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Abstract

Wave nature of heat propagation in a thin film subjected to heating and
cooling on either side is investigated by solving the hyperbolic heat
conduction equation. Analysis expressions for the temperature and heat
flux distributions and computation results for the time history of heat
transfer behavior are obtained. The results show that in transient heat
conduction, a heat pulse is transported as wave, which is attenuated
in the film, and non-Fourier heat conduction is extremely significant
within a certain range of film thickness and time.

2000 Mathematics Subject Classification: 35, 58.

Keywords and phrases: thermal propagation, heat conduction, method of separation of
variables.

Received October 30, 2006
© 2006 Pushpa Publishing House



354 SHUICHI TORII, WEN-JEI YANG and ZHI-MING TAN

Nomenclature
a separation constant, a; = in/[xg/(xC)] and i =1, 2, ...
A a function of dimensionless time [
B a function of dimensionless distance &
C thermal wave speed

Cp specific heat
K thermal conductivity
q heat flux

m heat flux defined as q,, = KT, /x,

T temperature

To internal temperature

T imposed wall temperature
t time

X distance

X half thickness of the film

Greek letters

o thermal diffusivity

B dimensionless time defined as t/(21)

5 dimensionless distance defined as x/(21C)
p density

T thermal relaxation time

0 dimensionless temperature defined as T} (x — xq)/(Tox0)
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1. Introduction

In the classical theory of diffusion, Fourier’s law serves as the
constitutive equation relating heat flux to the temperature gradient. In
one-dimensional heat conduction, it can be expressed as
0T (x, t)

ox

Here, g denotes the heat flux; T is temperature; x is distance from the left

Q(x7 t) =-K (1)

side wall of the film; ¢ is time and K is thermal conductivity of the
medium. According to this law, if the material conducting heat is
subjected to a thermal disturbance, then the effect will be felt
instantaneously in all parts of the conducting medium. In other words,
heat propagates at an infinite speed. This phenomenon is physically
anomalous and can be remedied through the introduction of a hyperbolic
equation based on a relaxation model for heat conduction that accounts
for a finite thermal propagation speed.

In most practical heat transfer applications, the effect of a finite
speed of propagation is negligible since materials in which heat
propagates are macroscopic in dimension such that Fourier’s law is
accurate and appropriate. However, this law noticeably breaks down in
situations involving extremely short time response, extremely high-rate
change of temperature of heat flux, temperature approaching absolute
zero and 1initial conditions involving the time rate of change of
temperature, because the wave nature of heat propagation becomes
dominant [5, 6, 12, 16]. Several issues of basic scientific interest arise in
cases such as laser penetration and welding, explosive bonding, electrical
discharge machining, and heating and cooling of micro-electronic
elements involving a duration time of a nanosecond or ever picosecond in
which energy is absorbed within a distance of microns from the surface.
For example, the issue of energy transfer into a lattice and the resulting
temperature in the lattice during such a short period of time and over
such a tiny region is of fundamental importance but remains a matter of
controversy [2]. It is apparent that a more accurate constitutive law
describing the nature of heat conduction needs to be introduced.

Recently, considerable interest has been generated toward the
hyperbolic heat conduction (HHC) equation and its potential applications
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in engineering and technology. A comprehensive survey of the pertinent
literature is available in [19]. Theoretical predictions are available in the
literature for some specific cases. Some researchers dealt with wave
characteristics and finite propagation speed in transient heat transfer
conduction [3, 8, 10, 12, 14, 16, 26-28]. Several analytical and numerical
solutions of the HHC equation have been presented in the literature.
Carey and Tsai [4] analyzed a propagating heat wave reflected at a
boundary, in which the numerical methods based on a variation
formulation of the problem and the Galerkin finite-element method are
employed. Glass et al. [9] used a numerical technique based on
MacCormack’s predictor-corrector scheme to solve the HHC equation. As
the other method, Frankel et al. [7] developed a general three-
dimensional constant property heat flux formulation based on the HHC
approximation. They reported that the flux-formulation is more
convenient to solve problems involving flux-specified boundary
conditions. The hyperbolic heat transfer was used by Baumeister and
Hamill [1] to study the propagation of a temperature pulse in a semi-
infinite medium, and by Vick and Ozisik [26] and Ozisik and Vick [18] to
study the propagation of a heat pulse. Using the parabolic and hyperbolic
models of heat conduction, Kar et al. [11] studied heat conduction due to
short-pulse heating for various boundary conditions. They reported that
the predicted temperature distribution is substantially affected by the
temperature dependent thermal properties. Lewandowska [13] also dealt
with the parabolic and hyperbolic heat conduction in the one-
dimensional, semi-infinite body with the insulated boundary and
discussed different time characteristics of the heat source capacity. Size
effects on nonequilibrium laser heating of metal films were investigated
by Qin and Tien [20]. Tan and Yang [22, 23] presented theoretical
predictions for the propagation of heat from a step change in temperature
on both side walls of a thin film and heat transfer during asymmetrical
collision of thermal waves in a thin film. Results were obtained for the
time history of propagation process, magnitude and shape of thermal
waves and the range of film thickness and duration time. The similar
study was carried out by Torii and Yang [24, 25], who employed a
numerical technique based on MacCormack’s predictor-corrector scheme

