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Abstract

In this paper, we use the loop group method [10] to construct planar
4-noids of genus g =0 with embedded ends. This is the first such

construction using the loop group method.
1. Introduction

In this note, we want to provide a first step in the direction of
constructing k-noids of genus g =0 with embedded ends using a
generalized Weierstrall representation, the so called DPW-method. Up to
now, we are only able to construct planar 4-noids, but it is our hope, that
some of the methods used and developed here, may be useful for an
arbitrary number of ends or arbitrary 4-noids.

In some sense, this paper is a continuation of [11], which mainly deals

with the construction of trinoids but also includes a number of more
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general results concerning the construction of k-noids. The paper [11]
includes some ideas and methods which may help in the investigation of
trinoids and more general of k-noids within the framework of the so-
called DPW-method. Unfortunately, despite the efforts undertaken so far,
general results on the construction or classification results, like those
obtained in [15] by completely different methods, are not yet in the realm
of consideration using the DPW-method. Nevertheless, it is already
possible to construct quite a number of examples, and, by providing some
method to construct 4-noids, we hope to make at least a small step

towards a more comprehensive understanding of k-noids.

In [10], a method to construct all constant mean curvature surfaces
from simply connected domains, except the sphere, is presented, using so
called holomorphic (or also meromorphic) potentials as input data, which
depend on a spectral parameter A e S!. This way a whole st -family of a
CMC-surface is built, the so-called associated family. Construction of a
CMC-surface defined on a non-simply connected domain then is reduced
to the construction of a CMC-surface defined on a simply-connected
domain, which is invariant under a prescribed fundamental group.
Actually, such an invariance can only be obtained for certain values of A.
(We will always normalize things so that A =1 will work.) First steps in
understanding the interplay of holomorphic potentials and symmetries of
the surfaces resulting from the invariance of the potential are described

in [8] and [9]. If one wants to construct a CMC-immersion from a
Riemann surface M to R?’, then one can start from some potential n
defined on the universal cover M of M, which is invariant under
(M) : y"n = n for all y € n;(M). Then the procedure outlined in [10]
requires to solve the ordinary differential equation dC = Cn, to perform
an Iwasawa splitting, C = FV,, and to apply the Sym-Bobenko-formula
to obtain the CMC-immersions ¢, associated with n. Clearly, since 7 is

invariant under mn;(M), one obtains C(y -z, L) = o(y, )C(z, 1) for all

ze M, LeSl, yen(M). For ¢,_; tobe invariant under m; (M), it is

necessary and sufficient that
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(@) o(y, 1) is unitary for all y € n; (M),
(®) ofy, & = 1) = +1 forall y e 1,(M), and
(© 950(y, M)[p=1 = 0 forall y e my (M)

The simplest non-simply connected domain is C\{0}, which gives CMC-
ends and in particular CMC-cylinders. In [18], many examples of CMC-

cylinders are presented. The “next easier” topological space perhaps are
trinoids and more generally k-noids of genus 0, that is immersions

from M = S%\{zq, .., 2} = C\{z{, .., z;_1} to R3. In this case, the

fundamental group is the free group of £ — 1 generators.

As mentioned above, for a CMC-immersion ¢ : M —> R? derived from
an invariant potential to descend to M for A =1, one needs certainly
that all monodromy matrices are unitary. As outlined in [12, 11], it
suffices to find some 1 such that all the monodromy matrices o(y, A) are
simultaneously r-unitarizable (for an explanation of notation see Section
2). It turns out that there is a fairly simple criterion for two matrices to be
simultaneously unitarizable (see, e.g., [12] and the references therein).
For three matrices things are much more complicated (again see [12]).
However, for k£ matrices gy, ..., 05, the situation is easy again: it suffices

to show that three consecutive matrices 0js 0j+1s 0j+2> j=0,.., k-2

are simultaneously unitarizable.

From this point of view, it is most important to discuss CMC-
immersions from Riemann surfaces M, for which r;(M) is generated by

three elements. Perhaps the simplest case is M = SZ\{O, 1, o, a}, where
a ¢ {0, 1, ©}. This is the situation to which this paper is devoted.

Actually, we present a large family of CMC 4-noids. We do not attempt,
however, to construct all CMC 4-noids in this paper.

At this point we would like to point out that by completely different
methods, [16], planar CMC-k-noids have been investigated. However, the
beautiful classification of [16] refers to a class of CMC-immersions, which
1s much more restricted from the class of CMC-immersions considered in

this paper.
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In the following, we will work with off-diagonal potentials n =

0
( gj (see Section 3 for details). We find it convenient (and in fact it is
T

one of the main concepts of this paper) to translate the first order matrix
equation dC = Cn to a second order differential equation y" + % Yy + vty

= 0. In the case of trinoids, this leads to a hypergeometric equation.
Since there are many results for the hypergeometric equation, it is no
surprise that the case of trinoids is fairly well understood. In the case of
4-noids, however, this leads to a Heun equation, and unfortunately, there
are not many results for these types of equations. Therefore, we seek to
simplify the setting in such a way, that results for the hypergeometric
equations can be used to obtain sufficient criteria for the simultaneous

unitarizability of the monodromy matrices in the case of 4-noids.

The paper is organized as follows: In Section 2, we give a short
outline of the DPW method and the theory involved with it, Sections 3
and 4 mainly repeat the results of [11] that we will use and at the same
time provides the notations and definitions we will work with hereafter.
Section 5 introduces the holomorphic potentials we will use for
construction of planar 4-noids and the transformations of the associated
Heun equation that we consider in order to derive conditions on the
simultaneous unitarizability of the monodromy matrices, Section 6 is
devoted to the spherical triangle inequalities and their relation to the
simultaneous unitarizability of monodromy matrices for trinoids, and in
Section 7 we carryover these results to the limit case of 4-noids. And in
Section 8 at last, we are able to state our main theorem about the

construction of planar 4-noids.
2. Basic Definitions and Results

2.1. Associated families and orthogonal frames

Let us start with a quick review of the characterization of CMC-
surfaces, their appearance in associated families and the means of

describing and constructing them. We first restrict to CMC-immersions

defined on a simply connected domain M. We consider a surface ¥ : M
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— R?, where M is a simply connected Riemann surface. We will always

assume ¥ is conformal. Then we can rewrite the induced metric as
Y x ¥,

————2_ denotes
|\Px X \Pyl

ds? = e*(dx? + dy?), u:D — R. Moreover, if N =
the Gauss map, then we have

(Py, ¥y) = (¥, ¥y) =€, (¥, ¥,)=0.

u u
Therefore, the frame U = (e 2¥,, e_E‘Py, N) is an orthogonal matrix of
determinant 1. By possibly rotating the surface, we can assume U(0, 0)
= I
It is well known (compare for example [6, Appendix]), that ¥ is a
CMC-surface if and only if U is a solution to the Lax pair equations

UU,=A and U'Us = B, (2.1.1)

where @ = (¥,,, N) is the torsion invariant (i.e., the coefficient of the

Hopf differential (¥,,, N)dz?),

L. _ l u -u/2

0 g Uz (Q t5e H)e

A= —%uz 0 —i(Q—%euH)e_u/Z
(Q + %e”H)e_um i(Q - % e“Hje—”/2 0

and B = A. The integrability conditions for the differential equations
(2.1.1) are

Uy, + %euﬂz -2 Q* =0, (2.1.2)
1
Qs = 3¢ H, =0. (2.1.3)

Clearly, ¥ is a CMC-surface iff @ is holomorphic. Then (2.1.3) is void and
from (2.1.2) we see that we can replace @ by }CZQ, where A e S! and still
obtain a solution U to (2.1.1). We then have a CMC-immersion with
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metric e¥, mean curvature H and torsion invariant k_ZQ. Hence, CMC-

surfaces come in associated families. The parameter A is called spectral
parameter. This way, one defines an extended orthogonal frame, that is
an orthogonal frame (depending on A) for the associated family of CMC-
surfaces. See below for an alternate method constructing an extended

unitary frame.

2.2, Unitary frames

Using the isomorphism between R? and sug, given by the spinor
map

—iz —ix -
J RS 5 osug,  (x, 3, 2) b J(x, 3, 2) = 1 ) ) Y (2.2.1)
2 ~ix+y iz

we lift the moving frame U € SOz of a CMC-surface to a moving frame

F € SUy (also compare [6, Appendix]). The automorphisms of R3
respecting the cross product are the elements of SOg3, so we regard the
moving frame U as such an automorphism. Knowing the automorphisms

of ]R?’, it is easy to determine the group of automorphisms of sug, this is

given by </ o« SOg o J 1. On the other hand, we know that the group SU,
acts via conjugation on sus and that SUg is a 2-to-1 cover of Aut sus.
Consequently, also SUy and SOg3 are in a 2-to-1 correspondence. Hence,

every U € SO5 determines an associated F' € SU, uniquely up to sign.

2.3. Extended unitary frames

In order to obtain an extended unitary frame (i.e., a frame for the
associated family of CMC-surfaces) from a given unitary frame, one
proceeds as follows: Consider the Maurer-Cartan-Form o = F 14F
sug. First, split a into a (1, 0) and a (0, 1) part: a = o'dz + a"dz. Next,

we decompose o’ and o” as o' =oaj +aj, and o” =aj +a) into a

diagonal part (denoted by the index k) and an off-diagonal part (indicated
by p). Writing a}, + o}, = o, we have

a = ajpdz + oy + apdz.
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If one introduces a spectral parameter A € S! in the following way:
ay = A laldz + ko + Aadz,

then one obtains the following result ([10] and [21]): The extended moving
frame F obtained by integrating o is the frame for an associated family
of CMC-surfaces if and only if o, is integrable, i.e., iff it satisfies the

integrability condition
dOL)\ + oy /\OL;L =0.
2.4. Loop groups

For each real constant r, 0 < r <1, let A,(SLyC)_ denote the group
of maps g(1) from C,, the circle of radius r, to (SLyC)_, which satisfy

the twisting condition
g(=1) = o(g(»), (2.4.1)

where o : SLyC — SLyC is defined by conjugation with the Pauli matrix

1 0
oy = (0 J, and a topological condition discussed below.

The Lie algebras of these groups, which we denote by A, (sl5C),,
consist of maps x : C, — slyC, which satisfy a similar condition, namely
X(— }\.) = G3X(7\.)03. (242)

In order to make these loop groups complex Banach Lie groups, we

require that each matrix coefficient, considered as a function on C,, is

contained in the Wiener Algebra

Ag) = {CI(X) :heC,,q= ankn, Z|ann| < oo} (2.4.3)
nez nez
For r = 1, we will always omit the subscript “r”.

Furthermore, we will use the following subgroups of A,(SLgC)_: Let

B be a subgroup of SLyC and A} g(SLyC); be the group of maps in
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A, (SLgC),, which can be extended to holomorphic maps on

I —fec:|a|<r) (2.4.4)
the interior of the circle C,, and take values in B at A = 0. Analogously,
let A7 p(SLyC), be the group of maps in A,(SLyC),, which can be
extended to the exterior

E") = ecP :|n]|> 1) (2.4.5)

of C, and take values in B at A = w. If B = {[}, then we write the
subscript * instead of B, and if B = SLyC, then we omit the subscript B

entirely.

