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Abstract

In nonparametric models or semi-parametric models, the estimates of
unknown mean functions or condition mean of unknown functions are
always considered either under independent data or under dependent
data. In this paper, under mild conditions we give a solution for this
problem and uniform coverage rates of nonparametric Kernel estimates
under mixing dependent data.

1. Introduction

In the case of studying the nonparametric model m(x) = E(Y | X = x)
with unknown mean function m(x) for statistics analysis, the estimates

of m(x) are always considered; and the estimates of m(x, 0) are always
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considered in studying the semi-parameter model m(x, 0) = E(Y | X = x)
with unknown mean function m(x, 0) for estimating 6 and statistics
analysis. Generally, suppose that G(z, 0) is a known function up to 0,
where z = (y, x) and 0 is a parameter. To estimate 0, or some function of
conditional mean of G(Z, 0) under X, the estimate of E(G(Z, 0)| X = x)
is necessary. So the estimate of E(G(Z, 0)| X = x) is important to study

nonparametric and semi-parametric models for statistics analysis. The

above problem can be summarized as the model,

m(x, 0) = E(G(Z, 0)| X = x), (1)
where G(Z, 0) is a measurable known function: Zx® - R, Z=(Y, X) e Z
= (R, X), X has a compact subset in R®, 8 € ©®, and O is a compact subset

in R’. In this paper we consider the estimate of m(x,0) under the case

where the sample is a-mixing dependent.
2. Estimation and Main Result

Suppose that {Z;, ..., Z,,} is from the model (1), and f(x) is the

marginal density of an s-dimensional random variable X. Define the
estimate of f(x) as

u 1 & X, —x
flo) = thK[ " J @)

nhy =1
where K(u) is a Kernel function, A, is a bandwidth, and A, — 0 as

n — oo, f(x) is called a Kernel estimate of f(x).

Let g(x, 0) = m(x, 0)f(x). Then define the Kernel estimate of g(x, 0)

]. 3)

Furthermore, the Kernel estimate of m(x, 0) is defined as

as

X;

P
P

n
N 1
0 = 1> 6z, 0]

m(x, 0) = &(x, 0)/f(x). (4)
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Conditions:

C1. {Z,} is a-mixing dependent strictly stationary random sequence

with the mixing coefficient a(n) satisfying Z ol j)é/ (2+8) o, where § is
=1

a positive number;

C2. E[G(Z, 0)| X = x] has a continuous oJ-th derivative with respect
to x, and these derivatives are uniformly bounded in X x ®, and the
2 + & order moment of G(Z, 0) is bounded, where (J > 2).

C3. There are two positive numbers c¢; and ¢y such that

¢; € f(x) < ¢y and f(x) has a continuous J-th derivative.

C4. K(u) is a continuous symmetrical probability density function

with bounded compact support and </ order.
C5. h, — 0, nh2 — o, as n — .
Lemma 1. Suppose that conditions C1-C5 hold. Then

sup | Elg(x, 0)] - g(x, 0)] = O(h ). ()

(x, 8)eXx

Lemma 2. Suppose that conditions C1-C5 hold. Then, for V0 € 0,
sup| &(x, 0) - E[&(x, 0)]| = 0, (n 2h,*). ®)
xeX

Theorem 1. Suppose that conditions C1-C5 hold. Then, for V6 € 0,

sup| &(x, 0) - g(x, 0)| = O, (k7 +n ?h"). )
xeX

Corollary 1. Suppose that conditions C1-C5 hold. Then

sup | ]?(x)— flx)| = Op(h;z] + n_l/zh,;s). (8)
xeX

Theorem 2. Suppose that conditions C1-C5 hold. Then, for V0 € 0,

sup | i(x, 0) — m(x, 8)| = O, (k) +n~V2h,®). 9)
xeX
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Remark. From Theorem 1, Corollary 1 and Theorem 2, we can see

that the uniform coverage rate of g(x, 0)f(x) or m(x, 0) has two parts.

The first part is the bias Op(h;{ ), which depends on the order of the
Kernel function K(u), and the smooth degree of f(x). The higher the
order of the Kernel and the smooth degree of f(x) are, the faster the
coverage rate 1s, otherwise the slower the coverage rate is. The second
part is Op(nfl/ 2h,;s), which depends on the dimensionality of x. The

higher it is, the slower the coverage rate is, which is called curse of
dimensionality. Since the B-mixing dependent and y-mixing dependent
are two special cases of the o-mixing dependent. So the above results
hold in the case where the sample is B-mixing dependent or y-mixing
dependent.