to solve the non-Fourier, hyperbolic heat conduction equation.
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This paper deals with the wave behavior during transient heat
conduction in a very thin film (solid plate) subject to heating and cooling
on either side. Analytical solutions are obtained by means of the method
of separation of variables to solve the non-Fourier, hyperbolic-type heat

conduction equation.
2. Formulation of Problem and Solutions

The thermal wave model allows a time lag between the heat flux and
the temperature gradient. In one-dimensional heat conduction, this
special feature can be illustrated mathematically by the following
equation:

0T (x, t)

q(x,t+t):—KT. 2)

Here, t denotes the relaxation time, an intrinsic thermal property of the
medium, T = (x/C2, where C is the speed of “second sound” (thermal

shock wave) and o represents the thermal diffusivity of the medium. The
thermal wave speed C becomes finite for T > 0. As t approaches zero, the
thermal wave speed C approaches infinity and equation (2) reduces to the

classical parabolic heat conduction equation.

Assuming that the relaxation time t is small, the second and the

higher order terms can be neglected, hence equation (2) takes the form
‘C—+q+K—x:0. (3)

In one-dimensional heat conduction, the conservation of energy is given
by
oT |, 0q _ 0

pc, — +

4
P ot ox ()

Here, p and c, denote the density and specific heat of the medium,

p

respectively.

A combination of equations (3) and (4) yields the hyperbolic
conduction equation as
2 2
r—aT+£=a—aT. 5)
o2 ot ox®
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Consider a very thin film with a thickness of 2x; maintained at a

uniform, initial temperature 7. A heating temperature 77 and a cooling

temperature -7; are suddenly imposed on the walls at x =0 and

x = 2xg, respectively. In other words, one-side wall is raised from 7}, by

Ty + 17 and the other wall is cooled from 7T,y by T — 77. Thus the initial

and boundary conditions are

T =T, at £t =0, 0<ux < 2xg,
oT/ox =0 at t=0, 0<x < 2x,
T=Ty+T; at t>0, x=0,
T=Ty-T; at t>0, x = 2x.

With the introduction of the following dimensionless quantities

(T = Ty)xg + Ti(x — x9)

(B, 8) = ,
Toxg
t
B - 2__[’
x
5= X
2tC”’

equations (5) and (9) are reduced to

2 2
é_g4_2§9::élg,
P B 5

6=T1(x—x0)/(T0x0) at BZO, O<8<.’)C0/(TC),

26/0p = 0 at B=0, 0<5<xy/(C),
0=0 at >0, 8=0,
0=0 at B>0, 0=xq/(zC).

(6
(7
®
(€)

(10)

(11
(12)
(13)

(14)

The method of separation of variables is applied to the heat conduction

(10) using
6(B, 8) = A(B)B(3).

(15)
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One obtains the general solutions as
0 = [Dcos(BVa® —1) + E sin(BVa? — 1)][H cos(ad) + o sin(ad)]e P

at a > 1, (16)

0= (Feﬁﬁ + Ge‘Bm)[H cos(ad) + o sin(ad)]e P

at a < 1. amn

Here, a 1s a constant and D, E, F, G, H and J are the coefficients to be
determined by the initial and boundary conditions. For the sake of
brevity, the intermediate steps of derivation are omitted here. The
general solutions thus obtained are recast in the dimensional expression

for the temperature time history as

0

0=-> 2 [(i;,g +1] [COS(B\/G? -1)

i=1

+ %Sin(wa? - 1)](3_B sin(@;8) at x4/(zC) < m, (18)
a; — 1
int(ﬁ_oc*%J T[(=1) +1]| y1-a? +1 pyf1-a?
6=- Z 1 { i A

inT, oo

—a? -1 _gli_g2
+M6 Pyl-a; ]e_ﬁ sin(q;d)

i=1

l—ai2

. L;)u[@ e

" % sin(Bya? - 1)]eB sin(a;8) at x0/(tC) > (i - D)z (19)
a; — 1

Here, a; = in/[x;/(xC)] and i is an integer (1, 2, ...).
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Equation (3) is solved for the time history of heat flux as

Lo L
q(x, t) = —% e T ~J.0 [e’ ~%]dt. (20)

According to this equation, the heat flux ¢ at time ¢ depends on the
entire time history ¢ = 0 to ¢ during which temperature gradient is
established, rather than on the point value of temperature gradient at
time ¢ as in the case of simple diffusion given by equation (1).