Also, by an abuse of notation, we will denote by A,(SUy)  the
subgroup of maps in A, (SLyC)_, which can be extended holomorphically

to the open annulus
(r) _ g 1
A —}\,G(C.l"<|7\.|<r (2.4.6)

and take values in SU, on the unit circle.

Corresponding to these subgroups, we analogously define Lie
subalgebras of A, (sl5C),_.

We will need the following results from [19] and [10]:

e For each solvable subgroup B of SLsC, which satisfies SUy - B =
SLsC and SUy N B = {I}, multiplication

A, (SUg), x A}, g(SLoC), — A, (SLsC), (2.4.7)

is a diffeomorphism onto. The associated splitting
C=FV, (2.4.8)
of an element C e A,(SLyC), such that F e A, (SUy), and V, €

A5 B(SLoC), is called r-Iwasawa splitting. (In the case r =1, we will

just speak of Iwasawa splitting.)
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e Multiplication

A7 +(SLoC), x A7 (SLgC), — A,(SLsC), (2.4.9)

is a diffeomorphism onto the open and dense subset A;+(SL2(C)G-

A7 (SLsC), of A,(SLyC),, called the “big cell”. The associated splitting
g=588; (2.4.10)

of an element g of the big cell, where g_ e A_,y*(SLZ(C)G and g, €

A} (SLgoC), will be called Birkhoff factorization.

2.5. Weierstrall representation

The so-called generalized Weierstrall representation presents a way

to construct a surface with constant mean curvature H # 0 (or rather its

associated family) on a simply-connected domain M (excluding the
sphere!) from a prescribed holomorphic potential. This is done in the
following 4 steps:

Step 1. Choose any holomorphic 2 x 2 -matrix differential form n =
A(z, M)dz € A(s[3C), x Q(M), of which the diagonal elements are even
functions of A € C*, and the off-diagonal elements are odd functions of
L € C*, and the powers of L are > —1. Assume det A_; # 0, where A_;

is the coefficient matrix of the A -term of n.

Step 2. Then find a solution to the complex system of ordinary
differential equations:

dC = Cn. (2.5.1)
Step 3. Now carry out a Iwasawa decomposition of C:

C = FV,,

where F = F(z, Z, 1) € A(SUy), and V, e A"(SLyC),. If the Iwasawa

decomposition shall be unique, then one needs to require additional
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properties, for example V. (0, A) e R*. (Writing V, (0, A) € R* means

that all matrix entries of V, (0, 1) arein R".)

Then the following crucial theorem holds (both for the unique and

non-unique decompositions):

Theorem 2.1 [10]. F is the extended unitary frame of an immersion

with constant mean curvature H # 0.

Step 4. Insert F'into the Sym-Bobenko formula
_ 1 . 0 11 1 0 =]
¥, (z) = SH {(zk Y F)F +3 F[O _JF . (2.5.2)

Then V¥, is for every % € S' a CMC-immersion from M into suy. The

1 0

Gauss map of ¥, is given by N = —%F(O 1

JF_I. Speaking of the

surface constructed by the Weierstrall representation usually means
evaluating the Sym-Bobenko formula at A =1 and choosing the initial
condition C(0, ) = I for the differential equation (2.5.1).

2.6. Dressing action

Next, we define the dressing action of A}(SLsC),, 0 <r <1 on F,

the set of extended unitary frames of CMC-immersions. For F(z, 1) € F
and h, e A} (SLyC),, we set

h,(MF(z, 1) = (h, - F)(z, L)q,(z, 1), (2.6.1)
where the right hand side of (2.6.1) is defined by the Iwasawa
decomposition in A,(SLgC), of A, F, ie., q: M - A7 (SLsC),. In

addition, q,(z, 0) e R*. It is easily proved (see, e.g., [4]), that h, - F is

again in F. Therefore, (2.6.1) defines an action on F.

2.7. The Weierstral3 representation on non-simply connected
domains

In order to construct a CMC-immersion from a (non-simply
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connected) Riemann surface M, we first construct an associated family

of CMC-immersions from its universal cover M and try to descend to M

for some value L, say Ao = 1.
According to [9], we can start with a potential n on M being
invariant under the fundamental group I' of M, that is y'n = n for all

y € I'. (In fact n induces a holomorphic 1-form on M, and we identify n
with this induced 1-form.)

Furthermore, for every solution C of dC = Cn on M and every

automorphism y € I', one has
C(v(2), 1) = oy, M)C(z, 1), (2.7.1)
where ¢ € A(SLZ(C)G does not depend on z. We call ¢ the monodromy
matrix of the holomorphic frame C.
If the CMC-immersion ¥, obtained from n on M descends to M for

some value of & e S, then for all g e AutM, the extended unitary frame

F transforms like [8]:

F(g(z), 1) = x(g, M) F(z, Mk(y, 2), (2.7.2)
where (g, ) € A(SUy), and k is a unitary, A-independent matrix. The
matrix y is called the monodromy of F.

Conversely, let n and C be as above. Let C = FV,_, where F €

A(SUy), is the extended unitary frame and V, e A"(SLoC),. If o(y, )
€ A(SUy),, then for all y e I' we have

F(y(2), &) = oy, M) F(y, Mk(y, 2), (2.7.3)

where k(y, z) is unitary and diagonal (and independent of ). In this case,
o 1s not only the monodromy of C but also of F. This gives a chance that
‘i’k will descend to M for some A( € S!. More precisely, the monodromy

o of C being unitary is a necessary condition for the CMC-immersion

being invariant under the fundamental group I'.
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For all y e T' we obtain, via (2.7.3), inserted into (2.5.2)

b 0(@) = o7 Mol ) - S kel 1) 0 B (@7

Using formulas (2.7.2), (2.7.3) and (2.7.4), we obtain necessary and

sufficient conditions for the immersion ‘i’x to descend from M to M 9:
1. o(y, &) € A(SUy), forall y e T,
2. oy, ) =+I|;_ forall y e T,

3. 930(y, M) -0 (v, A5y = 0 forall y e T.

In fact, permitting dressing, it suffices, that these conditions are

satisfied for the monodromy matrices after conjugation with some matrix
h, € AL(SLyC). If there exists h,, such that for o(y;, ) := M;(}), ...,
oy, A) == M, (1) we have h MR, .., h,M,h" € A (SUy),, the
matrices My, ..., M, are called simultaneously r-unitarizable. So one

crucial point in the construction of k-noids is to find (sufficient) conditions
on the simultaneous unitarizability of the monodromy matrices around

the ends of the surface.
2.8. Gauging and its relation to dressing

With the usual notation, we consider (on a simply connected domain)

a potential 1, a solution C to dC = Cn, an extended unitary frame F
obtained by Iwasawa-splitting C = FV, and a CMC-immersion ¥

obtained from F'via the Sym-Bobenko formula.

As mentioned before, for h, € A}(SLyC), we consider h,F = FW,

and obtain a new CMC-immersion ¥ associated with F. Note that a

priori, there is no canonical way of defining a dressing action on the level

of holomorphic frames: We can set h,C = C or h+Ch;1 = C. Both are
again holomorphic frames for ¥, since C = h,C = h,FV, = F(W,V,)

and C = h,Ch* = h,FV,h[' = F(W,V.h{").
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Let L, = L,(z, &) be defined on M. Then we can consider C = CL,
and obtain from C the same immersion as from C, since C = CL, =
F(V,.L,) and C = FV,. This operation is usually called “gauging”. One
can change/simplify the potential n this way, but not the resulting CMC-
immersion, an easy calculation shows 0 = L:rlnL .t L;ldL 4

In some cases, however, dressing and gauging occur simultaneously.

Consider, for example, an automorphism y of M and assume we know

that we have
y*n =L mL, + L}dL,.
Then it is easy to verify that C(z, 1) = C(y(z), &) and C(z, %) =
C(z, L)L, (2, A) satisfy the equation
C71dC = ¢ 1aC.
From this we can only conclude
C(z, %) = B(L)C(z, 1)
for some B e A(SLyC),. It will frequently be desirable to have some
information about B.

To secure such information we choose a base point z, and require all
holomorphic frames and all extended unitary frames to attain the value I
at z, for all A eS'. We would like to point out that under this

assumption a one-to-one relation between CMC-immersions and special
potentials (“normalized potentials”) can be proven. At any rate, the

assumption C(z,, ) = I, F(z,, 2., ) = I has a number of consequences:

1. Dressing by &, now needs to take the form C — h,Ch;’.
2. Gauging by L, now needs to take the form C — h ,CL,_, where
h, = L,(z., \) ..

3. Every 1 yields a unique C and thus — if at all — a unique

monodromy matrix.
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3. Holomorphic Potentials and Monodromy

3.1.

Let S,, denote the Riemann sphere, with n points 2z, ..., z,, removed,
where we will always assume 2z, = . We consider a holomorphic

potential n on S,, of the form

~ ( 0 vz, X)Jd G.11)
ey o0 )7 o

that is, we restrict to off-diagonal potentials, see, e.g., [11] why this poses
no restriction. Since n shall be a holomorphic potential, we can assume it

is a holomorphic 1-form on S,,, i.e., its entries v, t are holomorphic

functions on §,. We will always assume that v, t are meromorphic

functions on S2.
3.2.

We recall a lemma from [11] relating the differential equation
dH = Hn to a second order ODE:

Lemma 3.1. The solutions H to the ODE dH = Hn are of the form

H:(yl/v yl], (3.2.1)
Yo/vV Yo

where y; and yy are functions satisfying the scalar ordinary differential
equation

’

Yy - VV y' —vty = 0. (3.2.2)

In the case of a trinoid, this equation will lead to a hypergeometric
equation, whereas in the case of a 4-noid, this will lead to an equation of

“Heun type”. With the exception of a discrete set of z-values, y; and yq

form a fundamental system for (3.2.2).
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3.3.

In this paper, similar to [11], we want equation (3.2.2) to be an
equation of Fuchsian type. Thus we have [1]

n-1
! a;(h
- V((Z’ i‘)) il (3.3.1)
v(z, 2=z
n-1
b;(x ci(h
—v(z, M1z, ) = Z[ i )2 + i )} (3.3.2)
Fle-z)" 274
for some even functions ay, ..., a,_1, by, ..., b,_1 and cy, ..., ¢,_1 of A,

which belong to the Wiener Algebra A, and to which the following

conditions apply:

n-1

cj(r) =0, (3.3.3)
j=1

a;(h) =2, (3.3.4)
j=1
n-1
Z(bj(x)+ ¢j(1)z;) = by. (3.3.5)
j=1

The parameters a,, and b, correspond to the singularity at z,, = «. Since

v 1s meromorphic on Sz, the a j are integers and independent of L. The

indicial equations at each of the singular points z;, j =1, ..., n, are

r(r-1)+ajr+b; =0, (3.3.6)

whose solutions are

T‘j’J_r =S %[1 —Gj t \'(1—(1]')2 —4b]] (337)
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3.4.

