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Abstract

In nonparametric models or semi-parametric models, the estimates of

unknown mean functions or condition mean of unknown functions are

always considered either under independent data or under dependent

data. In this paper, under mild conditions we give a solution for this

problem and uniform coverage rates of nonparametric Kernel estimates

under mixing dependent data.

1. Introduction

In the case of studying the nonparametric model ( ) ( )xXYExm =|=

with unknown mean function ( )xm  for statistics analysis, the estimates

of ( )xm  are always considered; and the estimates of ( )θ,xm  are always
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considered in studying the semi-parameter model ( ) ( )xXYExm =|=θ,

with unknown mean function ( )θ,xm  for estimating θ and statistics

analysis. Generally, suppose that ( )θ,zG  is a known function up to θ,

where ( )xyz ,=  and θ is a parameter. To estimate θ, or some function of

conditional mean of ( )θ,ZG  under X, the estimate of ( )( )xXZGE =|θ,

is necessary. So the estimate of ( )( )xXZGE =|θ,  is important to study

nonparametric and semi-parametric models for statistics analysis. The
above problem can be summarized as the model,

( ) ( )( ),,, xXZGExm =|θ=θ (1)

where ( )θ,ZG  is a measurable known function: ,R→Θ×Z ( ) Z∈= XYZ ,

( ),, XR=  X  has a compact subset in ,, Θ∈θsR  and Θ is a compact subset

in .bR  In this paper we consider the estimate of ( )θ,xm  under the case

where the sample is α-mixing dependent.

2. Estimation and Main Result

Suppose that { }nZZ ...,,1  is from the model (1), and ( )xf  is the

marginal density of an s-dimensional random variable X. Define the
estimate of ( )xf  as

( ) ∑
=








 −
=

n

j n

j
s
n

h
xX

K
nh

xf
1

,1ˆ (2)

where ( )uK  is a Kernel function, nh  is a bandwidth, and 0→nh  as

.∞→n  ( )xf̂  is called a Kernel estimate of ( ).xf

Let ( ) ( ) ( ).,, xfxmxg θ=θ  Then define the Kernel estimate of ( )θ,xg
as

( ) ( )∑
=








 −
θ=θ

n

j n

j
js

n
h

xX
KZG

nh
xg

1

.,1,ˆ (3)

Furthermore, the Kernel estimate of ( )θ,xm  is defined as

( ) ( ) ( ).ˆ,ˆ,ˆ xfxgxm θ=θ (4)
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Conditions:

C1. { }tZ  is α-mixing dependent strictly stationary random sequence

with the mixing coefficient ( )nα  satisfying ( ) ( )∑
∞

=

δ+δ ∞<α
1

2 ,
j

j  where δ is

a positive number;

C2. ( )[ ]xXZGE =|θ,  has a continuous J-th derivative with respect

to x, and these derivatives are uniformly bounded in ,Θ×X  and the

δ+2  order moment of ( )θ,ZG  is bounded, where ( ).2≥J

C3. There are two positive numbers 1c  and 2c  such that

( ) 21 cxfc ≤≤  and ( )xf  has a continuous J-th derivative.

C4. ( )uK  is a continuous symmetrical probability density function

with bounded compact support and J order.

C5. ,0→nh  ,2 ∞→s
nnh  as .∞→n

Lemma 1. Suppose that conditions C1-C5 hold. Then

( )
[ ( )] ( ) ( ).,,ˆsup

,

J
n

x
hOxgxgE =θ−θ

Θ×∈θ X
(5)

Lemma 2. Suppose that conditions C1-C5 hold. Then, for ,Θ∈θ∀

( ) [ ( )] ( ).,ˆ,ˆsup 21 s
np

x
hnOxgExg −−

∈
=θ−θ

X
(6)

Theorem 1. Suppose that conditions C1-C5 hold. Then, for ,Θ∈θ∀

( ) ( ) ( ).,,ˆsup 21 s
n

J
np

x
hnhOxgxg −−

∈
+=θ−θ

X
(7)

Corollary 1. Suppose that conditions C1-C5 hold. Then

( ) ( ) ( ).ˆsup 21 s
n

J
np

x
hnhOxfxf −−

∈
+=−

X
(8)

Theorem 2. Suppose that conditions C1-C5 hold. Then, for ,Θ∈θ∀

( ) ( ) ( ).,,ˆsup 21 s
n

J
np

x
hnhOxmxm −−

∈
+=θ−θ

X
(9)
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Remark. From Theorem 1, Corollary 1 and Theorem 2, we can see

that the uniform coverage rate of ( ) ( )xfxg ˆ,ˆ θ  or ( )θ,ˆ xm  has two parts.

The first part is the bias ( ),J
np hO  which depends on the order of the

Kernel function ( ),uK  and the smooth degree of ( ).xf  The higher the

order of the Kernel and the smooth degree of ( )xf  are, the faster the

coverage rate is, otherwise the slower the coverage rate is. The second

part is ( ),21 s
np hnO −−  which depends on the dimensionality of x. The

higher it is, the slower the coverage rate is, which is called curse of

dimensionality. Since the β-mixing dependent and γ-mixing dependent

are two special cases of the α-mixing dependent. So the above results

hold in the case where the sample is β-mixing dependent or γ-mixing

dependent.