A substitution of equations (18) and (19) into equation (20) yields

+ iwe{s sin(Bya? —1)cos(a;8) at xy/(xC) < m, (21)

int
—1y h-a2 g f1-a2
+ M(J’ 170 NI ) 0B cog(;8)
1=1 Towll—aiz

+ N w e_ﬁ Sin(BﬂaiZ — l)COS(aiS)
iint(zx—o lj Tovai -1

an+2

at x¢/(xC) > (i - 1)m. (22)
3. Results and Discussion

Analytical expressions and computation results are obtained which
display the unusual nature of hyperbolic heat conduction in the films
with different values of x,/(tC). For convenience in analysis and
computation, a set of 77 = 7|, is selected to demonstrate heat transfer

characteristics resulting from temperature changes of heating and cooling
on either side of a thin film.
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Figures 1 to 3 show the time history of temperature [(T - 7,)/T;] in
the film having x,/(zC) of 1, 3, and 10, respectively. One can see that the

relaxation behavior in thermal wave induces many phenomena which
cannot be described by the classical diffusion model. Figure 1 is prepared
to illustrate in detail the propagation process of thermal waves in a film
with the value of xy/(tC) being 1. Clearly, the same as other wave

phenomena, sharp wave-fronts exist in the thermal wave propagation
while the temperature levels decrease when the thermal waves penetrate
into the medium. At B = 0, the temperature in the film is uniform and

equals to its initial temperature 7T [namely (T -7,)/T; = 0], and
temperature of 77 and -7; are suddenly imposed on either side of the

film. The temperature distribution in the film is expressed by curve A1’'1B
at this moment. Then, two wave-fronts appear and advance towards the
center in the physical domain which separates the heat affected zone
from the thermally undisturbed zone. Across the wave-fronts, the
temperature presents a finite jump. At B = 0.5, thermal wave-fronts

meet at the center of the film with a temperature distribution curve
A4’4B in Figure 1(a). After the wave-fronts from two sides meet at the
center of the film, reverse thermal wave-fronts occur and travel towards
side walls of the film (see Figure 1b). The temperature undergoes a
significant decrease near the left side of the center and a significant
increase near the right of the center, resulting in a constant temperature

of T =T, at the center. After thermal wave-fronts are reflected from the

boundaries, the pattern is continued in Figure 1(c) with smaller wave-
fronts. By several times of collision, reflection and continuous attenuation
of the thermal waves as they propagate back and forth between the two
boundaries, the wave-fronts become weak and the results predicted by
the wave theory collapse onto those predicted by the diffusion model at
B = 5.0 and thereafter.

Similarly, one can see in Figures 2 and 3 that heating and cooling on
either side of a film gives rise to the propagation of two severe thermal
wave-fronts in the film at a finite velocity. Each of these wave-fronts
decays exponentially with time and dissipates energy along its path by
diffusion. One notices an undisturbed region ¢/(21) < 8§ < (2x — Ct)/(21C)
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of no temperature change when the dimensionless time B is less than
x0/(2tC). The local temperatures at locations & =¢/(2t) and & =

(2xg — Ct)/(2tC) exhibit a step discontinuity similar to that of semi-
infinite body problem [1, 21].

The present analytical solution predicts the existence of thermal
waves in a very thin film and exhibits the propagation process of thermal
waves, the magnitude and shape of thermal waves, and the regularity of
the thermal wave decaying process in the films with different values of
x0/(2tC). Such behavior is characteristics of a thermal system with a

relaxation or start up time unseen in the classical linear or nonlinear
diffusion theory. It is seen in each figure that the peak of thermal wave-
fronts from two sides of the film decay exponentially with time up to
B =5 (namely ¢ = 10t). And at the same time, it is also found that the

non-Fourier effect is far more significant in a system with a larger
relaxation time t. For example, larger temperature waves can be seen in
a film with x/(zC) of unity in Figure 1. However, in a film with x/(zC)