Using (3.3.1) and the fact, that the a; are integers, we obtain

n-1
v(z, 1) = co(?»)H (z-z;) % (3.4.1)
j=1

and

n-1 n-1
1(z, X):—w(K)_ln(z—zj)afZ|: bi() | <) ] (3.4.2)
j=1

(- zj)z 277

The function ® may be removed by some r-dressing (see [11, Remark

3.5.1]), hence we can assume that v and t are of the form
n-1
v(z, 1) = 7»_11_[ (z-2;) % (3.4.3)
-1

and

n-1 n-1 . Py
1(z, A) = — kH (z-2;)% Z [(ij(:))z - _]93 j]’ (3.4.4)
j=1 J=1 J

where bj, c; are as above.

J
3.5.

To describe the b ; in more detail, we consider for each j € {1, ..., n}

some Delaunay matrix

ej Xj
Dj=|_ , (3.5.1)
X] —ej
where
X;=shh +tjh, Xj=sih+th, (3.5.2)
and
ej € R, 5j, tj > 0, (3.5.3)
s+t 2=t (3.5.4)
J AR 4 -
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It is easy to verify that the eigenvalues of D; are + p;, where

Wi = e st e 2 (3.5.5)

Using this notation, we obtain for b; the form (see (3.6.8) in [11])
1
bj(1) = 5 (1—a;)* —u3. (3.5.6)

Throughout this text, we will assume that the diagonal entries e; vanish,

in this case we have u; = | X; | = ,/Xj)_(j. For later use, we note
1-4p% = —4sta72(1 - 22)%. (3.5.7)
3.6.

In the case n = 3, rewriting equation (3.2.2) via the substitution

y(z) = 25 (1 - )2+ w(z), leads to the hypergeometric equation
z(1-2)w"(z) +[y; — (@ +B+1)z]w' - aBw(z) = 0, (3.6.1)

where

Y1 = 1+ \’(1 - a1)2 - 4b1 =1+ 2].11, (362)

@ =5 {n + V(0 - ag)? — by + (1 - ay)? - by )

1
= 5 {1 + 2”,1 + 2}12 + 2“3}, (363)

B= 3 {r + V(1 - az)? — 4by (1 - a5)* - by}

1
= E {1 + 2“1 + 2”,2 - 2“3} (364)

By computing the monodromy matrices ¢y and p; for the solutions of

this differential equation around z = 0 and z =1 respectively, one can
show [12]:
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Theorem 3.2 [11]. The monodromy matrices oy and o, are

simultaneously unitarizable via r-dressing for some r € (0, 1) sufficiently

close to 1 if and only if on st

0 < cos (y —.Hz - M3)C_OS (g — pg +pg3) <1 (3.6.5)
sin 2n(p; ) sin 2n(uy)

Writing a = 2npy, b = 2nug, ¢ = 2npg this is equivalent to
0 < cos(a —b) + cosc < 2sina - sin b. (3.6.6)

And one can show that it is also equivalent to

2 2

0<1-cos?a-cos?b-cos?c—2cosa-cosb-cosc. (3.6.7)

The latter equation has been derived in [14].
3.7.

Next, we will discuss how the asymptotic behaviour of the
holomorphic potential relates to the asymptotic behaviour of the
corresponding end in the case of a perturbed Delaunay potential. In
particular, we will give a sufficient condition on the embeddedness of an

end.

We consider surfaces, which arise from perturbed Delaunay

potentials, 1.e., potentials of the form
_(1 hlge = 1 L
n—(zD+n jdz- ZDdz+ZOn]z dz, (3.7.1)
]:

where D is a Delaunay matrix as in Section 3.5 and th is holomorpic in
A for |A]| <1+e for some ¢ > 0, and holomorphic in z for |z| < 7 for

some 0 < 7. We are mainly interested in the question, under what

conditions and for what A, the differential equation dC = Cn has a

solution in “EDP”-representation, that is in the form

C(z, 1) = ™2 Pp(z, ), (3.7.2)
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where
P(z, A) = I +zPL(0) + 22Py(A) + -+, (3.7.3)

with | z | < 7. It is easy to see that solving dC = Cn with P as in (3.7.2) is

equivalent to solving

dP = Pn - @ D)sz. (3.7.4)

An important result is

Theorem 3.3 [11]. Assume n as in (3.7.1) is holomorphic in A in a
neighbourhood of St, then the coefficients Py p; of P, are all contained

in the Wiener Algebra A of S and are actually holomorphic in a

neighbourhood of st if and only if . = £1 are zeros of order > 2 of

1 = 1
Mo.11 + 77 95 XMo12 — 77 % Xnp, 21 (3.7.5)

In this case, (3.7.4) has a solution P of the form (3.7.3) such that P is
holomorphic in z and A is an open set containing {z = O}xSl. In

particular, P € A(SLyC),.

The condition expressed in Theorem 3.3 is referred to as “embedding
condition”, due to the results of the following theorems.

Since the monodromy for the solution (3.7.2) of dC = Cn is ellnz)D ,

(Inz)D

and e satisfies the closing conditions at A = 1, the surface obtained

from n closes at A = 1, and we have

Theorem 3.4 [11]. Let n be a holomorphic potential of the form (3.7.1)
satisfying condition (3.7.5). Let ® and ®p denote the immersions
obtained from the perturbed Delaunay solution C to dC = Cn in EDP

(Inz)D

representation (3.7.2) and the form e , respectively. Then there exist

0 <y and 0 < K such that forall % € S' and all 0 < | z| < 1y, we have

[®(z, A)-@p(z, 1) | < K|z|, [|0,®(2z, )-0,®p(z, 1)|| < K| z]|. (3.7.6)
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More importantly for us, we obtain

Corollary 3.5. Under the assumptions and with the notation of the

theorem, the immersion ® is an embedding for | z| < ry, where 0 < ry is

chosen sufficiently small. In particular, ® has for A =1 an embedded end

at z = 0.
4. Embedding and Existence Condition for k-noids

In this section, we continue the study of surfaces associated with the
potentials introduced in Section 3. In particular, we investigate when
each end is separately embedded after some dressing and when all ends

will be simultaneously embedded.
4.1.

First we investigate the embedding condition (3.7.5) for the potentials
under consideration. We would like to point out that for the discussion in
this section, we still consider each end separately.

Actually, the embedding condition does not need to be satisfied by the
given potential, since it may not have the form used in the formulation of

the condition, but it suffices to verify this condition after some gauge.
Therefore, we only need to make sure that for each end z;, there

exists some gauge transformation WJEj )(z, L) € A} (SLgC), such that
=1 . 1 .
f=w qwl) + wllawl) (4.1.1)
satisfies the condition in question at the end z;.

We will carry out this program by finding a sequence of gauge

transformations. First of all we gauge by @ = diag(A, A_l), where

A = Mz - 2j), (4.1.2)

is independent of A. With this choice of A, we obtain by conjugation

with A the off-diagonal matrix entries A 2v = A }(z - zj )! and A%t =
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Mwi(z - zj) = = 1bi(M) (2 - 25 N Acj(h) + O(z - z;). Moreover, A7ldA =

-a D~
Zn - k ; . Therefore, developing 1 into powers of z — z s
k=lz -z, z-z;

we obtain
1 -1
—(l—a-) A —€: 0
ﬁ:z 1z- 2 ! 1 +( N ]k ]+O(z—z]~),
I =xb;(n) —5(1—aj) —hej(h) gj
(4.1.3)
where
g =% a_k (4.1.4)
k#j ] Zk

. . . . 0 .
Gauging with the lower triangular matrix R, = ( J with p =
p

k(ej —%(1 - aj)j gives

. 1) (-&; 0
1 g * +[ I J+O(z—2]~), (4.1.5)
7\.|X | —ej 1

30

Z—Z

where X; 1s asin (3.5.2) and

= 1

B] = 2}\.(6] —5(1 - a])jaj - }\.C] (416)
A final gauge by 7', = diag(/AX; 71, JAX;) then produces

e;: X; -g; O
Sy S A + 0z - 2j), (4.1.7)

AKX ) \Bjg

where

(4.1.8)

BJ = 7\.[7\.XJ]_1{(2€J —(l—aj))sj —Cj}.
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Note that indeed AX; € A,. Assume first {; <s;, then we rewrite
tA

AXj= sj+ thj = sj(l +S—JXZJ. Clearly now, 1X; e A, and also
J

JAX; € A,, since we can use the series expansion for 1+ ¢, where

| €] < 1. If 5; < tj, then in the last gauge we interchange the roles of X

and X_J If t; = sj, then one would need to carry out the gauge on any r-

circle sufficiently close to r =1. In the next sections, we will only

consider non-cylindrical ends, and in this case s; # ¢;.

This way we have transformed the original potential n via gauging
into the potential 7, which is in the form (3.7.1). Since we want to
construct surfaces with embedded ends, we require 1 to satisfy the
assumptions of Theorem 3.3. For the Fuchsian potentials introduced in

3.4 the condition can be expressed in the following way:
Proposition 4.1 [11]. The embedding condition of Theorem 3.3 is
satisfied for M if and only if
1 ¢ (A) - aje;
— . 2
L=2e 14 ;00|

A, (4.1.9)

. . -1
Remark 4.1. (1) Note, if one replaces A by diag(vAv, vAv ) and p
In R, by p =-\g; In the series of gauge matrices above, one actually

gauges n to a potential of the form (3.1.1), where a¢; =---=a,_; =0 in

the formula (3.4.3) for v(z, 1).

(2) Since the solution C of dC = éﬁ in EDP representation (3.7.2)

In(z-z;) D;

has monodromy e the monodromy of the solution C to

dC

xa = I denotes the monodromy of the first gauge matrix @ =

ln(z—Zj)DjX

Cn with n as in Section 3.4 is given by y = e A, Where

diag(\/kv(z -zj), \/Xv(z - zj)_l). If q =~ =a, =0, then y4 = -1I and

the monodromy is y = _eln(z_zj)_
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4.2,
We will need the following result:

Theorem 4.1 [11]. Assume the holomorphic potential n satisfies the
assumptions of Section 3 as well as (4.1.9). Assume moreover that there

exists some T, € AtSLyC, such that for every j =1, ..., n the conjugated
monodromy matrix T,M;T, L s r-unitary. Then the surface associated

with the dressed r-potential TJFT]TJ:1 yields for A =1 a k-noid of

constant mean curvature with embedded ends that are asymptotically

Delaunay surfaces.

So it turns out that the key requirement (besides the embedding
condition) is the simultaneous unitarizability of the monodromy matrices.
In the next sections, we will find conditions, which yield the simultaneous
unitarizability of the monodromy matrices of planar 4-noids. This is done
with the help of the results for trinoids.

5. Transformations of the Heun Equation

5.1.

In the rest of this paper, we consider 4-noids. We choose a basepoint

z, and we normalize the holomorphic frame and the extended unitary

frame by C(z., 1) = I and F(z., z., ) = I, respectively. We will use a
potential 1 of the form

-1
n :( 0 A sz (.1.1)
(z, A) O
as in Section 3. Note this way we assume @; = =aq,_; =0 in the

formula (3.4.3) for v(z, 1), see Remark 4.1. Furthermore, we will assume

by (A b (A bo (0 () e () eoln
T = —7{ OZEZ)"‘ (21_(1;2 + G 2_(a))2 + Oi )+ 2151)_1_ 22_((2]’ (5.1.2)

where a > 1 (in particular a € R), and the b j, Cj are real-valued functions
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(hence n(Z, A1) = n(z, 1), which we conjecture is one way to express the

reflective symmetry of the k-noid about the x-y-plane, also see [5]).

