
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Setting this equation to 0 in order to find the maximum we obtain
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Obtaining the positive solution for ϕ we have the estimator

( ) ,tan1ˆ
2
1

1

2












µ−θ=ϕ ∑

=

n

i
in

(6)

assuming µ is known.

When both parameters of the SCN distribution, ϕ and µ are unknown,

the equations for the MLE have to be solved iteratively. Although it

does not guarantee a global maximum in general, alternating between

equations (3) and (6) in order to maximize the likelihood equation has

provided reasonable results in our experience. A good initial value for µ

can be obtained using ∑
=
θ≈µ

n

i
in 1
,1ˆ  even when the angles are not small,

and convergence is typically fast.

The large sample variance of the maximum likelihood estimators can

be approximated by inverting the negative of the Hessian matrix. The

required second derivatives are
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Once the variance is approximated, large sample confidence intervals can

be constructed.

We next consider Bayesian inferential methods for the SCN

distribution. We begin with some simple examples using single
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observations and one parameter known. Ultimately we provide a

Bayesian approach to inference or the full model. Jammalamadaka and

SenGupta [3, p. 278] have noted that “Attempts at Bayesian inference for

circular data have not been as successful on the analytical front as they

have been in the linear case, partly for lack of nice conjugate priors in the

general case”. As we shall see, the use of Markov chain Monte Carlo

methods alleviates this difficulty.

For our Bayesian analysis it is convenient to reparameterize the

likelihood. In place of ϕ we substitute .1 2ϕ=κ  The SCN density is then

( ) ( )[ ] ( )[ ] ,tan
2

expsec
2

, 22
21







 µ−θκ−µ−θ

π
κ=κµ|θf

.,
22

+∈ϕµ+π<θ<µ+π− R

We write ( ).,SCN~ κµθ  Let ( )nθθ= ...,,1θ  be n iid observations from a

( )κµ,SCN  distribution.

It is often desirable to use a prior structure that it is dominated by

the likelihood in the posterior. Such “non-informative” priors are

convenient when little or no prior information is available. For example,

we may use ( ) ( ) ,2121 π=κ=µ pp  assuming µ and κ are independent.

Then we have the posterior

( ) ( ) ( ) ( )κµ|κµ∝|κµ 21,, pplp θθ

( )
( ) ( )∏ ∑

= = 










µ−θκ−µ−θκ

π
=

n

i

n

i
ii

n

1 1

222
2

,tan
2

expsec
2

1 (7)

which is of course proportional to the likelihood. We can maximize either

(7) or the likelihood to obtain the posterior mode using the same

approach as finding maximum likelihood estimators in the previous

section as a point estimator for µ and κ.

An informative prior structure assuming prior independence of µ

and κ can be constructed as follows. For µ consider the ( )νδ,SCN  with
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density

( ) ( )[ ] ( )[ ] .tan
2

expsec
2

22
21

1 





 δ−µν−δ−µ

π
ν=µp

This choice affords a fairly flexible family of priors for µ. For κ we use a

gamma with parameters α, β:

 ( ) ( ) .1
2

βκ−−α
α

κ
αΓ

β=κ ep

We choose the gamma prior because it has the advantage of producing a

gamma posterior for κ as well. More details about gamma prior elicitation

is discussed by Martz and Waller [4, pp. 318-324]. Thus the posterior is
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Again, posterior modes are straightforward to find.

To obtain the full posterior we employ MCMC methods using the

software package Winbugs 1.4 (Imperial College and Medical Research

Council, “Winbugs 1.4”, 1996-2003). We shall illustrate the use of these

methods in the examples.

4. Example

For this example we consider an axial statistical analysis using the
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von Mises distribution similar to that in Adams [1]. His analysis supports

the conclusion that spindles do not rotate randomly, rather, they spend

the most of their time aligned parallel or antiparallel to the direction in

which they will later enter anaphase and undergo cell division. For more

details see Adams [1]. Here we apply our methods to data generated to

resemble that described by Adams. We compare the results obtained by

using the SCN with those using the von Mises distribution.

Twenty four observations were generated with S-Plus and the

CircStats package provided by Jammalamadaka and Sen Gupta [3]. The

S-Plus code used to generate the data is available from the first author.

For the Bayesian analysis, non-informative priors for µ and κ were used.

For the MCMC algorithm, inferences were based on five chains each with

5,000 burn in iterations followed by 50,000 sample iterations. The

Gelman-Rubin statistic and trace plots were also used to assess

convergence. No problems with convergence were apparent. Posterior

summaries of this Bayesian analysis using the SCN are provided in Table

1. The posterior modes of µ and κ are found iteratively using the closed

form derivatives of the full posterior.

A maximum likelihood analysis of the SCN model parameters was

performed as well. The results are summarized in Table 2. Note the close

agreement between the MLEs and the point estimates from the Bayesian

analysis.

Table 1. Posterior summaries using a Gibbs sampler for the SCN model

Quantity Mean Standard

Deviation

Lower limit

CI 2.5%

Upper Limit

CI 97.5%

µ 179.3° 3.33° 172.8° 185.9°

κ 10.54 3.0 5.49 17.19

1+θn 179.3° 17.2° 146.3° 212.4°
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Table 2. MLE summaries for the SCN model. The corresponding

confidence intervals are indicated below

Quantity Mode Standard Error 2.5% 97.5%

µ (degrees) 179.4° 3.32° 172.7° 185.9°

κ 10.2 3.0 5.5 17.2

5. Conclusion

The SCN distribution is a good alternative to the von Mises

distribution as it is able to accommodate axial data without the need of

any transformation, i.e., there is no need to double the angles module

360. Furthermore, computations involving the SCN do not require use of

Bessel functions. In our experience, inference based on the SCN differs

little from that based on the von Mises when the data are highly

concentrated around small angles. However, as variability in the data

increases, or the data do not concentrate around small angles, the two

models can differ markedly.

In this paper the semicircular normal (SCN) family of distributions is

introduced. Ideally suited for observations on the half-circle and for axial

data, it can also be used to analyze fully circular data. A bivariate version

is also derived. Moment, maximum likelihood and Bayesian estimators

are derived and all can be evaluated using standard software. Potential

areas of future work are goodness of fit tests, allowing for covariates, and

multivariate versions beyond the bivariate model derived in this paper.
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