=10, wave-fronts are too weak as they approach the symmetrical center

to produce temperature waves and reverse thermal waves. It behaves
like diffusion domination. For t = 0, equation (19) is reduced to

\ in ) ot
Ty (xg — OOZT—lll_(7)_2.'
X0 — 1218 2 X0
which is the solution of the diffusion mechanism.
Figures 1 to 3 reveal that the thermal relaxation time t plays a
primary role in deciding a domain to be wave dominating or diffusion
dominating. Several investigations estimated the magnitude of thermal

relaxation time t to range from 10 %ec for gases at standard conditions

to 10 Msec for metals [15] with that for liquids [17] and insulators [6]

falling within this range. With t known, one can estimate the range of
film thickness within which heat propagates as a wave.

Figures 4 to 6 show the time history of heat flux q/q,, at different

positions in the films with x(/(tC) = 1, 8, and 10, respectively. It is seen
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that the absolute values of heat flux at the side wall (5 = 0) increase

instantly from zero to a maximum upon an introduction of the transient

followed by a decrease with time. The maximum value of ¢/q,, at
B = 0 + is inversely proportional to the relaxation time, giving the values
of 0.96, 2.88 and 9.6 at the left side wall of the films with xy/(zC) =1, 3,

and 10, respectively. As the relaxation time t approaches zero, the wall
heat flux approaches infinite, in accordance with the parabolic heat
conduction theory. Heat flux at the center of the film (8§ = 0.5) does not

occur until thermal wave-fronts from both sides of the film meet at the
center. A thermal shock wave is induced at a certain position in the film
when the wave-front arrives at and therefore results in a significant
increase in temperature at this position.

It is of interest to note in Figure 4 that the first thermal shock wave
in curve 1 occurs at an instant of B = ¢/(21) = 1, corresponding to

(24)

Since 2x; represents the film thickness, one can use the equation to

determine the speed of “second sound” C in the film, by measuring the
time interval ¢ followed by evaluating the relaxation time of medium
using the expression

2
L R o 2 (25)

c? 4x§ .
4. Conclusion

Heat wave and hyperbolic heat transfer phenomena have been
theoretically studied in a very thin film subjected to heating and cooling
on either side, using the method of separation of variables. Results have
been obtained for the propagation process, magnitude and shape of
thermal waves and the range of film thickness and duration time of

thermal wave propagation.

It is revealed that thermal waves appear only when tC is of the same
order as or larger than one half the film thickness, namely xq/(xC) < 10.

The smaller the value of x;/(tC), the more pronounced the temperature
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waves. The criterion for the occurrence of thermal shock waves in a thin

film is for the film thickness to be 2x, < 201C = 20(ta)’.

Wall heat flux undergoes a sharp change at an introduction of
transient and the heat flux at a certain position has a step change when

the wave-front arrives. After a very short period of time (B > 5),

temperature waves disappear and a uniform heat flux is established
throughout the film. The shorter the thermal relaxation time, the larger
the maximum heat flux at zero time. As the thermal relaxation time
approaches zero, the maximum heat flux approaches infinite in

accordance with the parabolic heat conduction theory.
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-1
(T-TIT,

Figure 1. Instantaneous temperature distributions in the film at
x9/71C=1. 1. =0, 2. B=0.1, 3. =0.3, 4. B=0.5, 5. B = 0.6,
6.=087.p=1.0,8. p=1.25 9. p=1.5, 10. B = 5.0.
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(T-T)/T,

Figure 2. Instantaneous temperature distributions in the film at
x9/tC =3. 1. B=0.00, 2. B=0.75, 3. B=1.50, 4. B = 2.00,
5. B = 5.00.

(T-To)T,

-0.%

-1

Figure 3. Instantaneous temperature distributions in the film at
x9/tC =10. 1. B=0.0, 2. B=20, 3. B=50 4. B=1.0,
5. B =10.0.
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1 2 1 1 5 &
B

Figure 4. Time history of heat flux in the films at x/tC = 1.
1. 6 = 0.00, 2. 6 = 0.25, 3. 6 = 0.50.

¥

a 2 4 & 8 [

Figure 5. Time history of heat flux in the films at x/tC = 3.
1. 8 = 0.00, 2. 8 = 0.75, 3. 3 = 1.50.



PROPAGATION OF THERMAL WAVES IN A THIN FILM ... 369

0'q,

& 5 1o 15

ﬂlﬂ

Figure 6. Time history of heat flux in the films at x;/tC = 10.
1.8 =0.0, 2. 8 =25, 3. 8 =5.0.