Eventually we will take a sufficiently large.

Remark 5.1. As has been seen in Section 4.1, we may gauge n to a

“perturbed Delaunay potential”:

D +R;
z-z; 0

ﬁ:

e, X;
where D; = (—j ]] is a Delaunay matrix, and the matrix R; is

X] —ej

holomorphic in z in a neighbourhood of z;. In addition, it is easy to see

that the embedding condition (4.1.9) is satisfied. Furthermore, as all ends

are lying in the x-y-plane, we choose the diagonal entries e; of the matrix

D; to vanish for all j. So the eigenvalues n; of D; are given by tu; =

il X] |, where Xj = Sj?\fl +tj7\..

For unitarizability questions we will always compare the ends at
z=0 and z =1. To obtain results for other ends as well, we apply
certain fractional linear transformations. We will only consider such
fractional linear transformations, for which the set of singularities is

changed from {0, 1, o, a} to {0, 1, ©, a,}.

Remark 5.2. From Section 3.2 we know that the solutions H of the
differential equation dH = Hn with n as in (5.1.2) are of the form H =
[M’i n

Ayy ¥

differential equation:

) with y;, y9 being a fundamental system for the ordinary

y'=vry = 0. (5.1.3)

’

(Since v = A7, we have VV = 0.) So the fractional linear transformations

that need to be considered, are the transformations which change the

singularities of the differential equation (5.1.3) in the desired manner.
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According to [20, Sec. A.2] there are exactly 24 such transformations, but

we will make use only of the four transformations listed hereafter.

Below we list the fractional linear transformations, the singularities
after the transformation and what monodromy matrices will be compared
after the transformation. The singularities are listed in order so that the

first is associated (after the transformation) with the coefficients by and
¢p, the second with b; and ¢;, etc. The monodromy matrices are also

given this way, that is the monodromy matrix ¢; corresponds to the end

associated with b -

Transformation | Sing. at by | Sing. at b; | Sing. at b, | Sing. at by | Monodromies
2z 0 1 o a 00, 01
z—>1-2 1 0 o0 l-a 01 00
z az 0 % 0 1 005 02
zb (a-1)z+1 11 0 © 1 01, 02
-a
e 2 o a 0 1 09, 0
(5.1.4)

More precisely, we do the following: First we compute y™n(z) for

Az + B
1)

(1, 2) -entry. Then we gauge with an appropriate matrix, such that the

which gives an off-diagonal matrix, with v'- A7l as

(1, 2) -entry becomes AT again and we obtain a new potential n*. For

the first three cases, this gauge matrix is just a constant diagonal matrix,

for y(z) :% we first gauge with the matrix diag(z, %) which leaves

. . . . 1 0
%-entrles on the diagonal, gauging with R = ( 1), where p = A é
D

gives again off-diagonal form with ™! as (1, 2)-entry.
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In all cases, the gauge is balanced by a dressing with some matrix, if
we normalize C(z,, A) = I = F(z,, Z., L), then this dressing matrix is
just the inverse of the gauge matrix at the basepoint z, (see Section 2.8).

As a consequence, since k-noids have umbilics, the monodromy matrices
transform via conjugation by this matrix (cf. [7]). But since we are only
interested in whether the monodromy matrices corresponding to the two
ends are simultaneously unitarizable, this has no effect on our

investigations.

For the (2, 1)-entry of this new potential n*, which we denote again
by t (and the (1, 2)-entry is again v = A1) we thus obtain, respectively:

e the original expression is

o b G g e (5.1.5)

22 (z-17% (z-a? # #-1 z-a

e applying z > 1 — z gives

Ly, b by a9 ,Z% "% (516

+ + ,
£ @1 (-0-apf = -1 2-(-9
e applying z — az yields

bo by by acy  acy acy

-Vt = —+ + + + , (5.1.7)
22 (2—1)2 ( 1)2 z  z-1 z—l
Z—_
a a
e applying z = (a —1)z +1 results in
—r:—%+ b22+ by 2+(a—1)cl+(a—1)02+(a—1)co’
2 (z-1) 1 z z-1 1
Z_I—a l-a
(5.1.8)

e and applying z %, we obtain (after a straightforward

computation):
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—vrz—b%+ by 5+ b 5
z2 (z-17 (z-a)

1
7 (=2by —acy)

1 2
+ — (2B + 2bga + ¢y + +
az(bl 0a + ¢ +a“cy) P

+m(—25’1 - ),

(5.1.9)

where b, = by + by + by + ¢; + acy.
In the cases (5.1.5)-(5.1.8) the calculations are trivial, in the case

(5.1.9) we have the following: First, calculating y*'n =: 7| gives

0 )
n= Z ldz
by . —ab; —by L% ¢ . aq 0

@ (z-a alz-1)7 z  z2z-1) zz-a)
a
0 7
| b —ab -b -y  —cC c —c c ® e
by 12 2 o+ 0,7C_ C _~a_ G 0
@ (z-aq) a(z-1) z z z-1 z z—-a
a
2 ¢ =0 0 - 2_2 1
= z.
bo , OlblzJr by . ¢ . _a 0
@ (z-a)P a(z-1* #-1 z-a
-1
Then, gauging with P(z) := diag /— %, /— % gives
z z
PIRP + PP
-1 AL
= 2 dz
by a’b by —acy —ac 1

+ + + +
22 22(z-a) Z22(z-1° 2%(z-1) (z-a)2® 2

1

0 .
), where p = A 1 results in:
p 1 z

and finally gauging with R :(
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(0 S) with v = L and

T
2h 2b
b z+b - 2 +3b 2byz + 3b. acez + ac
_ 0g a a 2 2 2 2
T=— 5 + T+ 5t 5
z z (z-a) (z-1) z
A i
—z+4ec - =
—acy a 1+ a
z-1 22 z-a

by

1 2
17 (z-af

:—2~(b0 +b +by +acy +c¢p)+
z

1 2b1 C1 1
+z(a +2b2 a+a02)+2_1 ( 2b2 GCZ)
. (_&_c_lj

Z2—Q a a

1 by, b

=—-(by +by +by +¢; +acqg)+ +
22 ' (z-12 (z-a)?

1
z-1

+ é (2b1 + 2b26l +c + 02(32) + (— 2b2 - acQ)

+ —a(zl— 2 (—2b; —¢).

5.2.

In the case of trinoids it turned out to be useful to convert everything
to a setting, where one exponent of each finite singularity in the equation
(3.2.2) is 0. While in the trinoid case this transforms everything into a
hypergeometric equation, in the 4-noid case we obtain a Heun equation.
We set

y=2%z-1)1(z - a)%w, (5.2.1)

where r; = %(1 + Zuj) in view of (3.3.7) and (3.5.6). Here p; denotes the



CONSTRUCTION OF PLANAR CMC 4-NOIDS OF GENUS g =0 347
eigenvalue of the Delaunay matrix, associated to the end z; (see, e.g.,

Remark 5.1).

A somewhat lengthy but straightforward computation leads to the
differential equation

1
wu_'_( +2MO +1+2I”L1 +1+2H2jw/
z z-1 z—-a

+ {%[—%(1 +2u0) (1 + 2u1)—%(1 +2u0) (1 + 2ug) + Co}

1

b 5 0 200) @ 2+ o (20 (L 2p) 4

[
e

a3 1 205 20) g (2 2) ¢ e o

(5.2.2)

Remark 5.3. Comparing (5.2.2) to [22], we see that the Aj ’s of [22,
(3.1)] are exactly the coefficients we call c¢;. We will make use of the

results obtained in [22] later.

It will be convenient to rewrite the coefficient Q at w. Again, a

somewhat lengthy but otherwise straightforward computation yields:

(0 B0 ) o

* m(é 1+ 2u7) (1 + 2ug) + T12), (5.2.3)

where
—To1 — —1 Tyo =
01 a 02 €o>

1

Th —
01 a-1

Tig =
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and

1
a-1

1
ETOZ + T12 = C9g. (524)

Note that, since cy +¢; +cg = 0, this is an under-determined linear
system for the Tj;. For given a, ¢y, ¢;, cg, one of the Tj; can be chosen

arbitrarily.

“

In the case of trinoids, all the terms involving the number “a” are not

present. In this case, we have the hypergeometric equation in the form

1+2 A
pra (1 2Mo (TH2h 0, Ao g (5.2.5)
z z-1 z(z-1)

Here the coefficient at v’ is frequently written in the form

1+ 2ug +1+2p1 _(a+B+1)z -y

2.
z z-1 z(z-1) (5.2.6)
and
1
AO]. = Q,B = 5(1 + 2“0)(1 + 2“1) + TO].' (527)
It turns out, see Section 3.6, that

y =1+ 2ug, (5.2.8)

_1 (0,1)
“=3 1+ 2ug + 2u; +2uy), (5.2.9)

_1 (0,1)
B= 5(1 + 200 + 201 — 2uy ) (5.2.10)

satisfy (5.2.6) and (5.2.7) in the case of trinoids. Here ugg’l) s an
expression corresponding to ps in (3.6.1)-(3.6.4), i.e., representing the
eigenvalue of the Delaunay matrix at the end z = o, with respect to the

differential equation (5.2.5), which represents a trinoid with ends at
z=0,1, .
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In the case of 4-noids, we define Ajy; by exactly these expressions:

Agp = [0+ 20 + 2w ) - 4OV, (5.2.11)

N

where we choose ugg’l) such that (5.2.8)-(5.2.10) define a CMC-trinoid

without cylindrical ends.

For this to work, we need to define 7j); so that we have

Agy = =1+ 200 +2m ) — 4O D)%)

N

1
= E(l + 2“0)(1 + 2“1) + TO].' (5212)

A straightforward computation, using only (5.2.12), shows
(1 o1\2) (1 2} (1 9
To: = (4 (heo”™) ) (4 H1j (4 Ho)- (5.2.13)

From the derivation of a, B, y; in Sections 3.5 and 3.6, we know that

(0,1)

IR 1s an expression like p;, derived from some Delaunay matrix.

Therefore, using (3.5.7), we see that Tj; is of the form

TO]. = (}\. - }\._1 )2t01, (5214)
with to]_ e R.

Similarly, we consider the differential equations resulting from
(5.2.2), if the terms involving the end at z =1 and z = 0 respectively,

are not present, this yields
1 2 2
Agy = 7 [0+ 200 + 205) — 4D D))

1
= 5(]. + 2“0)(]. + 2“2) + T02, (5215)

Too = G—(ugg’2))2j—&—u%]—(l—ug) (5.2.16)
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and

1
Arp = [0+ 20 + 205) - 4l PY)

= 5 1+ 20) (1L + 2up) + T, (5.2.17)
1 1 1
Tip = (Z—(u&%’”)zj—(Z—u%)—(z—uéj. (5.2.18)

We note that (ugé’j))Q are “Delaunay-like expressions”, representing

freedom in the choice of parameters. In particular
L@y = g -ty R 5.2.19
Z_p'oo)_(_ )'mij,  my € R, (5.2.19)
see equation (3.5.7).