3. Proof

Proof of Lemma 1. Since { }jZ  is identical distribution,

[ ( )] ( ) [ ( ) ( ( ))] ( ) ( )xfxmxXhKZGEhxgxgE n
s

n θ−−θ=θ−θ −− ,,,,ˆ 1

( )[ ] ( ( )) ( ) ( ) ( )∫ θ−−=|θ= −− .,, 1 xfxmdttfxthKtXZGEh n
s

n

Let

( ) .nhxtu −=

Then

[ ( )] ( )θ−θ ,,ˆ xgxgE

( )( ) ( ) ( ) ( ) ( )∫ θ−++=|θ= .,, xfxmduuhxfuKuhxXZGE nn

By using Taylor’s expansions in ( )( )nuhxXZGE +=|θ,  and ( )nuhxf +

at x, and conditions C2-C4, we have

( )
[ ( )] ( ) ( ).,,ˆsup

,

J
n

x
hOxgxgE =θ−θ

Θ×∈θ X
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Proof of Lemma 2. Let ( ) { } ( )∫ ′=ϕ duuKutit exp  be a Fourier

transformation of ( ),uK  and .nhtv =  Then, for any ,Θ∈θ  we have

 [ ( ) ( ( )) ]θ−θ
∈

,ˆ,ˆsup xgExgE
x X

( ) ( ) ( )
















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
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







 −
θ−







 −
θ= ∑

=∈

−
n

j n

j
j

n

j
j

x

s
n h

xX
KZGE

h

xX
KZGEnh

1

1 ,,sup
X

( ) ( ) ( )
( )

















 −′
ϕθ≤ ∑ ∫

=∈

−
n

j n

j
j

x

s
n dt

h

xXti
tZGEnh

1

1 exp,sup
X

( ) ( )
( )








































 −′
ϕθ− ∫ dt

h

xXti
tZGE

n

j
j exp,

( ) ( ) ( )
















 ′
ϕθ≤ ∑ ∫

=

−
n

j n

j
j

s
n dt

h

Xti
tZGEnh

1

1 exp,

( ) ( )
























 ′
ϕθ− ∫ dt

h

Xti
tZGE

n

j
j exp,

( ) ( ) ( )∫ ∑
=

−











 ′
θϕ≤

n

j n

j
j

s
n h

Xti
ZGEnht

1

1 exp,

( ) dt
h

Xti
ZGE

n

j
j 



















 ′
θ− exp,

( ) [ ( ) ( ) ( ( ) ( ))]∫ ∑
=

− ′θ−′θϕ= .exp,exp,
1

1 dvXviZGEXviZGnEvh
n

j
jjjjn (10)

Let

[ ( ) ( ) ( ( ) ( )) .exp,exp,
1

1 ∑
=

− ′θ−′θ=∆
n

j
jjjj XviZGEXviZGEn



w
w

w
.p

ph
m

j.c
om

FULONG HAN et al.358

Then

( ) ( ) ( ) ( )( )[ ]21111
12 exp,exp, XviZGEXviZGEn ′θ−′θ=∆ −

[ ( ) ( ) ( ) ( )∑
≠

− ′θ′θ+
kj

kkjj XviZGXviZGEn exp,exp,2

( ( ) ( )) ( ) ( )( )]kkjj XviZGEXviZGE ′θ′θ− exp,exp,

( )∑
−

=
δ+

δ
α+≤

1

1
2

21 ,
n

i

i
n

M
n

M

which implies ( ),12 −=∆ nO  where 1M  and 2M  are two positive

numbers. Furthermore,

( ).21−=∆ nO (11)

By Replacing (10) by (11), we have

[ ( ) ( ( )) ] ( ),,ˆ,ˆsup 21 s
n

x
hnOxgExgE −−

∈
=θ−θ

X

therefore,

( ) ( ( )) ( ).,ˆ,ˆsup 21 s
np

x
hnOxgExg −−

∈
=θ−θ

X

Proof of Theorem 1. Since

( ) ( ) ( ) ( ( ))θ−θ≤θ−θ
∈∈

,ˆ,ˆsup,,ˆsup xgExgxgxg
xx XX

( ( )) ( ) ,,,ˆsup θ−θ+
∈

xgxgE
x X

we get the result of Theorem 1 from Lemmas 1 and 2.

Proof of Corollary 1. Let ( ) 1, =θzG  in Theorem 1. Then the result

of corollary can be obtained.

Proof of Theorem 2. Notice that

( ) ( ) ( ) ( ) ,ˆsupˆ xfxfxfxf
x

−≤−
∈X
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then

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).1ˆsupˆ 212
1

2
p

s
np

x
OhnOcxfxfxfxfxfxf =−≥−−≥ −−

∈X
(12)

Furthermore,

( ) ( )θ−θ
∈

,,ˆsup xmxm
x X

( ) ( ( ) ( )) ( ( ) ( )) ( )
( ) ( )xfxf

xgxfxfxgxgxf

x ˆ
,ˆ,,ˆ

sup
θ−+θ−θ

=
∈X

( ) ( ( ) ( )) ( ( ) ( )) ( )

( ) ( )xfxf

xgxfxfxgxgxf

x

xx
ˆinf

,ˆsup,,ˆsup

X

XX

∈

∈∈
θ−+θ−θ

≤

from (12), Theorem 1 and Corollary 1 we have

( ) ( ) ( ).,,ˆsup 21 s
np

x
hnOxmxm −−

∈
=θ−θ

X
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