3. Proof

Proof of Lemma 1. Since {Z;} is identical distribution,

E[4(x, 0)]- g(x. 0) = A" E[G(Z, 0) K (b (X —x))] - m(x, 0)f ()
= 1y [ EIG(2,0) X = 1)Ky (¢ =) [ dt = m(x, 0)F(x).
Let
w=(t-x)h,
Then
Elé(x. 0)]- (. 0)

= IE(G(Z, 0)| X = x +uh,)K(u)f(x + uh,)du — m(x, 0)f(x).

By using Taylor’s expansions in E(G(Z, 0)| X = x + uh,) and f(x + uh,,)

at x, and conditions C2-C4, we have

sup | E[g(x9 9)] - g(x’ e)l = O(hr{)
(x, 0)eXx0
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Proof of Lemma 2. Let o) = Iexp{it’u}K(u)du be a Fourier

transformation of K(u), and v =¢/h,,. Then, for any 6 € ©, we have

E[i"é%é | &(x, 0) - E((x, 0))[]

n

X. - X —
= (k) 'E sup Z(G(Zj, O)K( fhn xj—E(G(Zj’ Q)K[ Jhn xmu

Jj=1

< (nhi) L E| sup Zn:[G(Zj, O)I o(t) exp[Wjdt

_xeX = n

- E[G(Zj, O)I o(t) exp[itl(X}i;x)J dtD H

n

t'X
< (nhSY'E !

> (G(zj, o) (p(t)exp( - Jdt

Aoof o]

n

3 (G(Z 5 0) exp(it};ij

1 "

- E(G(Z i 0) exp[it:jj D]
n_li [G(Z;, 8)exp(iv'X ;) — E(G(Z], 6) exp(iv'X))]
=

< [o®) nr}) " E

dt

- I o(h,v)E dv. (10)

Let

Z [G(Z;, B)expl(iv'X ;) - E(G(Z;, 8)exp(iv'X ;))
j=1

A=n'E
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Then
A = n ' E[G(Z,, 0)exp(iv'X;) - E(G(Z;, 0)exp(iv'X; )]

+ n_QZ E[G(Z;, 8)exp(iv'X ;)G(Z},, 6)exp(iv'X},)
Jj*k

- E(G(Z;, 0)exp(iv'X ;) E(G(Z},, 0)exp(iv'X},))]

-1

M, My o .S

<=Ly —Za(z)g+5,
n noi=

which implies A% = O(n"!), where M; and M, are two positive

numbers. Furthermore,
A = O(nV?). (11)
By Replacing (10) by (11), we have
Elsup| &(x, 0) - E(&(x, 0))[] = O(n~Vh;*),
xeX
therefore,

sup| &(x, 0) ~ E(g(x, 0))] = 0,(n"Y2n).

Proof of Theorem 1. Since

sup| g(x, 8) — g(x, 8)| < sup| g(x, 6) — E(g(x, 0))|
xeX xeX

+ Supl E(é(xv e)) - g(x7 e) |7
xeX

we get the result of Theorem 1 from Lemmas 1 and 2.

Proof of Corollary 1. Let G(z, 0) = 1 in Theorem 1. Then the result

of corollary can be obtained.

Proof of Theorem 2. Notice that

f(x) - f(x) < sup| f(x) - f(x)],
xeX



UNIFORM COVERAGE RATE OF NONPARAMETRIC KERNEL ... 359

then

f(x)f(x) > f3(x) - fx) sup) f@) - f@)] > & - 0,(nV2hy*) = 0,(1). (12)

Furthermore,

sup | m(x, 6) — m(x, 0)|
xeX

| 1) (@ ) - o, 0)) + () - fla)glx, ©)
veX F@)f(x)

sup| f(x) (&(x, 0) - g(x, 0)) | + sup| (f(x) - f(x))g(x, 0) |
xeX xeX

inf | f(2)f()]

IA

from (12), Theorem 1 and Corollary 1 we have

sup| m(x, 6) — m(x, 0)| = Op(n_l/zh,zs).
xeX
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