5.3.

For the construction of 4-noids it will be necessary to know the range
of the values of

COSTE(le|—|X2|—|X3|)'COSTC(|X1|—|X2|+|X3|)
sin 271 X7 | - sin 27 X |

(5.3.1)
more precisely. We note that the denominator vanishes, since 0 <| X j |

T2

cylindrical ends only. Therefore, the denominator vanishes if and only if

< l, if and only if | X; | = 0, % or | X, | =0, % But we consider non-

| X, | = % or | X, | = %, which is equivalent with A = £1.

If we consider a non-cylindrical end, then | X j | is an even function of
A. To see this, we first note, that being non-cylindrical is equivalent to
sj #t; for X; =s;h+ tjfl. Without restriction, we may assume ¢; >

s; > 0, this gives

J

- - Sj ,-2 - Sj .2
|Xj|=\/(tjx+ij1)-(tjx1+ij)=\/tjx(uéx j-tjxl[uﬁxj
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S; S;
=t 1+ 1+ Lo
Lj tj

Now we use the series expansion for ¥1 + z, where | z | < 1. We know

|k2|=|k_2|=1,s0

5 yx2
t.

< 1, consequently we have
J

R R S e BN SR S Pt S
|X]|—t] (1+2tjk + j(1+2tjk+ J

Hence, it suffices to consider the case A = 1. First we rewrite
sin(27] X |) = —sin(n(2| X; | -1)) (5.3.2)
and
cos(n(| X7 | —| Xo | —| X3 1))

. 1 1 1
:—Sln(ﬂ(le|—§+§—|X2|+§—|X3 0), (533)

cos(n(| X [ = | Xg [+] X5 )
. 1 1 1
= Sln(ﬂ:(le |—§+§—|X2 |+|X3 |—§jj (534)

Using (5.3.2), (5.3.3) and (5.3.4), we see that the fraction (5.3.1) is

equal to

w2 X [-1) w2 Xp|-1)
Snn@ X, [-1) sinn@ Xy |- 1)

: 11 1
Sln“(|X1|—§+§—|X2|+§—|X3 |]

X

1 1 1
(1% 1-5+5-1%l+5-1% )

: 1.1 1
Sln“(|X1|—§+§—|X2|+|Xs|—§)

1 1 1
(1% 1-5+5-1%1+1%]-3)
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1 @K |1+1-2 Xy | +1-2] Xy )@ Xy [~1+1-2] Xy [+2 Xy [-1)
4 2/ Xy [-1)(2 Xz [-1) '

(5.3.5)
We observe that the expression above consists (naturally) of five factors.
We know that none of the first two factors vanishes, since 0 <
(1 -2/ X;|) < n (Remember that | X;|=p; and 0 < y; S% for the
Delaunay matrices we consider.)

Lemma 5.1. For A = %1 the expression (5.3.5) is equal to

2 2
1 (sgt3)” — (s1t — sat9)
4 Sltl . 32t2

: (5.3.6)

where | X; | = \/(sjk_l +250) (551 + tjk_l) for j=1,2, 3.

Proof. Since 2| X; | -1 = 0 for & = 1, the first four factors in (5.3.5)

are equal to 1 for L = +1. We also note that in view of (3.5.7) we have 1 —
= —43]-15]-752(1 -22)%( +2| X |)_1 for any A € S'. Near
A =1 we thus have the expansion 1-2| X; | = (1 - W2)2(- 2sjt; + O(g)),
where A =1+ ¢ (Note that | X; | = % for A =1.)
For the last factor in (5.3.5) this yields near A = 1:

T2 2+ 0E) T (122 (- 255t + )

x (= (1= 22)2 (= 25181 + O(e)) + (1 — 32 )2 (= 259ty + O(¢))

+(1 = 22)%(= 2s5t5 + O(e)))

x (= (1= 22)2(= 2518 + O(e)) + (1 = 32)%(= 29t + O(c))

— (1= 22)%(- 2s3t5 + O(e))
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_ 1 -1 -1
=7 (25181 + 0() ™ - (=2s5t5 + O(e))

x (2811 — O(e) — 289ty + O(g) — 2s3t3 + O(¢))
. (281t1 - 0(8) - 282t2 + 0(8) + 2S3t3 + 0(8))

So taking the limit ¢ — 0 gives

%-(431151 - Sote )L - (2818 — 2soty — 2s3ts) (2818, — 2sote + 2s5t3)
= Isiiisaly (st — sat9)” = 5383).
Since all expressions are even in A, the same argument applies to
A = —1. Altogether, we thus obtain at A = +1 the expression (5.3.6).
Corollary 5.2. Equation (5.3.6) has the value 0 if and only if
S1t1 = Solg + S3tg Or Soly = Sgt3 + Sytq. (5.3.7)
Moreover, the value 1 is attained if and only if
sty = S1t; + Sato. (5.3.8)
Proof. Note that s jti >0, since we have embedded ends, that is we

consider asymptotically unduloids.
6. Spherical Polygons and Unitarization

6.1.

In this chapter, we compare our setting to the one used in [3]. We

consider the quantity:
=5~ W (6.1.1)

In [11, Sec. 3.4 and Sec. 3.6], it is shown that the eigenvalues of the

+2mi| X ;
. are —e | ;1 and hence

monodromy matrix y; about the end z = z;

we have %tr){j = _%(e%l‘xﬂ + e_2m‘Xj‘) = —cos(2mip ;). Consequently, we
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obtain
try; = cos(2mv;),
since cos(n — 271 X |) = —cos(27] X |). (Those results can also be found

in [17] and [23] or follow from the considerations in Sections 3 and 4.) A

consideration of the eigenvalues at A = 1 shows H?:l xj =1

In the rest of this section, we will present geometric interpretations

of the quantities v; as well as conditions on the v;, such that the y; are

all simultaneously unitarizable.
6.2.
In this section we consider spherical n-gons.
Definition 6.1. A spherical n-gon is a simply closed continuous curve

consisting of n geodesic segments on S? with lengths in [0, =].

Please note, no further constraints are put on a spherical n-gon; in
particular, it may be non-convex, self-intersecting, or it may fail to bound

an immersed disk.

For the characterization of trinoids of genus g = 0 the following

inequalities are of crucial importance:

Definition 6.2 (Spherical n-gon inequalities). Let n > 2 and vy, ...,
v, € [o, %} Let P c {1, .., n} with | P| odd and let P’ = {1, ..., n}]\P.

Then for such a P, the inequality

Zvi—zvi—lpé_ISO (6.2.1)

ieP ieP'

is called an n-gon inequality.

The inequalities (6.2.1) were found by Biswas [2]. Of special interest
for us is the case n = 3. The “spherical triangle inequalities” (case

n = 3) are:
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vy < Vg + Vg, (6.2.2)
Vg £ vy + Vg, (6.2.3)
vy < vy + Vg, (6.2.4)
Vi +Vvg +vg < 1. (6.2.5)

The following basic result has been proven in [2] (see also [3]).

Theorem 6.1 (Spherical n-gon theorem). Let n > 2 and vy, ..., v,

€ [0, %} The following are equivalent:

() there exists an n-gon on S2, whose sides have lengths

(2mvy, ..y 21V),),
(i) vy, ..., v, satisfy the n-gon inequalities (6.2.1).

Note that for a nondegenerate spherical triangle, the inequalities
(6.2.2)-(6.2.4) are strict.

The relation between the results of Section 3.6 and the result above is

Theorem 6.2. Let v; be defined as in (6.1.1). Then the inequalities in
(3.6.5) are satisfied if and only if the v; satisfy the spherical triangle

inequalities (6.2.2)-(6.2.5). Hence, the monodromy matrices are

simultaneously unitarizable via r-dressing for some r € (0, 1) sufficiently

close to 1 if and only if the v; satisfy (6.2.2)-(6.2.5).
Proof. Since | X; | = % - v;, expression (5.3.1) becomes

cosn(| Xq |- | Xo|—| X3 |)-cosnl(| Xy |- | Xo | +] X3 ])
sin 2n X | - sin 2n] X, |

1 1 1 1 1 1
~ COSTE(g—Vl —(5—V2)—(§—V3JJ'COSTC(§—V1 —(§—V2)+§—V3)

B . 1 : 1
sin 275(5 - vlj - sin 275(5 - vz)
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COSTE(—%—Vl + Vo +V3]'COSTC(%—V1 + Vo —Vg)

sin(—2nvy + ) - sin(— 2wvy + T)

cos n(\/Q + vy — vy —%) . cosn(vQ - V] — Vg +%)

sin(- 2nv; + n) - sin(— 2nvy + 1)

Using the identities cos(x - %) = sin(x), cos(x + g) = —sin(x) and
sin(x + m) = —sin(x) = sin(x — n), we obtain

cosn(| Xy |—| Xo|—|X3])-cosn(| Xy |-| Xo|+]|X3])
sin 27| X, | - sin 2] X |

sin n(vg + v — vy) - (- sin n(vg — v; — v3))
— sin(- 2nvy ) - (= sin(- 2nvy))

_ sinn(vg + vg —vy) sinn(v; + vg - vy)
sin 2nvy sin 2nv; '

(6.2.6)
e Case 1. sin(2nv; ) # 0 and sin(2nvy) = 0.

In this case, we have vy, vg # 0, % Therefore, 0 < v{, vg < % and

no denominator is negative. Consequently the term (6.2.6) is nonnegative

if and only if one of the following four cases occurs:
(@) vi < vg +vg and vy < V] + Vg,
(b) vi > vg +vg and vg > v{ + Vg,

(¢) vi = vg +vg,

(d) vo

\a1 + V3.

But in case (b), we derive v; > vg +Vvg > Vg +vVvy +Vvg = vy +2v3, a

contradiction (because vy > 0).

In case (c), i.e., v; = vy +vg, we also have v{ +vg —vy = vy +

Vg + Vg — Vg = 2\/3 > 0, i.e., Vo < Vi t+ V3.
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In case (d), i.e., vg9 = v{ + v3, we obtain vg +vg —vy = 2vg 20,
that is v; < vy + v3. Altogether, we have shown that the expression
(6.2.6) is nonnegative if and only if v; < vg +vg and vy < v; + vg, le,
if and only if (6.2.2) and (6.2.3) are satisfied.

Next we characterize, when (6.2.6) is smaller or equal to one. Note
that

sin (vg + vy —vy)-sinn(vy + vy —vy) <1

sin 2mvy - sin 27vg
is equivalent to
sin(vg + v3 —vy)-sinw(vy + vy — v) < sin 2nv; - sin 2nvg.
Using standard trigonometric identities, we obtain

%[cos n(vg +vg — vy —(vi +v3 —Vvg))

—cosm(vg +vg — vy + (V] +v3 —vy))]
< sin 2nvy - sin 27nvg,

whence we have

cos(2nvy — 2mvy ) — cos 2nvg < 2 sin 27vy - sin 27vg.
Using again standard trigonometric identities, we derive

cos 21vy - €os 21vy + sin 271v; - sin 21vg — cos 2nvg < 28in 21tvy - sin 27vg,

thus

cos 2mvy - €os 2mvy — sin 2nvy - sin 2nvy < cos 2mvg,
which is equivalent to

cos(2nvy + 2nvy) < cos 2mvs. (6.2.7)

Clearly 2n(v; + vy) € (0, 2r) and 2rnvg € (0, mr). Since the cosine function is
strictly decreasing in (0, ), strictly increasing in (n, 2n) and has reflective

symmetry about x = =, condition (6.2.7) is satisfied if and only if either
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1 1
(@) vi +vy S§ and vg < vy +vg or (b) vi + vy ZE and vg <

L
2
(V]_ + Vg —%)=1—(v1 +V2), thatis, Vi1 + Vg + Vg <1.

So condition (6.2.7) is satisfied, iff (6.2.4) and (6.2.5) are satisfied.

e Case 2. sin(2rnv;) = 0 or sin(2rnvy) = 0.

In this limiting case (3.6.5) remains true, if also a factor of the
nominator vanishes. It suffices to consider the case v; =0, %, since
(6.2.6) is symmetric in vy, vg.

First examine what happens if v; = 0. Assume (3.6.5) is valid, then
we have either vg + v3 =0, or v3 — vy = 0. Since vg, vz 2 0, the first
equation can only be true if vo = 0 = vg, i.e., we only need to consider
Vg = Vg, in this case, clearly the triangle inequalities (6.2.2)-(6.2.5) are

satisfied.

Conversely, if the triangle inequalities are satisfied for v; = 0, we

obtain vy = vg, hence (3.6.5) is valid.
Next consider v = %, if (3.6.5) shall be satisfied, then either vo + v3

:% or vg = Vg +%. Since vg, vg S% the second equality implies

vy = 0, thus only the first equality needs to be considered. But then one

easily checks that the triangle inequalities are satisfied.

Conversely, if v; = % and the triangle inequalities are satisfied, then

—

one obtains from (6.2.2) and (6.2.5), that % < vg +vg and vg +vg < 3

1
hence vy + vy = 3

6.3.

In the last section, we have proven, that the spherical triangle

inequalities for v; are equivalent to the simultaneous unitarizibility of
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matrices M; € SLyC with trM; = cos2nv; and [[M; = I. There is

another, more direct approach for this proof, which we will sketch now
(see, e.g., [3], or [23]). In the case of three matrices, the v; can be

interpreted geometrically.
First we note:

Lemma 6.3 [23]. Let M € SUqy with eigenvalues exp(+2mniv), where

0<v< % Then M can be written as M = cos(2nv)I + sin(2nv)A =

exp(2nvA), with a uniquely determined A e sug, such that det A = 1.

Conjugation with M describes a rotation about A by an angle of 2nv,
therefore we call A the axis of M.

D1 +tipy @ tigy

Proof. Let M = ( ]
—q1 +19y P — g

]. Since the eigenvalues of M

are exp(+2miv), we have 2trM = 2p; = 2cos(2nv), and therefore p; =

Dy q1 + 19y

cos(2nv). Consequently, M — cos(2nv)I = ( , .
—q1 + 199 — P2

), which

obviously is in suy and det(M — cos(2nv)I) = p5 + g + g5. On the other
hand, we have 1 = det(M},) = cos?(2nv) + p3 + ¢ + ¢3, thus sin®(2nv) =
1-cos?(2nv) = p3 + ¢ + q% = det(M — cos(2nv)I), therefore, we have M =
cos(2nv)I + sin(2nv) A, where det A = 1, and A € suy. The uniqueness
of A is obvious.

Since det A =1 and trA = 0, for the characteristic polynomial we
obtain A% —trA-A+detA-I =A%2+1=0, so A% =-1. An easy
calculation then shows exp(2nvA) = cos(2nv)I + sin(2nv)A = M.

Every rigid motion can be expressed as a conjugation with a matrix
M e SU,. Since clearly MAM ™ = exp(2nvA)A exp(- 2nvA) = I, the axis

A is left invariant, hence M describes a rotation about A, the rotation
angle can be calculated explicitly (cf. [13, Section 2.4]), and is given by

2mv.
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Before we give a geometric interpretation of the v;, we state

Lemma 6.4. Let +1 + My, My, M3 € SU, such that M{MsMs = 1,
and let A;, be the axis of M;,, k =1, 2, 3. Then the axes Ay, k =1, 2, 3,
are linearly independent iff [M;, Mj] # 0 for i # j. In this case, we call

My, Moy, M3 nondegenerate.

Proof. First assume that, e.g., [M;, M5] = 0. An easy computation
shows that this is equivalent to [A4;, Ag] = 0, since sin(2rv;)sin(2nvy)
# 0 (otherwise M; = £I or My = +I). But since A;, # 0 (otherwise
My, = =£I), AjAy = AgA; isequivalent to Ay =l +ryA;, so AjAy =

Ay(nI +r9Ay) = nA; -1, and I =1 tAy - ;—gAl follows. Therefore
1

2
1 T 7 7

Since multiplying out M{MqoM3 = I yields
Ag = (cos 2mvy cos 2mvy — cos 2mvg) ] — cos 2mvy sin 2nvy A
—cos 21vy sin 2nvg Ay + sin 2nvy sin 2nvgAg Ay,
the argument above shows Aj e span(4;, Ay).

Conversely, let Aj e span(A4;, Ay). Without restriction, we may

assume that A; and Ay both lie in the x-y-plane, hence they are off-

diagonal matrices. Using My = Mgy lMl_ 1, we derive
sin(2nvg)Ag = (cos(2nvy ) cos(2nvy ) — cos(2nvs)) I
+ sin(2mnvy ) sin(2nvy ) Ag A — cos(2nvy ) sin(2nvy ) 4;
— cos(2mvy ) sin(2nvq ) Ag. (6.3.1)

Since A; and Ay are off-diagonal, the product AsA; is a diagonal matrix.
Furthermore, since Ag is supposed to be a linear combination of A; and

A, it must also be an off-diagonal matrix. Hence, the diagonal entries
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on the right hand side of equation (6.3.1) must vanish. This gives
(cos(2nv; ) cos(2mvy ) — cos(2mvg)) I + sin(2mvy ) sin(2nvy ) AgA; = 0, thus

cos(2nvg) — cos(2nvy ) cos(2mvy)

AsA; =
271 sin(2mv; ) sin(2mtvy)

1. (6.3.2)

On the other hand, the relation M3 Lom 1My shows
sin(2nvy)Ag = (cos(2nvsy) — cos(2mvy ) cos(2nvy ) I
—sin(2nv; ) sin(2nvg ) A; Ag — cos(2nvy ) sin(2nv; ) Ay
- cos(2nvy ) sin(2nv; ) As. (6.3.3)
Again, the diagonal entries in (6.3.3) must be zero, thus we obtain

cos(2nvs) — cos(2nvy ) cos(2mvy)

Apy = sin(2nv; ) sin(2mvy )

I = A A,. (6.3.4)

And consequently MMy = MyM;.

Theorem 6.5 [3]. Let My, My, M3 € SUy be nondegenerate, such
that M{MyMs = I. Let A, be the axes of M} and x; = cos(2nvy,). Let

Py, denote the planes perpendicular to A; and containing the center of

S2. Then the side lengths of the triangle formed by Pj; with angles

1

5 trA;A; are 2nvy,.

Consequently, the v; satisfy the (strict) triangle-inequalities (6.2.2)-
(6.2.5).

Proof. First note that a spherical triangle is completely determined
by the three inbound angles, i.e., by %trAlAz, %trAlAg, and %trAQAS

and the triangle can be constructed using the law of cosines for the angles
of a spherical triangle, which is a consequence of the law of cosines for
the sides of a spherical triangle, see [24, Kap. 10]. Thus it suffices to show

that 2nvy, 2nvy and 2nvg all satisfy the law of cosines for the sides of a

spherical triangle. Also note that M, My, M5 are nondegenerate, hence
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A;, Ay, Ag are linearly independent and span a nondegenerate spherical

triangle. Therefore, the side lengths fulfill the strict spherical triangle

inequalities.
Write M), = cos(2nvy)I + sin(2nvy,)Ay,. Then M;' = M; M, so
cos(2nv; ) I — sin(2nv; ) A;
= (cos(2mv;) I + sin(2nv;) A;) (cos(2nvy ) I + sin(27vy,) Ay ).
Multiplying yields
cos(2nv;)I — sin(2nv; ) A;
= cos(2nvj)cos(2nvy ) I + cos(2nv ;) sin(2mvy, ) Ay

+ sin(27v ;) cos(2nvy, ) A; + sin(2nv ;) sin(2nvy, ) A Ay,

Since trA; = trA; = 0, taking the half-trace now gives

cos(2mv;) = cos(2nv ;) cos(2mvy, ) + % sin(2nv ;) sin(2nvy, )trA;jAy,.  (6.3.5)
This is just the law of cosines for the sides of spherical triangle, finishing
the proof.

Theorem 6.5 immediately shows:

Corollary 6.6. Let M;, My, M3 € SL,C be simultaneously

unitarizable with M{MqoMs = 1. Let v}, be defined by

%ter = COoS 2mvy,.

Then vy, v, Vs satisfy the triangle inequalities (6.2.2)-(6.2.5).
Proof. Assume that My, M,, M3 are simultaneously unitarizable.

Let P be a unitarizer of the matrices My, My, Mg, that is PM;P1

e SUy. Let B; = PM;P ~1. The trace is invariant under conjugation of a

matrix, so
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%ter = %ter = cos(2nvy,).

By Theorem 6.5 the v, satisfy the triangle inequalities.

Remark 6.1. (1) Theorem 6.5 together with Lemma 6.4 suggests that
equality in the triangle inequalities corresponds exactly to the case of
commuting matrices (regarding equality as a type of limiting process of
the construction carried out in the proof of Theorem 6.5). Indeed, this is
the case, those results (using completely different techniques) can be
found in [25].

(2) Note, given a spherical triangle, the “reverse construction” of the
proof of Theorem 6.5 does not lead to unitary matrices M; with
MiMoMs = I, more precisely: Take a spherical triangle with sides q;,
whose side lengths are 2nv;. Let A; be the unit vectors perpendicular to
the plane containing aj;. Now consider the following map M: First, rotate
about Ag by the angle 2nvg, then about A, with angle 2nvy and lastly,
rotate about A; with angle 2nv;. This map is described by the matrix

MiMy;Ms € SU,, where M, = cos2nvy + sin 2nv, Ay, see Lemma 6.3.

In general, M is not the identity map, but a rotation, whose axis is
given by the vector through the vertex ps opposite to as. Hence in

general M{MsMg # I. For example, consider a spherical triangle, where
V] = Vg = %, and vg # %, l.e., where psg is the pole of the geodesic

as. Then py (the vertex opposite of vy) is fixed by M, but M(ps) # ps!
(Since pjs is the pole of Mg, it is invariant under this motion, M9 moves
ps along the geodesic containing ay, and clearly My(p3) does not lie in
the plane containing a;, hence by M; the point My(p3) is moved in a
plane parallel to the plane containing a;, thus M;(My(p3)) ¢ a;, so
p3 # M{(My(p3)) = M(p3), because ps € a; N as.)

It would be interesting to know whether there are additional

conditions on the spherical triangle, such that the above construction
yields M1M2M3 = 1.
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Unfortunately, in the case of n-gons for n > 3, the n-gon inequalities

do not provide a sufficient condition for the unitarizability of the

monodromy matrices, but at least we have (Cor. 3.9 in [3]):

Theorem 6.7. Let My, ..., M, € SLoC with HMk = I. Suppose

that My, ..., M, are simultaneously unitarizable. Let v be defined by

%ter = cos 2nvy,. Then vy, ..., v,, satisfy the n-gon inequalities (6.2.1).

The proof is by induction on n, where Theorem 6.5 provides the

starting point for the induction.

Up to now, no additional conditions on the v; are known, that would

characterize equivalently the simultaneous unitarizability of the

monodromy matrices.

7. Unitarizability in the Asymptotic Limit

7.1.

Since for n > 4 the spherical inequalities do not provide sufficient
conditions for the simultaneous wunitarizability of the monodromy
matrices and we do not know other conditions for the simultaneous
unitarizability, it does not seem advisable to work with the monodromy
matrices of the 4-noid directly. Instead, we consider the trinoid, which is
created in the limit @ — oo. For this trinoid, we are able to control the
behaviour of the monodromy matrices by the v;. If in (3.6.5) we could
ensure the strict inequalities, then we could use the results of the trinoid
also in the case of any a large enough. So we seek conditions on the v;
that provide strict inequalities. With the help of Corollary 5.2, we can

show

Corollary 7.1. Assume vi +vqg +vg <1 forall L St vy < vy + Vs,
Vg < Vi +vg and vy < vy +vg for all L e S'\{x1}. Then in (3.6.5) we

have strict inequality from above and from below for A e st.
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Note, since v; = %—| X; |, we have vj =0 for A = +1. So the strict
inequalities v; < v; + vy, {i, j, k} = {1, 2, 3} can only be satisfied for
A = 1. We would also like to reiterate that we consider exclusively non-

cylindrical ends, i.e., | X; | #0 forall & e st

Proof. (1) First we show that equality in (3.6.5) can only occur if
equality occurs in the triangle inequalities (6.2.2)-(6.2.5).

In (3.6.5), we have equality from below if and only if
cosn(| X1 |—| Xp || X5]) =0 (7.1.1)
or

COSTC(l X1 |—|X2 |+|X3 |)= 0. (712)
. 1 1 . .,
Since 0<|Xj|S§, we have —1<|X1|—|X2|—|X3|<§, Le., it is

sufficient to consider the interval }—n, %[ in (7.1.1). Hence, (7.1.1) is

equivalent to n(| X7 |- | X || X3|) = —g and thus vi = vy + vg.

Since —% <|X1|-|Xg|+| X3 | <1, equation (7.1.2) is equivalent to
o] X1 |- | X, |+|X3|)=g,hence Vo = Vi + Vs

If however, we have equality from above, this implies, compare
(3.6.6), cos(2n X; | — 21 Xy |) + cos(2n] X3 |) = 2sin(2n] X7 |)sin(2n] X5 |),
which is equivalent to cos(2n] X; | — 21| X |) + cos(2n] X3 |) = cos(2n] X7 | -
27 Xy |) — cos(2n| X7 | + 21 X5 |), hence cos(2n| X7 | - 27 X3 |) + cos 27| X3 |
= 0. From this, we obtain 2n| X; |+ 21| X5 | = n — 27 X3 |, whence —2v; +

1-2vg +1=1+2vg -1, 1€, vi +vg +vg =1.

(2) Now we show that the equalities for A = +1 in Corollary 5.2 imply
that the inequalities in (6.2.2)-(6.2.5) are not strict for all A e S'\{+1}.
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By equation (3.5.7), we have %—|Xi |? = —s;t;(A"t —1)%, hence

| X; | = \/ +s;t;("1 = 2)%. For v;, we thus obtain

1 1 1 -1 2 1 1 -1 2
Vi=§—|Xi|=§—\/2+Siti(7\. —7») ZE—E\/1+4Siti(7\. —7&)

Since s;t; < % and | (\7! - 2)? | =2 Im(R) |2 < 4 for & e S' sufficiently
close to +1, we have | s;#;(A"F = 1)* | < 4 and thus we may use the series
expansion v1+¢g =1+ le —%82 +--, where & =4s;t;(x"1 —=1)%, this

2

gives

Vi =

55 (13 st -0 - 4 (s <R oG - 3))

—§<4siti 07 = 1)) + g Wit (071 =07 + 007 - 3)%)

= —st; (W =02+ S2E0T =) ot - 0)). (7.1.3)
Note that s;t; > 0 (we only consider embedded ends, i.e., asymptotically

unduloids) and (A" = %)% < 0. For example, the inequality v; < vy + v

then reads
—sty W =) + 22 -0t ot - 0)8)
< —soto(W = )2 + 823 (T — ) = sgta (W — 1)
+s2207 =) v ot =), (7.1.4)
Hence we obtain
(sftf - —s35) (=t ot - 0)°)

< (s1t; — Sotg — s3t3)- W7 =22 + O(T = )°). (7.1.5)
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Suppose now, we had s1¢; = sgly + S3i3, then
(gt + sat)* = 53t — s33) 07" - )" + O - 1))
<0+0((x -8 (7.1.6)
follows. Hence we would obtain
(s3t2 + s2t2 + 2sotosgts — sats —s2t2) (W —a)?

<0+0((t =25, (7.1.7)
that is

289953tz (M — 1)t + O(MT = 1)8) < 0. (7.1.8)

But sytgssts as well as (A1 —2)? are positive, so for | (A1 —4)| small

enough, we obtain a contradiction. The other cases follow accordingly.

7.2.

In Section 5.2, we have determined T(; by (MSQ’”)Q, Tos by (MSQ’Z))Z

and Tjy by (ug’z))2, respectively. In view of (5.2.19), each of these

parameters represents one real degree of freedom. In this section, we

discuss restrictions, which are necessary for the existence of 4-noids.

First we consider T(;. In the limit @ — o, the coefficients of (5.2.2)

reduce to give a hypergeometric equation. To this equation we can apply

(3.6.5), where | X | are to be replaced by u; (compare Remark 5.1).

We know from Corollary 7.1, that, for A e Sl, we have strict

inequalities in (3.6.5), if for pg, p; and ,uS,?J) and the corresponding v,

vy and v((,g’l) = %— ugg’l), we have

Vg < vq + v((x?’l), v < vg + vf,?’l), v&?’l) < vg +vy, and
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Vg + vy + vgg’l) <1 (7.2.1)
for A = +£1.

In view of [22], which inter alia states, that the so-called connection
coefficients (coefficients which specify how the power series solutions
around different singularities are related) depend holomorphically on the
parameters of the Heun or Hypergeometric equation, we obtain that the

n; depend holomorphically on the parameter a. Hence, taking a — =«

transforms the Heun equation (with four singularities) holomorphically to

a hypergeometric equation (with three singularities) with parameters p,

0,1
M1, Hgo’ ),

In particular, for a sufficiently large, the inequality (3.6.5) for the
parameters pg, i, ugg’l) in place of | X7 |, | X5 |, | X3 | is still satisfied.

Hence, we obtain

Theorem 7.2. If (7.2.1) is satisfied, then the monodromy matrices for
the singularities at z = 0 and z = 1 are simultaneously unitarizable via

r-dressing for some r € (0, 1) sufficiently close to 1 if a is sufficiently large.

7.3.

Next we apply the transformation z — az. Then in the original

Fuchsian equation we have the coefficients by, acy, by, acs, and by, ac;
at the singularities z = 0, 1 and L respectively (see Section 5.1). The
a

transformation (5.2.1) then yields the Heun equation

W'+ 1+ 2py +1+2u2 +1+2p1
2 z-1 1

a

w' + Quw = 0, (7.3.1)

where

~ 1 1 a
G = 2~ 50+ 200) L+ 2up) ~ (L 200) (1 + 201) + acg|
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1
-1

+
z
1-=
a

L |a

12
Z__
a

+

1-=
a

Combining terms as before we rewrite Q in the form

where

~ 1 ~
Aoy = 5(1 +2u0) (1 + 2ug) + To1,
~ 1 ~
Agg = 5(1 +2u0) (1 + 2uy) + T,

~ 1 ~
A = 5(1 +2u9) (1 + 2py) + Thg,

and

— TOl — GT02 = QacCy,

le = acoy,

~ 1

Tm—1
1,
a

GTOQ + 1 1 T’12 = acy.

a

Choosing

Toy = Tog, Tog = To1, and Tip =Ty

1 1
5(1 +2u0) (1 + 2u2)+—1(1 +2u9) (1 + 21y ) + acy
{1-5)

(1+2uo)(1+2u1)—ﬁ(1+2uz)(1+2u1)+a01 .
2

(7.3.2)

(7.3.3)

(7.3.4)

(7.3.5)

(7.3.6)

(7.3.7)

(7.3.8)
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it is easy, in view of (5.2.4), to verify that (7.3.7) is satisfied. Here again,
one of the Tij can be chosen arbitrarily for given a, ¢y, ¢y, cg, cf. remark

after equation (5.2.4).

Defining analogously ﬁ&?’l) etc. via the equations corresponding to

(5.2.12), (5.2.15) and (5.2.17) it is clear now that we have

G0 _ 02) 50.2)

00, FOD 0, D -2 ang

“'OO b
Ag; = Agz, Aps = Agi,  Apg = Aps. (7.3.9)

Next we consider the limit @ — o: Carrying out this limit for the

coefficients, we obtain the equation

. 2+ 2u0 + 214 " 1+ 2pg . Agg + App ¥ Ao v=0. (7.3.10)

In view of (5.2.12), we obtain for this differential equation at z = 0 the

exponents

s =~ (1+ 200 + 2y) £ udD). (7.3.11)

Using the substitution v = z°z with s = s, yields the hypergeometric

equation

(0,1)
wre | 1P T2, A (7.3.12)
z z-1 z(z-1)

where A = s(1 +2uy) + Agg + Ajg. Writing

A= —[1+2uy +2u0V) - 4y?] (7.3.13)

N

we obtain

Lemma 7.3. Retaining the notation introduced above, we have

w4 ud o ud - 0?2 - @22 @l -1l y2 o (7314

|
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Proof. Using formulas (5.2.15) and (5.2.17) for Ay, A5, we obtain

1
A = E(_ (L+2up +2) + 20 0D) (1 + 2n5)
11+ 200 + 200)% - 4(u02)2]
4 Ho K2 Moo
1w 20+ 200)? — 4u32))2]
4 M1 K2 e ™)

[(1+ 205 + 200 V)2 —ay?),

N

which is equivalent to

1

nOD + 2ng) = 5 (1+2u9) = (o + k1) (1 + 2u5)
1 2

+ 5 HD RS+ pg + g + 2uoHs - (1EP)

1 2, .2 1,2)\2
T TR R Ty + g + 2uug — ()

1 0,1)\2 2 0,1 0,1 2
:Z+(Mgo’ W +ud + p0 by + 200V, - v2,

and this is equivalent to

1
7Y =uf end - OV - W) - W)

7.4.

In order to determine Y of the last section, we consider yet another

transformation.

From Section 5.1, we obtain that the second order differential

equation under consideration is transformed by y(z) = y(%) into

&,'+(b;.§+ by S+ b 2+C_0+C_1+ €2 Jyzo, (7.4.1)
22 (z-1 (z-a) z z2-1 z-a
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where

éo = %(2[)1 +C1)+ 2b2 + acy,

Equation (5.2.2) thus yields

w,,+(1+2uDo +1+2u2 +1+2p1)

z z-1 z—a

' AOOQ Aool AQI _
w +(z(z—l)Jrz(z—a)Jr(z—l)(z—a) w=0,

where

N 1 A
A002 =§(1+2M00)(1+2M2)+T002,
A 1 A~
Ay = 5(1 +200) (1 + 2pp) + Topg,

A 1 A
Agy = 5(1 +2u9) (1 + 2py) + Thg.

Moreover, by (5.2.4), we have

- 1 4 "
- Ty _ETool = CQ,

A 1

T . - Ty = ¢
w2 T 12t 1)

1 4 1

= + Tyy = éo.
ool a-1 21 2

We claim that

N>

w2 = —2by —Tyg — Tho,

N>

w1 = —2b = Toy — Tha,

(7.4.2)

(7.4.3)

(7.4.4)

(7.4.5)
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Tz]_ = T12 (746)

satisfy (7.4.5). To verify these relations we insert into (7.4.2) the relations
(5.2.4):

éo = %(21)1 +C‘1)+2l)2 + acy

1 1 1
= E(2b1 + TOl - le) + 2b2 + a(a T02 + ] T12)

a-1 a

= 2by + Tpg + T1o +%(2b1 + Top +Thg) = — Tong _%Tool'

Similarly
R 1 . 1 -
€ =—2by —acy = —2by —~Tog ~Thg ——7Thg = Toz — —7 o1
and
n 1 1 1 1 1
. SR ) S R T
C2 a( L +er) g2 T+ 7T

1

1

:E(_2b1 —To1 —T12)+a_1T12
1 4 1 4

= ool+a_1T21‘

We have seen in Section 5.2 that the Tj; are independent of a. Hence, in

view of (7.4.6) the Ti~

; are independent of a. Thus the limit @ — « yields

A

v+ (1 T2, 14 2“2j 4 A 0. (7.4.7)

U =
z z-1 z(z-1)
We therefore write

Ay = i[(l + 20 + 20p)° —4Z%] = S (14 20,) (1 + 2u) + Tg. (7.4.8)

N

Substituting 79 and 7T}y from equations (5.2.16) and (5.2.18)

respectively, and using by = % - p%, we obtain
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%(1 +4p2 + 4p3 + 4p, + dpg + Sppuy) - Z2
1
= 5(1 + 219 + 2Hg, + dUghg) — 20y — T — Thg,

which is equivalent to

2 2 1 2 1 2
Moo + M2 :Z+Z —(5—2%)

(- o8)-(-w)-(3-40)

|
VR
7\
N
|
~~~
=
8=
[\
Ko
N
Do
N——
|
N\
N
|
-
=1
N—
|
N\
N
|
-
DO DN
N—
N

and this can be written as

2 2 1 2 2 1 0,2)\2 2 2
o tHy = =2+ 2 +2uz—(—z—(u£o’ )Y + +Ho]

1 1,2)\2 2 2
Consequently, we have

1 2 2
uZ +pf = Z+ZQ T (TR0 RTT. S (I E) LTt

and hence

1
T+ 2% =g ud e ud el - @) - @B (7.4.9)

Finally, we evaluate the relation b, =by +b; +by +0-¢co +1:-¢y
+a-cg, where we substitute Tj; for ¢, and use the formulas (5.2.13),
(5.2.16) and (5.2.18) for Tj;. A straightforward computation now yields

1
e A T TR () e ) e (M R (R B )
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A comparison with Lemma 7.3 yields Y = u, and a comparison with

(7.4.9) shows
Z = n00), (7.4.11)

In particular Y = p,, is an eigenvalue of some planar Delaunay matrix.

We thus can consider pg, uf,?’l), Y as eigenvalues of three Delaunay

matrices. Thus, we obtain, using the results of the last four sections:

Corollary 7.4. The monodromy matrices at z = 0 and z = a of the

original 4-noid potential are simultaneously unitarizable for some r e
(0, 1) sufficiently close to 1 for sufficiently large a if and only if o, ugg’l)

and Y satisfy the trinoid inequality (3.6.5).

8. Existence of Planar 4-noids

8.1.

We are now in a position to construct planar 4-noids by the method of

this paper.

Let v; and vgé’j) be defined as in Section 7.2, and denote by oq, 01,

09, 0, the monodromy matrices at z = 0, 1, a, », respectively.

We have seen in Theorem 7.2 that gy, ¢; are simultaneously

unitarizable for a large enough if and only if (v, vy, vgg’l)) satisfy (7.2.1).
Since Y = p,,, we obtain from (7.3.1), (7.3.12) and (7.3.13) for sufficiently

large a:

The monodromy matrices o, and g5 are simultaneously unitarizable

for some r € (0, 1) sufficiently close to 1 if and only if (vgg’l), Vg, Vo)

satisfy (7.2.1). (8.1.1)

If one combines the two transformations z+>1-2z and z — az,

then one obtains for a large enough:
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The monodromy matrices p; and gy are simultaneously unitarizable

for some r € (0, 1) sufficiently close to 1 if and only if (v&?’l), Vo, Vo)

satisfy (7.2.1). (8.1.2)

Note it is not surprising that (8.1.1) and (8.1.2) hold under the same
condition, because both conditions come from the reduction of the Heun

equation to a hypergeometric equation by “eliminating” the coefficient a.

The proof of the existence of planar 4-noids will consist of several
steps:

e Step 0. Show that (v, v, vgg’l)), (vgg’l), Vg, Vo) satisfy (7.2.1).
(This implies that the pairs of monodromy matrices, oy, 01, and gg, 09

and p;, o9 can be unitarized simultaneously.)

e Step 1. Since oy, ©; and gy, 09 and p;, 9 are pairwise
simultaneously unitarizable, also pg, 01, 092, 0, are simultaneously

unitarizable.

e Step 2. 09, 01, 09, 04 satisfy the closing conditions for ends.

e Step 3. The ends at z=0,1, a, © are all embedded (whence
asymptotically Delaunay).

Before we address Step 1, we note that the result of Step 1 already
implies Steps 2 and 3. By Step 1, the monodromy matrices oy, 01, 09

and p, are simultaneously unitarizable. By Theorem 5.3.1 of [11], the

monodromy matrices also satisfy the closing conditions for ends. And

using Theorem 5.4.1 of [11], we obtain that the ends at z = 0, 1, a, © are

all embedded (also compare Theorem 4.1).
8.2.
In this section, we will address Step 1.

Theorem 8.1. Retain the notation of the sections before. Let og, 01,

02, 0o € A(SLyC), be the monodromy matrices around the ends at
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z =0,1, a, ©, in particular we have

0001020, = *I. (8.2.1)

Assume that the monodromy matrices are pairwise simultaneously

unitarizable for some r € (0, 1) sufficiently close to 1. Then g, 01, 09,
0. are in fact simultaneously unitarizable for some r € (0, 1) sufficiently

close to 1.

Proof. Clearly, because of (8.2.1), it suffices to show that o, 01, 09

are simultaneously unitarizable.

Since p( is unitarizable and diagonalizable, we may assume, see
Section 2 in [12] (especially Proposition 2.2 and the following) that oq is
a(r) 0

0 a_l(k)j’ where a(A) € s and a(r) # £1 except for

given by p¢ = (

finitely many values of A (otherwise gy would be the identity map, and
the simultaneous unitarizability of o;, 09 would just be equivalent to the

simultaneous unitarizability of ¢, 01, 09)-

Since pg, o7 are simultaneously unitarizable, we may assume that

01 is already unitary, i.e., o; = ( p_ T). Instead of gy, 07, we may of

course consider the matrices D90D71 = o and Dngfl, where D =

diag(s, s') is some diagonal matrix in A(SLgC),, and DoyD7! =

2 .
( _p 9 s ] Write t in polar coordinates as t = ge’®. Setting s
—-Ts D

e—itp/Z then gives Dng_l = ( p q_j, SO W.r.g. we may assume
-q D

0
Qo=(a _1} 91=[p gj aeS,peC qgeR,g>0.
0 a -qg p

Now we consider py. By assumption, there exists S e A}(SLyC), such
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that SpoS™ and SpyS~! are both in ASU,. According to [12, Theorem
2.16], any S € A, (SLyC), with this property may be written as S = DT

where D is some diagonal matrix and TgoT_l is a diagonal matrix in
ASUjy. Since g is already diagonal, T is either diagonal or off-diagonal.

We only discuss the diagonal case (the off-diagonal case is very similar, in
principal, in this case, conjugation of an diagonal matrix with 7 just

switches the diagonal entries). So S is in fact a diagonal matrix, say

-1
S = [r Oj, where r € C. Let g9 = (f pj. Then
0 r q9 8

-2
892871 =( fz p-r ]::(u_ ZJGASUZ,
q.r g —0U u

thus we have f =u, g =u aswellas p =vr and q = —or 2. Hence, we

0y = u r2v
2 — _o__ _ .
-r% @

Clearly, since p;, p9 are simultaneously unitarizable, also pj09 =

— -9 2 —
( p QJ u rv - | Pu—qur purt +4qu | s unitarizable.
-q D 2 —-qu — pvr_2 - qUT“Z + pu

have

-rv u
Hence tr(ogog) = pu — qu_2 - qu2 + ﬁ must be real (see, for example,

Theorem 3.5 in [9]).

Obviously pu + pu = Re(pu) € R, thus ¢ - (072 + vr?) needs to be in

2 2 2

R. This gives r 20 + r2v = r 20 + r?0, hence r2(v-0) = r 2(v - D), i.e.,

r®-r?)-(v-v)=0.

Now we just need to consider two cases:

eCasel r? —r2 = 0, i.e., r = 1. Then g9 already is unitary and

we are done.
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eCase2.r # 1. Then v =v # 0, thatis v € R.

On the other hand, for a — o, we have o5 — (0go1) " =

a’'p  -ag
1

il . Clearly o ¢ R except for finitely many values of A.
—qa pa

Therefore, if @ is large enough, v ¢ R, a contradiction. Consequently, we

have r = +1. This concludes the proof.
8.3.

Finally, using all the results from the previous sections, we are able

to state our main theorem

Theorem 8.2. Let ng, uy, Mg, ugg’l), MSX?’Z), pg’z) be given Delaunay-
type expressions. Let b; = i— u? and let c; be given by (5.2.4), where the

T;; are defined by (5.2.13), (5.2.16), and (5.2.18). We assume

1
1 ug +uf 3+ pd - @O - @0D) - @2y (8.3.1)
and

The triples (vq, Vi, vgg’l)) and (vg, vy, VSSJ)) satisfy the strict

spherical inequalities (7.2.1). (8.3.2)

Then the potential n, given in (3.1.1) with v and t as in (3.4.1) and (3.4.2),
yields for all sufficiently large a € R a planar 4-noid with embedded

ends.
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